Convex measures on locally convex spaces

CHRISTER BORELIL

1. Introduetion

The purpose of this paper is not to give a complete treatment of so-called convex
measures but merely to point out a new technique. It will be proved that a Gauss
measure is a convex measure, and using the inequality (I,) below, we get very
neat proofs of results already known for Gauss measures. On the other hand our
results apply to all convex measures.

Throughout this paper E denotes a locally convex Hausdorff vector space,
and B(H) is the set of all Borel sets in E. Given a Borel probability measure u
on K we define the inner y-measure u.(d) of a subset 4 of K by

us(A4) = sup {u(K)|K compact € 4}.

We shall say that p is a Radon probability measure if u,(4) = u(4) for all
A € B(E). It is known that all Borel probability measures on  are Radon
probability measures, if £ is a Souslin space. (See e.g. [3, p. 132].) Further, we define
MHu,v) = Qo -+ (1 — ), — 0 < s <0, =min (%,v), s=— o, and =
wv'™* s =0, for u,v>0. Here 0°= 0.

Definition 1.1. Let u be a Radon probability measure on E and assume
s € [— o0, 0]. Then we shall say that u belongs to the class MM(E) if the inequality

pe(A4 + (1 — 2)B) = MA(u(4), u(B)) @)

holds for all 0 << A <1, and all 4, B € B(H).

A measure belonging to the class IM_ (&) will be called a convex measure.

By definition, 24 4 (1 — 2)B = {ix + (1 — A)y|x € 4, y € B}. Note that this
set need not be a Borel set even if A and B are so. (See [7].) Note also
that M, () € M, (E), if s; > s, and therefore the class M_ (£) is the largest
one.

In a recent paper [4] the author gives a complete description of the classes
M(R")(— o <s < 0) and for the readers conveniency we recapitulate the result
here
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TuroreM 1.1. A Radon probability measure p on R" belongs to the class M,(R")
if and only if there are an integer k, 0 <k <mn, a Radon probability measure v
on R*,  absolutely continuous with respect to Lebesque measure my, and an affine
mapping h: R¥ — R such that u = vk and such that the function e, r(dv/dm)
s convex. s

Here eon(u) =u " s= — 0o, =u"* — o<s<0, and = —logu,
s=0, for w >0, k> 0. We recall that a continuous mapping k: £ — F, for
each Borel probability measure » on ¥, induces a Borel probability measure
vht on F (a topological space), defined by v»h(C) = »(h1(C)), when C € B(F).
Note that »h~' is a Radon probability measure if » is so.

The “if” part of Theorem 1.1 is rather easy to prove and let us now briefly
indicate how this can be done.

Proof of Theorem 1.1. Using Lemma 2.1 below, it is readily seen that we only
need to consider the case when u = fm, and e, .(f) is a convex function on R™.
An application of Hélder’s inequality (several times) then yields

fke -+ (1 — 2y) W (G - (1 — 2)b) = M f(z) ﬁ 4o £(9) I"jbi) (L.1)

forall #,y € RY, @1, .. ., G, by, .., 0n >0, and 0 < A <<1. Let ¥ be the family
of all finite disjoint unions of compact non-degenerated n-dimensional intervals,
with sides parallel to the coordinate axes, and which are included in the interior
of supp (f). It is enough to show the inequality (I,) when 4, B€ J and 0 < 4 < L.
Let n(4) be the number of disjoint intervals defining 4 € §. Suppose first that
the inequality (I,) is true when n(A) 4- n(B) < p, where p > 2 is a fixed natural
number. We will then prove that the inequality (L) is still true when n(4) + n(B) =
p + 1. To see this we can assume that n(4) > 2. We then choose a hyperplane
¥; = ¢, with a normal vector parallel to the ¢:th basis vector, so that n(4’) < n(A)
and n(4") < n(d), if A’=AN{x; <c} and A" = A N {x; > ¢} respectively.

Set

wA’) = 0u(d), w(d") = (1 — O)u(d), (1.2)

where 0 << 0 << 1.

Since u < mn; we can find a hyperplane z; =d so that

u(B') = 0u(B), p(B") = (1 — O)u(B), (1.3)

where B’ = BN {x; <d} and B’ = BN {x; >d}.

