Removable singularities and condenser capacities

LArs IngE HEDBERG

1. Introduction

In [3] Ahlfors and Beurling gave a characterization in terms of extremal distances
of the removable singularities for the class of analytic functions with finite Dirichlet
integral. The purpose of this paper is to generalize and extend this result in several
directions.

Let A(GQ) be a class of analytic or harmonic functions defined for any open
set G in the complex plane € or in d-dimensional Euclidean space R?. We say
that a compact set £ is removable for A if for some open G containing E every
function in A(G' \_E) can be extended to a function in A(G).

If ¢ cC we denote by AD?(G), p > 0, the class of analytic functions f in
G such that f ¢ [/ (®)Pdm(z) < oo, m being plane Lebesgue measure.

Ahlfors and Beurling [3] proved that a set E is removable for 4D? if and only
if the removal of K does not change extremal distances. (See Theorem 7 below for
a more precise statement.) Their proof uses the conformal invariance of the class
AD?, so it does not immediately generalize to p = 2.

In order to treat this problem for all p, 1 < p << o, we first reformulate it
by means of duality as an approximation problem in the Sobolev space
Wi, ¢ = p/(p — 1). (Theorem 1.) It is then quite easy to give a necessary and
sufficient condition for a set to be removable for ADP, 1 < p << co. Our condition
(Theorem 4) is that £ be a »null set» for a certain condenser capacity, which for
p = 2 is »conjugate» to the extremal distance considered by Ahlfors and Beurling
(Lemmas 3 and 4).

Our main result, however, is that this necessary and sufficient condition is
equivalent to a local, apparently much weaker condition (Theorem 6). Thus, con-
denser capacity has an instability property similar to the instability that a wide
class of capacities is known to have.

The above approximation problem in W? can just as well be formulated and
solved in d dimensions, and this d-dimensional problem is also equivalent to a
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problem of removability. In fact, instead of considering functions in ADP in plane
regions it is equivalent to consider their real parts, i.e. real valued harmonic functions
w with vanishing periods and such that f lgrad «|Pdm << oco. This class of functions
can also be defined in R

Thus, following Rodin and Sario [25; p. 254] we denote for ¢ € R? by FDr(()
the class of real valued harmonic functions « in ¢ such that f ¢ lgrad ulPdma < oo

(mq is d-dimensional Lebesgue measure), and such that « has no flux, i.e.
fc* du = fc dujon dS = 0 for all (d — l)-cycles ¢ in (. By the de Rham

theorem the last condition is equivalent to saying that the (d — 1)-form s*du is
exact. Since our results extend to d dimensions at little extra cost, this is the
generality in which we shall treat the removability problem.

For comparison we also include characterizations of the removable singularities
for the spaces ALP of analytic functions in plane L? and (which is equivalent for
d = 2) HD? of harmonic functions % with f lgrad u|Pdmy < oo. (Theorems 1
and 2.)

There are also possibilities of generalizing to solutions of more general elliptic
equations, but we leave these aside. Cf. Harvey and Polking [11].

In the last section of the paper we discuss mainly the case of linear sets in the
plane. We give conditions for removability (Theorem 13) which for p = 2 improve
a theorem of Ahlfors and Beurling [3].

For more information about removable singularities we refer in addition to [3]
to the book by Sario and Nakai [27], and the bibliography given there. Some results
on FD? are due to Yamamoto [31].

2. Preliminaries

For any open G in R? and 1 <q < oo we denote by W¥G) the Sobolev
space of locally integrable real valued functions f on & whose derivatives in the
distribution sense are functions in LY(@). We write WI(RY) = Wi. As usual
CPRY) = 0 and OF(G) denote the infinitely differentiable functions with
compact support (in ¢). When G is bounded [/|grad f|llLe¢ is a norm on Cg(G)
by the Poincaré inequality, and the closure of Cy(G) in this norm is denoted
WG

It is well known that for ¢ > d functionsin W{ are continuous but for ¢ < d
this is no longer true. The deviation from continuity is measured by a g¢-capacity
which in a natural way is associated with the space W{. For compact sets K this
g-capacity is defined by

Cy(K) = inf f]gradw[qdm,
“ d

R
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where the infimum is taken over all w € ¢ such that @ > 1 on K. In the case
g < d the w are restricted to Cg(B) for some fixed large ball B which contains
K in its interior.

The definition is extended to arbitrary E c R? by setting

CyE) = sup {Cy(K); K€ E, K compact}.

For ¢ > d only the empty set has g¢-capacity zero. C; is a conformal invariant
in RY called conformal capacity. C, is classical Newtonian (logarithmic for
d = 2) capacity.

For an account of some of the properties of C, and W{ we refer to T. Bagby
[4]. See also Meyers [22], Adams and Meyers [1], Maz’ja and Havin [21], Hedberg
[15].

3. The dual problem

We show by means of duality that the problem of characterizing the removable
sets for FDP (4DP), 1 < p < oo, is equivalent to an approximation problem in
Wi, ¢ = p/(p — 1). For comparison we include the corresponding characterization
for HDP (ALP). For p = 2 the result is found in Royden [26].

We denote by Og(RY) = Cy or Cg(G@) the subset of CY or CF(GF) which
consists of functions ¢ such that grad ¢ belongs to CF(CE). Le. CF is the
subalgebra of Cy which consists of functions that are constant on each component
of some neighborhood of E.

THEOREM 1. a) E is removable for HDP or AL?, 1 <p < oo, if and only if
CP (G E) is dense in I/%?(G), q=p/(p — 1), for some bounded open G D K.

b) H is removable for FDP or ADP, 1 < p < o, tf and only if Cg(G) s dense
m ﬁV‘{(G), qg = pl(p — 1), for some bounded open G D K.