Using that the inequality (I,) is true whenever A, B € J and n(4) + #(B) < p,
we get
pAd £ (1 — D)B) = p(24’ + (1 — )B) U (A4" + (1 — )B") =
pOA + (1 — DB + p(Ad” + (1 — N)B") = Mi(u(A"), u(B)) + Mi(u(d"), u(B")) =
OMi(u(A), w(B)) + (1 — 0)My(u(4), (B) = Mi(u(A), p(B)), 0 < 4 < 1.
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From now on let 14,0 << 2 << 1, be fixed. Tt only remains to be proved that the
inequality (L) is true when 4, B €J and n(Ad) = n(B) = 1. If not there is a
positive number ¢ such that

# (A4 + (1 — 2)B) < M(u(4), u(B)), (1.4)
where u, = (f + w(e))m,, and
w(e) = sup |f(2) — fy)l.

le—y|<<e
%y €14+(1—)B

Now let us divide 4 into two congruent intervals A’ = A4 N {z; <¢} and
A" = A N {x; > ¢}, respectively, and choose 6 so that (1.2) holds. In the next
step we choose d such that (1.3) holds with B’ = BN{xy <d} and B =
BN {x; > d}. Using the same technique as above, we conclude that the inequality
(1.4) cannot be wrong for both the pairs (A4’, B’) and (4", B"). By repetition we
conclude that

#(2C + (1 — 2)D) < Mi(u(O); w(D))

where C € A, D C B, and where diam (C) and diam (D) can be made arbitrarily
small. Settmg

C = -Iﬁ fe — (1/2)a;, w; + (1/2)a;], D = |_j| [v — (1/23b;, i + (1/2)0], (i, b; > 0),

we conclude that there are points » € C, y € D, and z € AC + (1 — 4)D such
that

n

(f() + () TT (Aax + (1 — A)bs) < M(f 'I_Ta“ 1T %)

1 1

By choosing ¢ and D small enough, we have f(z) + w(e) > f(Az + (1 — DY),
and we have got an inequality opposite to (1.1). This contradiction proves that the
inequality (L) must be true when 4, B € and n{d4) + n(B) = 2. This proves
the “if” part of Theorem 1.1.

2. Characterization of the classes M.(E)(— oo <s < 0)

Suppose &1, ..., & € E', the topological dual of . We shall write uh™! =
M. s When

h(z) = (&), . . ., &u(@)), x € . (2.1)

THEOREM 2.1. 4 Radon probability measure u on E belongs to the class IN(E)
if and only if ws . . € MJ(R") for all &, ... & €K', and all positive integers n.
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We need

Levmva 2.1. Let E and F be locally convex Hausdorff vector spaces and let
h: E— F be a continuous linear mapping. Then uph™t € MJ(F), if u € MJ(E).

Proof of Lemma 2.1. We have
A C) + (1 — DhHD) = hHAC N E) + 1 — YD D KE)]  (2.2)

for all 0 <1 <1, and all C,DCF.

Using that (uh™),(C) = ue(h72(0)), C C F, the proof of Lemma 2.1 follows
at once from the inequality (I,).

Proof of Theorem 2.1. Lemma 2.1 proves the “only if” part. To prove the “if”
part let & be of the form (2.1). The assumptions and the identity (2.2) then yield

(A1) + (1 — D)) = Mi(u(h(C)), p(h=(D))) (2.3)

for all 0 <1 <1, and all C, D € B(R").

Now choose 2 €[0,1], and compact sets 4 and B in K. Holding 1, 4,
and B fixed, we shall prove the inequality (I,), which will prove the theorem.
To this end let O be an open set containing A4 + (1 — 4)B. Since 14 + (1 — 2)B
is compact there is an open convex neighbourhood V of the origin so that

0D A+ (1— 2)B+2V.

Further, choose a1,...,¢m €A and yi, ..., y. €B such that

b—lcs

(i V)24, Uly+ V2B, (2.4)
1
and set

F—U (e + (1 — Ay; + 7).