Proof. We prove the theorem for HD? and FDr. For AL? and ADP the proof
is simpler and is omitted. R

Suppose Cg(GF) is dense in WY(GF). Then clearly myE =0, so if
u € HDP(G \_E) the partial derivatives u; are defined almost everywhere in ¢
and belong to L?(@). We claim that there is a distribution 7' in ¢ whose partial
derivatives DT equal w:i. By a theorem of L. Schwartz a necessary and sufficient
condition for this is that the distribution partial derivatives Dju; satisfy Dju; =
Dy for all ¢ and j. In other words, we claim that f ¢ WDpdm = f o WD pdm
for all ¢ € CF(G). But for all ¢ € CF(GF) it is easily seen that

/ . Dpdm = / w;Dipdm = — f uD;D;pdm = — f uD;D;pdm = f u;D;pdm.
¢

G\E G\E G~E G
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If C3(@) is dense in OP(G) the assertion follows from Hélder’s inequality. Thus
there is a distribution 7' in G which coincides with » in G \ E. By another
theorem of L. Schwartz 7 is a function in W{(G), i.e. u has an extension to
We(@), in particular « is locally in L~*.

Suppose now OF(G \_E) is dense in VCI>/‘{(G). For any w € HD?(G \_E) and
é €CY(G\ E) we have by Green’s formula

qugl»dm = — fgrad % - grad ¢dm = quAudm = 0.
GNE GNE N

Tt follows that /c uApdm = — fc grad % - grad ¢dm = 0 for all ¢ € OF(G). By

Weyl’s lemma % is harmonic in @, ie. u € HD?((). o
Then let « € FD?(G \_E) and suppose that Cg(G) is dense in Wi(G). Let
é € C5(G). The support of grad ¢ is a compact set in ¢\ E. Only finitely many
components of its complement 2 intersect K, and we denote these by 2. On
-each of these ¢ equals a constant, a;. Let y bea (d — I)-cyclein (G \ HE)N Q
which is homologous to zero in G \_E, and set y N 2; = y;. By Green’s formula

ququm = — fgrad u + grad ¢dm = fngAudm — fgé(* du) =
GNE G\E GNE 4
= — z a; | *du=0.

;

It follows as before that f o UAgdm = 0 forall ¢ € CP((), soagain u is harmonic
in @, ie. u € FDr(@). .
Suppose conversely that CF(G "\ E) is not dense in W¥(@). Then there is a

non-zero distribution 7' with support in E and continuous on V?”{(G). Clearly
S = T % |z*~¢ is harmonic in @\ E. We claim that S belongs to HD?(G \_E).

There are functions u; € L?(@) such that for ¢ € C{E) (T, ¢) = f D aDipdm.
Then (S, ¢) = (T, ¢ = |x|*~9) = f i wiDi($ * |z|*"%)dm. Thus

(D;S, ¢) = — (8, Dip) = — fz w:D;Di * [w|*~)dm.
By the Calderén-Zygmund theory
ID;Di(¢ * &[>~ Hg < Clldliza, so (DS, ) < C 2, I lusilllea-

It follows that D,S € L7, ie. S € Wi(G). (See also Theorem 2 below.)

If in addition Cg(G) is not dense in P‘f/‘{(G) there is a distribution 7' with
the same properties as above and which also annihilates C2(G). S =T = |»/**
again belongs to W%(G) and to HDP(G\_ E), and we claim that S now has
vanishing periods, i.e. 8 € FDP(G \ E).
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Let ¢ € CR(G) andlet y be a (d — I)-cycle as above off the support of grad ¢.
Then (S, A¢) = (T, |x[*~% % Ad) = O(T, ¢) = 0, so by Green’s formula

0 :GfSAqum = —«G‘/\gradS~grad¢dm: f(ﬁASdm—/qS(*dS) =

C\E

:—zag/*dS.

"

Since the a; are arbitrary, f , % dS8 = 0 for all ¢. It follows that f  *dS = 0 for

all (d — 1)-cycles in G\ _H.
The following corollaries are obvious.

CororrarY 1. Let A be HDP, ALP, FDP or ADP for 1 <p < oo, and let
E be compact. If all functions f in A(G\ E) can be extended to A(G) for some
bounded open G containing E, then the same is true for all such G.

CoroLLARY 2. The property of being removable for HDP, ALP, FDP or ADP,
I <p < oo, islocal, i.e. E isremovable if and only if every x in E has a compact
netghborhood whose intersection with E is removable.

Theorem 1 says that proving that K is removable for FD? (or ADP) is
equivalent to proving a »Stone-Weierstrass property» for Cg(G) in V?f‘{(G), For
qg>d ﬁfg(G) is an algebra, but for ¢ < d it is not. The subspace VlofﬂG) nwrLe,
however, is a Banach algebra under the norm |f] = |[fll, + { f lgrad f*dm}"/s,
and the closure of OF(¢/) in the same norm is again an algebra, which we denote
by “Mi(G). It consists of the functions in VIC}%(G) that are continuous and tend to
zero at the boundary. Such »Royden algebras» have been studied by Royden and
recently by L. Lewis [18] and J. Lelong-Ferrand [17]. We shall later prove a »Stone-
Weierstrass theorem» (Theorem 12) for these algebras also, i.e. we shall characterize
the compact sets & such that CF(G) is dense in MYEG), 1 < ¢ < . A necessary
condition is obviously that OF is point separating, which is the case if and only
if E is completely disconnected.

4. Necessary and sufficient conditions for removability

The removable sets for HDP and ALP, 1 < p < oo, allow a simple charac-
terization which is undoubtedly known. However, it does not seem to be given
explicitly in the literature, except for p = 2 which is classical (see e.g. Carleson
[6; Th. VII:1]), so for completeness we include it here.
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THEOREM 2. A compact set E C R* is removable for HDP (ALP), 1 < p < o,
if and only if Co(E) =0 (i.e. if and only if E = @ in the case p < dj(d — 1)).

Proof. First assume Cy(F) > O Then there is a measure g > 0 supported by
E such that the potential Uf(x f lx — y|""du(y) is in Lf, (see e.g. Meyers
[22; Th. 14]. The potential U"“(x) f lz — y>~duly) ( f log 1/|x — y|du(y) in
case d = 2) is harmonic in C E, and its gradient in the distribution sense is
grad Uy(x f grad, | — y|*~%du(y), which is majorized by U%(z). Thus Uj
belongs to HD?P(G\_E) for all bounded &, but clearly not to HD?(G). Note

however that U§ € Wi(Q).
In the other direction the theorem follows from Theorem 1 and the following

lemma.

Levma 1. Suppose E is compact and C(E) =0, 1 < q < . Then C3(G "\ E)
1§ dense in Wq ) for all bounded open G.

Proof. It is enough to show that any ¢ in CF(G) can be approximated. Let
e > 0 be arbitrary. There exists an o € Cy such that » = 1 in a neighborhood of
supp ¢ N E and f lgrad w|%dm < &. Then ¢(1 — w) € OX(G \ E), and

f lgrad dow|'dm = f I grad w + o grad ¢|"dm <
< 207! max |$|% -+ 2¢7" max |grad qﬁqu lw|%dm < const. - &
by the Poincaré inequality.

The removable sets for FD? (and ADP) cannot be characterized in such simple
terms. However the following simple theorem may be worth recording.

TEEOREM 3. Let E C C be compact and let G D E be open. Then every function
f in W2G)N ADPG\ E), 1 <p < o, belongs to ADP(Q) if and only if
mol = 0.

Proof. Let f € W2(G)N AD?(G \ E), @ D E. Then 9f/oz € L?(G) and vanishes
on G\ E. If mE = 0 it follows by Weyl’s lemma that f is analytic in G.

Conversely, suppose my,E > 0. Then f(z) = f 5 (& —2)7dmy({) is analytic off
E, and f is not identically zero, because lim,_, |2f(z)] = m,E. By the Calder6n-
Zygmund theorem f€ W{(@) for all p > 1.

Tn order to characterize the removable sets for FD? and ADP we introduce a
kind of condenser g¢-capacity, q¢ = p/(p — 1).
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Definition. Let R be a d-dimensional, open rectangle with, say, sides parallel
to the coordinate planes. Let E be compact. The d condenser g-capacities of R
with respect to E are

I'RIE) = inff lgrad w{®dm, i=1,2,...,d,
‘R

where the infimum is taken over all » € Cy such that w(zx) = 0 on one of the

sides of R parallel to the coordinate plane x; = 0, and w(x) = 1 on the opposite

side. If E = & we write I’fp(R), which is the ordinary condenser g-capacity of

R.

By the usual strict convexity and variation argument one sees that there is a
unique extremal function w in W{(R) which satisfies the equation

div (|grad | ? grad u) = 0 in R\ E (du = 0 for ¢ = 2).

When E = @ the solution is linear. As is well known. it follows that if R has
edges of length a; perpendicular to the plane z; =0, then I'(R) = a; 9m,R.

THEOREM 4. Let E be a compact set in R?. For E to be removable for FDP (ADP),
1 <p < oo, ifis necessary and sufficient that

FOR(E) = TOR), i=1,2,...d, ¢=p/p—1),

for some open rectangle (or all open rectangles) R containing E.

Proof. Suppose first E is removable. Then by Theorem 1 C§ is dense in Cy°
in the W{ sense. It follows immediately that the capacities I')(R/E) and I'{(R)
are the same for all R containing E.

Suppose conversely that there is a rectangle R containing E such that
I'R|E) = I'(R), i=1,2,...,d. By Theorem 1 it is clearly enough to show
that the restriction of C§ to R is dense in WYR). Foreach 4, i =1,2,...,4d,
there is a sequence {¢,}7° in OF, such that the ¢, take the prescribed boundary
values, and such that f « lgrad ¢, %dm — I'O(R/E) = I'(R). By strict convexity
{¢,} tends strongly in W{ to the extremal function for ]’g)(R), which is of the
form ax; 4+ b. It follows that all polynomials of the first degree can be approximated
in W{R) by functions in Cg. Since WY{ is closed under truncation (see e.g. Deny
and Lions [7; Th. 3.2]) we can also assume that the approximating functions are
bounded, and the theorem then follows from the following lemma and the density
of polynomials in W¥(R).

Levma 2. Suppose ¢ ond v belong to WHR), and that ¢, < M, and
e < M. Let {¢,}7 and {p,})7 be sequences such that
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lim igra’d (¢ - (ﬁn)\qdm = 0: lim \gra’d (TP - wn”qdm - O:

n->oo n—>o0

I, <M, and |, <M. Then there is a subsequence {aniy),,i} such that
limi»oo fR !gra’d (9{"/) - (ﬁ"iwni)lqdm - 0

Proof. grad (¢ — ¢ays) = ¢ grad p + y grad ¢ — ¢ grad y. — y. grad ¢, =

(¢ — én) grad v + ¢ grad (y — ya) + (p — ya) grad ¢ + yn grad (¢ — &).
f |bn grad (v — wa)[4dm < M? f lgrad (v — .)%dm — 0, and similarly for the

fourth term. We can choose a sequence {n:} such that both ¢, and y. converge
pointwise almost everywhere to ¢ and u. The convergence to zero of

f (¢ — ¢n) grad pltdm and f [ — a) grad  idm

follows from the Lebesgue convergence theorem.