[
Note that O D F. Foreach z¢ F, ¢ €{1,...,m}, and j€{l,.. ., n}, the Hahn-
Banach separation theorem gives us a k;. € R, and a &; € £’ such that

2 €, + (1 — Z’)yj + 5;';1([]91','5’ -+ o), ‘:{:i;’zl([kijz? + of) 2 V. (2.5)
Set
F,= U (4 + (1 — Ay; + &[Tk + D).

i
Clearly, F = N,¢rF,, and since u is a Radon probability measure we have
pF)y= inf pF. N...0F) (2.6)

zl,...,zPEF
P€Z+

Furthermore, it holds that
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le n...n szz U [Ax; + (L — )4 + n Ei;zi([kijzr’ + of)] =
= }”[U (@ +_ﬂ Ei;zi([kijzr: + )] + (1 — Z)[U (y; +‘n E;;zi([kijer + o[)].

L, j,r

Here the right-hand side is of the form
IhC) + (1 — D)

for suitable C, D € R™?, and & € (E')™?. The equations (2.3)—(2.6) therefore
yield
w0) = M(u(A), u(B))-

Since O is an arbitrary open set containing 14 + (1 — 2)B, we get the inequality
(L). This proves Theorem 2.1.

A Radon probability measure x on E is said to be a Gauss measure, if u,
is a Gauss measure on R for all & € E’. The set of all Gauss measures on £ will
be denoted by (). Assuming that u is a Gauss measure, it is well known that
Bey...g, €G(R") for all &, ... & €F', and all positive integers n.

Theorems 1.1 and 2.1 thus give

CororLLARY 2.1. G(E) C M(E).

In particular, the Wiener measure W on C[0, 1], equipped with the uniform
topology, satisfies the inequality (I,).

Nowadays there is no real problem to construct Radon probability measures
on our most important vector spaces. We recall the fundamental theorems due to
Kolmogorov, Minlos, and Sazonov. (See e.g. [16], [15], and [21].) The so-called
Radonifying mappings, introduced by L. Schwartz (see e.g. [2]), also make important
contributions to this area.

To check that a given measure u belongs to N, (X)), it is not necessary to prove
that wg . belongs to M(R") for all & ...& €E', and all » €Z;. Rather
than giving a general theorem, we will illustrate this in a few examples. Suppose
u is a Radon probability measure on RZ+, equipped with the product topology,
and let II,: RZ+ — R" be the natural projection. We claim that u € I (RZ+),
if wlT,' € M(R") for all n € Z,. To see this, let e,(x) = ,, x = {x,}7, and note
that each bounded linear functional on RZ%+ is a finite linear combination of

the e,. Therefore, given &,,..., &, € E', there are m € Zy, and a linear mapping
h: R™ — R" such that

ey ooty = Moy ol = (IR

Using Lemma 2.1, we conclude that u. . €9R,(R"). This proves the assertion.

Now let p be a Radon probability measure on a separable Hilbert space H,
and let {e,}°, be an orthonormal basis in H. We claim that p €W (F), if
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Bey...c, EM(R")  for all positive integers n. As above, we conclude that
Bey...s, € M(R"), if each &, is a finite linear combination of the e, Hence it
suffices to prove that the class IR, (R") is weakly closed.

TaEorEM 2.2. Let E be metrizablel) ond let w,, n €N, be Radon probability
measures on H such that p, = uy, as n— + . Then u, € MJAE), if u, € M(E)
for each n €Z,.

Proof. Let d be a translation-invariant metric on K. For ¢ > 0, and C CE,
let C, = {z|d{z, C) <&}, and let ¢f be a continuous function =1 on €, and
=0 on K\ C,. Now choose A €][0,1], and compact subsets 4 and B of E.
We have

f Fes o, Aty = 1ol(A4 + (1 — DB)) = p, (4, + (1 — )B,) =

Z Mi(lun(As)’ lun(Be)) Z M; (/ (pf‘ldlunﬂ / (p;?dlun) b4 7 G Z+'
By letting n-— - o, and making use of trivial inequalities, we get

#o((AA + (1 — )B),,) = M (uo(A), py(B)).