The following corollaries to Theorem 4 are due to Ahlfors and Beurling [3] for
p=d=2.

Cororrary 1. E s removable for FDF (ADP), 1 < p << o, if the projection
of E on each of the coordinate axes has one-dimensional measure zero.

CoroLLARY 2. Let B be a Cartesian product of a compact one-dimensional set
with itself, e.g. a d-dimensional Cantor set. Then E is removable for FD? (ADP),
1 <p < o, if and only if ml = 0.

Corollary 1 follows easily from the theorem. The sufficiency in Corollary 2 then
follows. The necessity was already observed in the course of the proof of Theorem 1.

That the vanishing of m.E is by no means sufficient for removability in general
is well known (see Ahlfors-Beurling [3; Th. 14]).

Since removability is a local property it is desirable to have a local condition for
removability in terms of condenser capacity. For this reason we need to apply the
definition of I'Y(R/E) in a situation where ¥ is allowed to intersect the boundary
of R.

Now, one complication arises from the fact that when ¢ <{d — 1 there are
continua with zero g-capacity. (For ¢ > d — 1 this cannot happen, because for
a continuum F with diameter & one then has C () > const. 4. (See e.g. Maz’ja
[20; Lemma 5].)) This means that a set E can be removable for FDP although
there are rectangles R such that no function in C% can be 1 on one side of R
and 0 on the opposite side. On the other hand, no continuum £ with Cy &) > 0
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can be removable for FDP. In order to see this one only has to set u = puy —
where u; and p, are positive measures with support in different parts of £ such
that u,(E) = uy(E) and such that Uli(x) = f le — y|"Ydu(y), ¢ =1, 2, are in
Lr. This is possible by Meyers [22; Th. 14]. Then Ui(x) = f lz — y|* duly) is
in FDrP for some neighborhood of K and does not vanish identically.

Therefore, if a set E is removable for FD? it has to be completely disconnected
after a set of g¢-capacity zero has been removed. We can thus without loss of
generality assume that K is completely disconnected.

We prefer now to work with capacities of ring domains instead of rectangles.
By a ring we mean a bounded domain ¢ such that the complement C G has
exactly two components.

Definition. Let @ be a ring in RY, and let E be closed. The condenser
g-capacity of ¢ with respect to K is

T(GIE) = inff lgrad w{tdma,
w ¢

where the infimum is taken over all o € Oy such that @ = 1 on the bounded
component of GG and o = 0 on the unbounded component.
The condition for removability then takes the following form.

TaroreM 5. Let E C R* be compact and completely disconnected. Then E s
removable for FDr (ADF), 1 <p < oo, if and only if IT(GE)= I'y&),
g = p/{p — 1), for all rings G.

The necessity is proved as in Theorem 4. A proof of the sufficiency of the con-
dition can easily be given, but since this also follows from Theorem 6 below, we
do not give it here.

The main result of this paper is that the condition in Theorem 5 is equivalent
to an apparently much weaker condition. The situation is comparable to the »n-
stability» of analytic capacity and potential theoretic capacities (see e.g. Vituskin
[30; Ch. VI: 1], Gonéar [10], Hedberg [14; p. 162] and [15; Th. 97).

We denote the annulus {y € R r < |y — z| < R} by A(z,r, R).

TurorREM 6. Let E C R? be compact with msE = 0, and let 1 < q << 0.
Suppose that for all = € E, with the possible exception of a compact set Eo C B with
Cy(Eo) = 0, there exist a number K(x) < oo, and sequences {r,(x)}y and {E,(x)}y
decreasing to zero in such a way that

1 R.(x)

1+IT.73)<7'"($)<

K(), (1)

and so that
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LAz, ra(x), Bo(@))/B) < K(x) - Ty(A(®, ra(x), Ba(x)) (2)
Jor dll n. .
Then Cg is dense in WY, t.e. E is removable for FD? (ADP), p = q/(q — 1),
and I'yG[E) = I'y(@) for oll rings @.

The proof of this theorem is somewhat technical. We shall therefore first discuss
how Theorems 4 and 5 compare with the characterization of removable sets for 4.D?
given by Ahlfors and Beurling, and then give the proof of Theorem 6 and some
related results.

5. Comparison with the Ahlfors-Beurling theorems

In [3] Ahlfors and Beurling gave a characterization of the removable sets for
AD? in terms of extremal lengths. Let the plane compact set E be contained in a
rectangle R with, say, sides parallel to the coordinate axes. We denote the extremal
distance between the vertical sides of B with respect to R\ E by AR\ E),
and between the horizontal sides by A®(R \_E). Then the theorem of Ahlfors and
Beurling is the following.

TaEOREM 7. E is removable for AD? if and only if for some rectangle (or all
rectangles) R containing E in its interior

RN E) =R, i=1,2.

The sufficiency of this condition was obtained as a consequence of the following
theorem, also proved in [3].

TrarOREM 8. E is removable for AD? if and only if every region which is con-
Sformally equivalent with CE has a complement of zero area.

We shall show directly that Theorem 4, when specialized, is equivalent to
Theorem 7, and we thus obtain new proofs of Theorems 7 and 8.

We first define, for a d-dimensional rectangle R, another condenser p-capacity
with respect to E.

Definition. ]"S)(R N\ E) = inf, fR\E lgrad w|Pdw, ¢=1,2,...,d, where the
infimum is taken over all w € C°(C F) such that @ = 1 on one of the sides of R
parallel to the hyperplane z; = 0, and ® = 0 on the other one.

Note that always

IR\ B) < T9(R) < TO(R/E).