If ¢ tends to zero, we obtain the inequality (I,) and the proof is clear

Finally we shall say a few words about the space C[0, 1], equipped with the
sup-norm topology. Given a Radon probability measure u on C[0, 1], we have
that u € M,(C[O, 1), if B, ..o, €M (R for all 0 <4 <ty <. .. <E, <1,

and all positive integers n. Here §, is the Dirac measure at the point ¢ For
example, set 8, = (¢, ® W)k, where h(6, x) = 0x, 0 > 0, x € C[0, 1], and where
g, is the probability distribution of a real-valued random variable X, such that
«/X? has a chi-square distribution with « degrees of freedom. A straight-forward
computation shows that (8,), : €M ,(R") and so S, €M _,,(C[O, 1]).

et

The measure S, will be called a Student measure on C[0, 1], and in the special
case « = 1 we have the Cauchy measure on C[0, 1]. It is not hard to prove that
8, = W, when «— + o0o.

t

3. Integrability for certain funetions of seminorms

For a long time it was an open question whether the norm in a separable Banach
space E must be LP-integrable for each 1 < p < co, with respect to an arbitrary
Gauss measure. The question was solved in the affirmative by Vakhania in case
E=101<gqg<+ o (Seeeg. [3, p. 184].) Later, a much stronger result was

1) This condition can easily be omitted.
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given by Fernique [8]'). Given a Gauss measure x4 on E, which now may be arbitrary,
and a p-measurable seminorm ¢, which is finite a.e. [u], Fernique proves that
exp (e¢?) € LY(u), if &> 0 is small enough. Other, less precise results, may be
found in [17] and [3, p. 187].

We have

TerOREM 3.1. Let p € MAE) and assume that ¢ is @ p-measurable seminorm
on K, which is finite a.e. [w]. Then in case s = 0, the function exp (cp) € LYu),
if e>0 dis small enough, and in case s> 0, the function ¢ € LP(u) for all
0<p<—1/s.

We need

Luemma 3.1, Let uw € WM (E) and let A be a convex, p-measurable, subset of E,
symmetric about the origin. Assume w(A) =0 > 1/2. Then

1 — g\
n case s = 0: M*(E\tA)gﬁ(T>2, t>1,

£+ 1 s
m case — oo < § << O M*(E\tA)g{ * (1~6)s—65]—}—65} , t>1.

2

Proof of Lemma 3.1. We have

2 i — 1
— A, 1> 1 3.1
ENA2 (BNt 4 A, 1= (3.1)
In fact . L&, where ',a’ € 4. This yield
n ac,assumea—t+lx—{~t+la,Were a,a" € A. is yields
P+l b1
x=t< % a+T(—a))€tA

which proves (3.1).
Now let — oo <5< 0. The inequality (L) gives

t+1MML

and an easy computation yields the desired estimate. The case s = 0 can be treated
similarly.
Proof of Theorem 3.1. We only consider the case — oo <C s << 0. By definition,

1) See also Landau & Shepp, On the supremum of a Gaussian process, Sankhya, Ser. A. 32,
369—378 (1971).
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oo

f pP(x)du(x) = p / 2 u{z|p(x) > tidt.

0

Since ¢ << + oo a.e. [u], thereisa 4 > 0 suchthat u{z|p(r) << i} > 1/2. Lemma
3.1 implies that u{x|p(z) > A} = 0(t'"), t— -+ oo, and this proves the theorem.

4. A zero-one law for convex measures

Let u be a Gauss measure on X, and assume that G is an additive,
u-measurable, subgroup of E. Then Kallianpur [11]) proves that G is u-trivial,
that is u(G) = 0 or 1. Kallianpur’s proof has been simplified by Le Page [14].
There are several other papers in the literature, proving less precise zero-one laws,
and the interested reader may consult [5], [20], and [10].

We have

THEOREM 4.1. Let u be a convex measure on E and G an additive subgroup
of E. Then pu(G)=0 or 1.

Proof. Suppose uy (@) > 0, and let K, be a compact subset of G such that
w(Ky) > 0. Set K = KyU (— K,), and let H be the least additive subgroup of
E containing K, that is

H= U (K+K+...+K).

n€Z+

n terms

We will prove that u, (&) = 1 and therefore it suffices to prove u(H) = 1. Suppose
to the contrary that w(H) << 1, and choose &> 0 so that

e < min (1 — u(H), y(K)).
Further, choose a compact subset L of E “\_H such that
p(L) > 1 — p(H) — e.