The bridge between Theorems 4 and 7 is provided by Lemmas 3 and 4 below.
They are of course not new (see the remarks below), but for the reader’s convenience
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we give some details. We again assume that E is a plane compact set contained in
the interior of a rectangle R.

Lemma 3. I'9R/E) =1TPRN\E), i=1, j=2 or i =2, j=1.

Proof. Let R have vertical sides F; and F; of length & and horizontal sides
F, and F, oflength b. First assume that E is bounded by finitely many analytic
curves.

The sets of functions » competing in the extremal problems defining I'{" (R/E)
and I'S(R \_E) are convex in Wi(R) and W3R \_E) respectively. Therefore
there are unique extremal functions % in W3(R) and » in W3R\ E). Both
are harmonicin R\ E, u=0 on F;, u =1 on F;, and v=0 on F,, v =1
on F,. u is clearly constant on each component of the interior of K. Both u
and v can be continued harmonically by reflection over the boundaries, so they
have continuous boundary values and boundary derivatives.

The usual variation shows that f g eradu - grad ¢dm = 0 for all ¢ in Cf

with support off F; U F;. By Green’s formula

f¢(*du): /4)%3613:0,

ORUOE ORUJE
for all such ¢, and it follows that dufon =0 on F,UPF, and that
f (ou/on)ds = 0 for every component ¢ of 0, i.e. w has no periodsin R\ E.

Similarly f N grad v - grad ¢dm = 0 for all ¢ in C® with support off
F,UF,. Thus foRu op P(Ov/0n)ds = 0 for all such ¢, and it follows that

v/on = 0 on 0F and on F,U F;.
Moreover, Green’s formula

ol —
f lgrad (u, — ) [2dm = /(ul — Uy) —%@ ds

96

shows that both % and » are uniquely determined by these boundary conditions.
Since % does not have any periods it has a single-valued conjugate harmonie
function »* in R\ E. The flow lines for % are level lines for «*, and conversely.
Therefore ou*/on = 0 on 9E and on F,U F,, and u* = const. on F, and on
F,. We can assume that w* = 0 on F,, and then it follows from the uniqueness
of v that «* = cv for some constant c.
Again applying Green’s formula we find

Z’(”RE’—f dzdwf%dﬁ/iud—*ﬁ"—
5 (BIE) = lgrad w|2dm = uan § = on s = u*(l'y) = c.

RN\E ARUOE FY

On the other hand
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/ lgrad u|*dm — / lgrad w* *dm = ¢* / lerad v)*dm = T'P(R \_E).

R\E R\E R\ E

Thus I'Y(R/E) = ¢ = 1/TOR\_E).

Moreover the analytic function f = u + iu* maps R\ E univalently onto
a region bounded by a rectangle S and finitely many vertical slits. The length of
the horisontal sides of § is 1 and of the vertical sides ¢. Clearly I'D(R) =
1/T®(R) = a/b, so ¢ > afb.

In order to finish the proof we have to prove that if ¥ =N’ E,, £,,,CE,
then lim, , I'Y(R\ E,) = I'P(R\_E), and lim, B I'R/E,)) = I'Y(R/E).
This is easily done by arguments similar to those used by Ziemer [32; Lemma 3.9].

n—>0

Lemma 4. TR\ E) = 1R\ E), j=1,2.

Proof. Assume first, as before, that # is bounded by finitely many analytic
curves. Let » be the extremal function defined above (for j = 2), i.e. v is harmonic
in R\ E, v=0 on F,, v=1 on F,, and ovjon =0 on PEU F,UF;, and

f lgrad v*dm = I'®(R\ E). Then g -~ 7 PE_E) \ ) / \grad v|’dm.
R E
" This is Theorem 4—5 in Ahlfors [2; p. 65], and »almost certainly due to Beurlingy.
(See [2; p. 81])
The extension to general £ is again easy. Details are found in Ziemer [32;
Th. 2.5.1] or [33; Lemma 2.3].

In a similar way one obtains a counterpart to Theorem 5. If @ is a ring domain
in R* we denote by M,(G \ E) the p-modulus of the family of hypersurfaces
(curves for d = 2) in G\ K that separate the components of C@G. T.e. for
p=d=2 MG\ E)= MG\ E)1, where AG\ E) is the extremal length
of this family of curves.

TrEOREM 9. If K C C and G is a ring then I, (G/E) = My (G E)™'. Thus
E s removable for AD? if and only if

My (G AN E) = M,(@)
Jor all rings Q.

Remarks. Capacities of the types ]“I(,i)(R\E) and I(G "\ E) have been
studied extensively. Thus Lemma 4 is a special case of a theorem of J. Hesse [16]
who extended earlier work of Beurling, Fuglede [8], Gehring [9], Ziemer [33] and
others. See also Ohtsuka [23]. Nullsets for these capacities have been investigated
by Vaisald [29] and Ziemer [32; Th. 3.14]. Capacities of the type I'(R/E) and
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I' (G/E) on the other hand do not seem to have been studied before. A theorem
similar to Lemma 3 in a general sitnation on open Riemann surfaces, but in terms
of conjugate extremal lengths, was given by Marden and Rodin [19]. See also the
monograph by Rodin and Sario [25; p. 124]. Generalizations of Lemma 3 and
Theorem 9 to p #* 2 and to higher dimensions do not seem to be known. A »con-
jugate» problem was solved, at least for p > 2, by Ziemer [32], and Bardet and
Lelong-Ferrand [5], who extended earlier results of Fuglede [8], Gehring [9], and
others.

In view of these results the following conjecture seems reasonable: For any
compact E and any ring G CR* I'(G/E)" =M G\ E)"'?, 1 <p < oo,
prttgt=1

6. Proof of Theorem 6

In order to prove Theorem 6 it is by Theorem 1 enough to show that every
function in C¢(C E,) can be approximated in the Vf’% norm by functions in Cf.
The proof is by a direct construction of the approximation functions. The con-
struction is similar to one used previously by the author in [13].

We denote the closure of C% in I/T)f{ by @ Various constants independent
of x are denoted by C.

Leuma 5. Under the assumptions of Theorem 6

Az, r,(x), R.(x)) < CK@) 'R (x)*% 1 <q < .

q

Proof. It is well known that
R

1—¢
I'(A,r, R) =C { f t("—l)/(l-q)dt} ,

T

corresponding to the extremal function u(y) = Cly — 2| 90~=9 The assump-
tion Ru(x)/r(x) > 1 + 1/K(x) gives the result after a short computation.

We shall start by covering the set E \ K, with balls in a special way by means
of the following well-known lemma. See e.g. Stein [28; I. 1.7] for a proof.

Lemma 6. Let E be a measurable subset of R* which is covered by the union of a
family of balls {B(x, r)} with bounded diameter. Then from this family a subsequence
{B(a, r)}2, can be selected so that E C Uy B(x,r;) but the balls Bla, r,/5)
are all disjoint.

For every integer ¢>1 we set HE, ={x€E;i<K@®) <i+1}, so
B = UZ, B;, where by assumption C(E,) = 0.
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For 6> 0 we set Gy = {x; dist (¢, B) < 6}. Since m,E = 0 by assumption,
we have lim,, ,m,G; = 0. We choose an arbitrary &> 0 which will be kept
fixed, and then we choose a sequence {4;}72, such that

rd+-q
I, < e

[

N8

For x € E;, ¢ >1, we can also assume that R.(x) < §; for all =.

It follows from Lemma 6 that each HE;, 7= 1,2,..., can be covered by a
(possibly infinite) sequence of balls Bz, ry), 2 €E;, = rnj(xj), so that
B(x;, B)c Gy, R = an(xj), and so that

Z R < (i 1)“’2 (r;/5)* < Oidmd(}’aj.
J

J
Taking the union of these coverings and reenumerating we obtain a covering
of E\ H, by balls B(x;, ) so that R, <4, and

720
jglK(xj)qu < Ci:zl z'd“deai < Ce.
For each of these balls there is by assumption and Lemma 5 a function qu €Cy
so that ¢; =1 on B(x, ), ¢ = 0 off Bz, R;), and
J 7 ]) 7 7 ])
f lgrad ¢,|%dm < C’K(xj)qR]f"q.i
Thus

>H f lgrad ,[1dm < Ce. 3)

Let g be the function to be approximated. We can assume that 0 <g <1
and that |grad g] < 1. We shall construct an approximation to g in an inductive
way by using the functions ¢; and the following lemma.

Levma 7. If ¢, and ¢, belong to CZ, then the Sfunctions max (¢,, ¢.) and
min (¢, ¢,) belong to Cg.

A similar lemma was proved in [13; Lemma 2] and we omit the proof here.

Denote the support of g by S. Then E NS is compact, so we can select a
finite subsequence {B(x;, rj)}jj=1 that covers ENS. We choose 7 so
0 <y <min{R;1<j<J}, and so that 1l/y is an integer.

Then we set

Ly={x;9(x) = kn}, k=0,1,2,... 1/n,

and define g,(x) for each k by
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0, z¢L,
gu(x) = 19(@) — kn, = € L, Ly,
N, €Ly,

For each j=1,2,...,J there is an integer wu(j) such that B(xj, Rj) c L
but B(x;, R;) € L,;.;,, and there is an integer »(j) > u(j) such that
B((L'j, 7’].) n Lv(j) # @, bllt B(xj, 7‘j) n Lv(j)-i—l — Q

Set  y; = ((J) — u()ng; i »(j) > p(j), and y; =nd; otherwise. Since
lgrad g| <1, dist (C L;, L;.,) >#. Thus

0() — #(j) — Dy < dist € Ly L) < B, + 7,
Since 5 < R; we have y; < 3R;d;, so by (3)

w7y

> f lgrad y;|%dm < Ce. (4)

Set Q= U/ B(x;,r;), and set o =dist (C 2, ENS). Define a function
2(x) by
0, dist (z, EN S) < /2
2wy =q2/pdist (2, ENS) — 1, p/2 < dist (w, ENS) <o
1, dist(x, ENS) >

Then g,y = 0 in a neighborhood of H, so g,x € Cg, and gix = ¢, outside £.
Now, set ¥y(x) = max {y;(x); B(x;, B)) C Lo}, and set hy(x) = max {gy(x)x(x),
Yo(x)}. Then hOEC’_j’E5 by Lemma 7, hy(x) >#% on L, and hky(z) =g(x) on
C L, \ (supp ¥,). _

Set ly(®) = min {hy(2), n}. Then I, € CF, by Lemma 7 and [(x) =»n on L.

Next, set ¥i(z) = max {y;(x); B(%;, B;) C L}, and set & (x) = max {g,(z)x(),
Yx)}. Then A, € Cz, and hy(x) = 0 outside L,. Set ki(x) = max {hy(x), lo(x) +
hy(x)}. Then also k; € CZ. and we claim that k(x) > 2 on L, Infact,if x € L,,
and x belongs to some B(z;,r;) such that B(z;, R;) intersects G L;, then
y(®) = 21, s0 hy(x) = 2. If x €L, and z belongs to some B(w;, r;) such that
B(x;, B) € Ly, then wyix) =75 so [l@)+ kyz)>2p If 2€L,\ 2, then
hi(x) = gi(x)x(x) = g:(x) = 7, so again ky(z) > 257. On C L, we have h(z) =0,
80 ky(x) = ko(x) = ho().