Now observe that
1 1
EN(HUL)2 — {EN\[HU ((n — DK + nL)]} + (1 — Z) K, n€Zy.

This relation can be proved in the same manner as (3.1). Using the inequality (I_),
we get

W(E\ (H U L)) = min (@(E\ [H U (v — DK + L)), u(K)).

1) See also footnote 1), p. 245.
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But

WEN(HU L) =1 — p(H) — p(L) < s < u(K).
Hence

e>pE N (HUL) = pENHU (0 — 1)K + nL)]), n€Zy.

This yields

wln — DK +nl) > 1 — yH) — >0, n€Zy. (4.1)
Now choose a compact subset 4 of K such that

wB N A) < (1 — p(H) — o). (4.2)

Since K and L are compact sets, and 0 ¢ K + L, we can find a positive integer

n so that
(n— 1)K 4 nLCE 4. (4.3)

Clearly, (4.1)—(4.3) give a contradiction. Hence u(H) =1, which proves the
theorem.

Given a convex measure u, and an additive, u-measurable, subgroup G of
E, it is interesting to know whether @ is of probability zero or one. Rather than
giving a general theorem of this kind, we prefer to illustrate the method in a simple
case.

Let Dy=1[0,1], and D,={(t w)|t,u>0,¢+nu <1}, n€Z; For
z € RY, set Ag(t) = x(t), t €D, A, u) =zt + u) — z(t), (¢, u) €D, and
Ax(t, uw) = A4, _2(, W)t w), ¢ uw) €D, n>2.

We have

THEOREM 4.2. Let o be a o-finite positive Borel measure on D,, and let
w €EM(C[O, 1]}, 0 =>s> — 1/p, where 1 < p <<+ oo is a fived real number.
Then

w{w € C[0, 11|42 € LP(0)} = 1 iff o € L*(0),

l/p
o) = ( f lAnx(')I”dﬂ(x))

Shepp [18, Section 19] proves the special case n =0, o< my, p =2, p= W,
and Varberg [22, Theorem 3] the special case n =0, o<m;, p=2,
u € B(C[0, 1]).

Proof. Fubini’s theorem gives

fgpda = f(f ]Anx]Pdo') du(x). (4.4)

where
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The “if” part is trivial. To prove the other direction, set
Lp
p(x) = (/ lA,pcl%la) , « €C[0,1].

Then ¢ is a p-measurable seminorm, and ¢ << + o a.e. [u], by assumption.
Theorem 3.1 now tells us that ¢ € L?(u), and (4.4) gives the result.

For example, let S, be the Student measure introduced at the very end of
Section 2, and assume « > p,n > 1. Then a straight-forward computation shows
that S {x € C[0, 1]|d,x € LP(|t|"“dtdu)} = 1 if and only if ¢ < p/2 + 1.

Now let u € M, (R%+), 0 >s> — 1/p, where 1 <p < + o is a fixed real
number, and let 0, > 0, k € Z.. The same technique as in the proof of Theorem
4.2. then yields

uix i; 0.2, < 4 oo} =1 iff E;Gk / Jaeg | Pd () << + oo, (4.5)

For instance, let 4, >0, k€Z,, X1, < + o, and define a linear operator
S: 12— 12, by setting
S{w,} = { Az}, {%) €12

By Sazonov’s theorem [16, p. 160], there is a Gauss measure p on 2 such that
fei<”’y>dy(x) —em Wy e
Using (4.5), we conclude that

waD Ol P < + o} =1 iff > 642" < + oo.

Finally we shall discuss Holder conditions. Let w:]0,1]—>10, 4+ oo be a
continuous function. We shall say that a continuous function z: [0, 11— R belongs
to H,(w), n>1, if

(. u)Ebn

THEOREM 4.3. Let u, p, and o be as in Theorem 4.2, Then

o, u)
()

sup = + oo implies u(H,(w)) = 0.