Moreover, if x € L;, 5 > 2, and x belongs to some B(x;, r;) such that B(x;, E;)
intersects C L,, then k(x) >in. In fact, either B(x;, R;) intersects C.L,,
and then y;(¥) =9, so hy(x) = in, or else B(x;, R)C L;, and then ¥(z) >
W@) = (0 — Ly, and k() = l@) + @) > in,

Set I(x) = min {& (), 29}, and continue the construction in the same way.

Assume that %, ; € CF has been constructed, so that %, ,(z) =k, _,(x) on
CL,;, k, (@) =nn on L, and k, ,(x) >in if z€L, i>n, and if =
belongs to some B(x;,r;) such that B(z;, R,) intersects CL,.
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Then set l,_1(x) = min {k,_(z), ny},
¥, (x) = max {y;(x); B(z;, K;) € L,},

ho(x) = max {g,(x)x(x), ¥.()},
and

k(z) = max {k, (), [,_1{x) + A, (2)}.

Clearly k,(z) €C%, and k,(x) =k, ,(x) on CL,.

If x€L,.;, we claim that £k,(x) > (n + 1)y. In fact, if 2 €L, ,, and z
belongs to some B(x;,r) such that B(x;, R;) intersects C L, then by the
induction hypothesis £, () > (n + L)y, so k,(z) = (n 4 1)y. If x € B(x, 1)),
and B(z, B;) C L,, then ¥, (x) =, so k,x) >1, (x) + 5 = (n 4 1)y. Finally,
if €L, N\ 2 then g,(2)7(2) = g,(@) =7, so again k() = (n + L.

If x€L;, ¢+>mn+4 1, and if x belongs to some B(z;, r;) such that B(x;, R;)
intersects C L,,;, we claim that k,(x) > in. In fact, either B(x;, R,) intersects
CL,, and then k, () > in, by the induction hypothesis, so k,(x) > 4, or else
B(x;, R;) C L,, in which case y;(x) > (¢ — n)y, 8o k() > 1, \(x) + (1 — n)y = .

If n = 1/y we find that k%, , =k, We finally set t = k;,, and claim that
k approximates the given function g¢.

It is clear that k(z) = g(x) outside G, = G,. Moreover, for almost all
x€L,\ L,,, n=0,1,..., we have either grad k(z) = grad y;(x) for some j,
or grad k(x) = grad (g.(x)x(x)) {(see e.g. Deny-Lions [7; Th. 3.2], and

igrad (9.(2)x(#))| = |gn(x) grad y(x) + x(x) grad g{z)| < 3.
Thus

/ lgrad (g — k)1dm < f (|grad g| + |grad &|)%dm < CmyGo +
G,y

+C> / lgrad y; [#dm < OmqGo + Ce
J

by (4). Since ¢ and m4Go are arbitrarily small, the theorem follows.
We also observe that |g(x) — k(z)] < 3 max; B; << 3d;, so k also approximates
g uniformly.

Variants of the proof of Theorem 6 also give the following results.

TurorEM 10. a) Suppose E is contained in a C'-submanifold M C R* of
dimension «, ond that m (E) = 0. Then the conclusion cf Theorem 6 is still true if
(2) s replaced by

Ly(A(z, ra(z), Ra(2))/B) < K(2)Ra(x)** (5)
for all n.
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b) Suppose that the «-dimensional Hausdorff measure A (E) =0 for some

« < d. Then the conclusion of Theorem 6 is true if there exists a compact Eo with

Cy(Eo) = 0 so that for all x € E\_Eo thereisa K = K(x), 0 << K(x) < 1, so that
— I'y(A(x, KR, R)/E)

im
x—
R0 R B

< 0.

Proof. To prove the theorem one only has to modify the covering argument in
the first part of the proof of Theorem 6. We keep the notation from that proof.
In case a) we know that lim, ,m(GsN M) = 0. We now choose {4;} so that

ow

> i m (G, 0 M) < e,

i=1

and then (3) follows as before.
In case b) we write E\ E,= Uy E, where E, is the set where
171 < K(x) <1 — 1471, and where [(A4(z, K(x)R, R)/E) < iR* ! for all B <<

We choose a sequence {d;} so that
Z ,&‘oc+1é‘i < &
1

and cover each E; with balls B(xj,r;) so that r, <i? and ry < 6. We
can assume, by doubling the #; if necessary, that z; € ;. It follows, if we set
Rj = rj/K(xj), that )

> RIL Az, 1y, R)[E) < i#F! 5 rd < 4ot14,.
i J
(3) follows, and then the theorem follows as before.

TrrorEM 11. a) If en Theorems 6 and 10 a) the function K(x) ¢s uniformly
bounded, the conclusion is still true if the hypotheses my(E) = 0 or m (E) =0 are
removed.

b) Suppose that A(E) < oo for some o« < d. Then the conclusion of Theorem
6 is true if for every &> 0 there exists a compact E, with C(H,) <& and o number
M < © sothat for all @ € £\ E, thereisa K = K(z), 1/M < K(z) <1 — 1/M,
so that

— I'(A(z, KR, R)|E)

lim pou < M
R0 R e

Proof. We can no longer claim that f lgrad (g — k)|%dm in the proof of Theorem
6 is small, but in all cases f lgrad k|%dm is bounded independently of ¢, so there

is a weakly convergent sequence of functions k. By the Banach-Saks theorem
there is a subsequence k¥ such that K, = 1/n >7kY converge strongly. The
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kO, and therefore the K,, also converge uniformly to g, so g is also the strong
limit of the K,.