(& u)eoDn
Proof. Let y be a nonnegative Lebesgue integrable function on D,, and set

#lw) = U

P

A x(t, w)

w(w)

1jp
y(t, w)dt du} , « €(C[0,1].
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Suppose u(H,(w)) > 0, that is w(H,(w))=1. Then ¢ < + o a.e. [u], and
Theorem 3.1 gives ¢ € L?(u). Hence, by Fubini’s theorem,

f (e (u))~? f A, elt, w) P dp(@))y(t, wdtdu < + co.
Since y > 0 is an arbitrary Lebesgue integrable function, we have

ess sup (w(u))o(t, u) < + oo.

Theorem 3.1 implies that p is continuous, and therefore we have a contradiction.
Hence u(H,(w)) = 0, which proves the theorem.

The converse of Theorem 4.3 is, of course, wrong. Take u = W, o(u) = u'?
and n = 1. It is well known that W(H,(«'?)) = 0.

5. The support of a convex measure

The support supp (#) of a Radon probability measure u is, by definition, the
least closed set which carries the total mass one. It is well known that the support
of a Gauss measure on / is a closed linear subvariety, at least if the space E is
not too complicated. (See [9], [12], and [13].)

We have

THEOREM 5.1. Let u be a convex measure on E and assume that
supp (u:) = singleton set or R, all &€E'. (5.1
Then supp (u) 1s a closed linear subvariety of E. Hspecially, it holds that
supp (u) = N {H|H € F}, (5.2)
where & is the family of all closed hyperplanes in E with u-measure one.

Proof. The inequality (I_,) implies that supp (¢) is convex. Furthermore, we
have

supp (u) € N{H|H € F}

since u is a Randon probability measure.
Suppose

xy €[N {H[H € F}] "\ supp (u). (5.3)

The Hahn-Banach separation theorem gives us a & € B’ such that

k: = sup &(supp (1)) << &(%,).

But  u.(Jk, + oof) = u(é*(Jk, +o[)) = 0, and therefore (5.1) says that & is
constant: = [ a.e. [u]. Clearly, [ <k and &7({{}) €F. From (5.3) we have
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E(xy) = 1, which implies that !> k. This contradiction proves (5.2) and the

theorem.
Note that a Gauss measure p satisfies (5.1).

6. Some properties of convolutions

We shall conclude this paper with a brief discussion of convolutions. First, we
give a generalization of the important inequality due to Anderson [1]. (See also

[19].)
A measure p is said to be symmetric if u(d) = u(— 4) for all 4 € B(E).

THEOREM 6.1. Let p be a symmeiric and convex measure on K, and let f, g be
nonnegative Borel functions such that the sets

{elflw) = and {lgw) =0
are convex and symmetric about the origin for all ¢ > 0. Then

(f*9),(42) = (f*9).(2), 14 <1, z€E,

where

(f * 9),(@) = f @ — 9gw)uly), = €B.

Proof. Without loss of generality it can be assumed that f and g are
characteristic functions of convex sets 4 and B, respectively, both symmetric
about the origin. Then

1— 2 Ry
A+ )NB2 -5 (Ad—a)0Bl+ —— [(A+5)NB), /<], z€k.

Hence
p(A + 2)NB) > pu((Ad +2)NB), ) <1, z€F,

which proves the theorem.

TarorREM 6.2. Let p € M(E) and v € M(F). Then the product measure
u Qv €My(E QF). Especially, the convolution p *v € My(H) in case F = K.

Note here that # ® » extends to a Radon probability measure on ¥ @ F,
equipped with the product topology. (See [3, p. 94].)

Proof. The product measure g @ » clearly satisfies the inequality (I,) when A
and B are rectangles in £ ® F. The first assertion therefore follows from Theorem
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2.1. and {4, Cor. 3.1]. The second assertion follows from the first and Lemma 2.1,
since p * v = (u ® v)h™Y, where k(x, y) = « + v, x, y € E. This proves the theorem.

From Theorem 6.2 it is not hard to prove that (f=g), is a logarithmically

concave function on E, whenever u € IR (#), and f,g are nonnegative, loga-
rithmically concave, Borel measurable functions. This extends [6], which proves
the result when £ =— R" and u = m,.

10.

11.

12,

13.

14.

15.

16.
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