TurorEM 12. Under the additional assumption that E is completely disconnected
the equivalent conditions in Theorems 5 and 6 are necessary and sufficient, and the
conditions in Theorems 10 and 11 are sufficient for CF(G) to be dense in the Royden
g-algebra “MYG) for any bounded domain G D E.

In fact, a modification of the proof of Lemma 1 shows that COg (@) is dense in
NG if E is completely disconnected and C(E) = 0. Theorem 12 then follows
easily, since, as we noted above, the approximating functions in the proof of Theorem
6 actually converge uniformly.

We finally remark that a Baire category argument (see Sario and Nakai [27;
Th. VI. 1. L, p. 371]) shows that if E is compact, and E = U7 E;, where the
E; are compact and removable for FDP?, then E is also removable.

7. Sets on hyperplanes

In this section we give some further results in the case when the set E is con-
tained in a hyperplane, especially when d = 2 and E is a linear set, in which case
we improve a theorem of Ahlfors and Beurling. The discussion also serves to
illuminate the difference between the capacities I((R/E) and I, (R\ E).

We denote the hyperplane {x € R% x, = 0} by R%, and the halfspaces
{z €R% 2, > 0(x; <0)} by R} (RY). Suppose the compact set E belongs to
R* ' It is well known that the restriction of W? to R*' can be identified with
the Besov or Lipschitz space A%;g(Rd’l), i.e. the space of boundary values of
harmonijc functions » € Wi(R%). See e.g. Stein [28; VI. 4.4] and references given
there. It is easy to see that CZ(RY) is dense in W4RY if and only if Cg(R* ")
is dense in AfHR?"). Le. the problem can be reduced to the same problem in a
Lipschitz space, and for d > 2 a solution requires a study of condenser capacities
in these spaces. For d = 1 a linear functional on Af{(R) that annihilates Cg(R)
can be identified with a function f€ A%P(R) such that f gJo'dm =0 for all

/g

¢ € CZ(R). It follows that f=0 on CE, ie. CF is dense in Af! if and only
if every function f€ A}P(R) with support on K has to be identically zero. We
say that E is a set of uniqueness for A{P(R). A good description of these
sets of uniqueness can be given in terms of »Bessel capacities» C, , (see e.g. Meyers
[22] for definitions and properties), which are equivalent to the classical Riesz
capacities for p = 2. We denote the space of Bessel potentials of order « (or
equivalently Riesz potentials with respect to the kernel |z]'"%) of functions in
LP(R) by <LI(R), and note the following inclusion relations (see Stein [28; V. 5.3],
where there are misprints in the statement of the theorem, however).
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AP L ARE 1 < p < 2.

o 3

AP C L ARP, 2 < p < oo,

Moreover AP*C AEF p' <p, and AP C AR p <p’, at least locally.
Necessary and sufficient conditions for a set to be a uniqueness set for <£Z have
been given by Polking [24] and the author [15; Th. 9]. For px > d functions
in <P are continuous, and then the condition is that E has no interior.

We summarize the result. We denote the interval [z — 6,2 + 8] by I.(9).

TarorEM 13. Let E C C be compact, and suppose E C R, the real axis.

For E to be removable for ADP, 1 < p < 2, it is sufficient that E is a set of
uniqueness for LY (R). It is necessary that B is a set of uniqueness for ?ﬁﬁ’}q(R)
for all p" < p.

For E to be removable for AD? it is necessary and sufficient that E is a sel of
uniqueness for <£3,(R).

For E to be removable for ADP, p > 2, it is necessary and sufficient that E
s totally disconnected.

E is a set of uniqueness for L%, 1 < p < 2, if and only if one of the following
equivalent conditions is satisfied:

(@) Cyy (I E) = Oy () for some interval I containing E.

(b) Oy (I E) = Oy (1) for every interval I.

/g, p

e Cl/q,p(lx(a) \ E)
lim 5

>0

(c) > 0 for almost all x € K.

The capacity €, ,(#) is equivalent to the plane logarithmic capacity Cy(H),
and the result is that £ is removable for AD? if and only if either

(a) Oy \ E) = OyI) for some interval I containing K,

(b) Cy(I \ E)= CyI) for every interval I,
or

— Cy(L (8 E
(¢) Hm 2(—95(6&“—) > 0 for almost all z € K.
3—>0

Note that C,(I(8)) = 1/(log 4/8). Similar results can be given for sets on circles.

The characterization (a) is due to Ahlfors and Beurling [3]. Their result was
extended to sets on C? curves by Carleson [6; VI. 3]. See also [12; Th. 1] where
a related theorem of Carleson was published.

Sharp comparison theorems between the C, , and Hausdorff measures, and
between the C, , for different &« and p have been given by Maz’ja and Havin
[21], and by Adams and Meyers [1].

Suppose again that H C R c RY, and consider I')(R\ E) for a rectangle
R that is symmetrically situated with respect to R?~'. Let u be the corresponding
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extremal function. Then 1 — u(-, — z4) is also an extremal function and since
the extremal is unique it follows that # = % on R\ K.

The restriction of » to RY belongs to W{(R?), and it can be extended to
We(RY by setting u(-, — a,) = u(", 2;). The restriction of WEZ(R% to R is
again AfP, and it follows that I'UR\ E) = I'(R) if E is a set of unique-
ness for A{’;;’(Rd_l). By the inclusion relations above and [15; Th. 9] this is
the case if lim,, Cryy p(Blz, ) \ E)0'" >0 for (m;,) ae =« in E, in
particular if my (E) = 0. For p = 2 0, ,(E) is again equivalent to Cy(E), i.e.
to classical capacity with respect to the Newton kernel |z|*~? in R? Cf. Viisila
[29], and Ziemer [32; Th. 3.14].
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