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1. Colimits of injectives

A Grothendieck category is an Abelian category <A which has a set of generators
and admits colimits that are exact functors when taken over directed sets. Any
Grotendieck category has arbitrary products and sufficiently many injective objects
(see [1]). ‘

An object D of A is said to be a strict cogenerator if every object of <A admits
an embedding in a suitable coproduct of copies of D.

In [6] (see also [2] and [5]) J. E. Roos has proved that the following conditions
are equivalent for a Grothendieck category A

(i) There exists an injective object I of <A such that every injective in A is
a coproduct of direct summands of I.

(ii) Ewery coproduct of imjectives in <A is still injective.

(i) A admits a strict cogenerator.

The aim of this paper is to prove that in a Grothendieck category A each of
the above equivalent conditions (i)— (iii} implies that a directed colimit of injectives
is injective. This answers a question of J. K. Roos [6, p. 202].

Throughout this paper colim is a colimit functor, | | and T denote coproduct
and product respectively.

We start with the following

LemmA. Let {M, by}, <5, be a well-ordered directed system in a Grothendieck
category A such that My =0, h,, are monomorphisms and M, = colim,_ M,
whenever 1 is a limit ordinal number. If he , o M, — M. , splits for any & <y
then

colim _ M %gj_l' M., M.
<¥
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Proof. Let B, =]]._ M. /M. and let s,:B B, «<f <y, bea
natural monomorphism. For any « < p we fix such splitting maps d, and ?, of
byr1,o and o M, — M . /M, respectively, that the identity map on M_,,
is equal to A ., d +tw.

Let f;: B;— M, be a map defined by commutative diagrams

By b M
A
h

8, §+1

t
Mo JM,~——> M., &<§

It is easy to verify that {f;}: {B;, sz} —{M;, b} is a map of directed systems
and that the following diagram commutes

Jo
0 > Boc h > Ba+1 f——)— Ma+1/Moz >0
Soﬁ—l,oc
f(x fa-l-l ,l’d
Y d Y t Y
0 }Moc<— «>’Zl[oc+1+ >Mo¢+1/Mar—_w>O
a+1

where j, is a natural projection and p, is a natural injection. It follows that
foa1 is an isomorphism whenever so is f,. Clearly f, is an isomorphism. If % is
a limit ordinal and f, are isomorphisms for & <<% then so is

f, = colim, . fo: B, ~ colim,_, B. —M,.
Consequently, colim,_ f,  is an isomorphism and the lemma is proved.

TrroREM 1. If @ Grothendieck category A admits a strict cogenerator then any
directed colimit of injectives in A is injective.

Proof. Consider an exact sequence

h
0

> K —— | | M,

i€l

» colim; . M, ——> 0 {*)

where M;, i € I, is a direct system of injective objects in <4 and % is the natural
colimit morphism. We shall prove by transfinite induction on the cardinality (/]
of I that any sequence of the form (*) splits. Clearly it is true if I is finite. Now
suppose that I is arbitrary and that our statement holds for any directed set of
cardinality less than |I[. It follows from [4, Lemma 1.4] that I is a union of an
ascending transfinite sequence of directed subsets I. such that |I.] < |I| for any
£ and I, =U,_, I. whenever 7 is a limit ordinal number. Then for any £ we
have a commutative diagram
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0 > K —— .IJ.iEIEMi > colim, ¢ [ M, >0
n n ok
! ) } **)
0 > K.y > I__I_iEIHIMi > oolimieIHlMi >0

with splitting rows by the induective assumption. It follows that K, = K., splits
for any & and therefore K., /K, is injective. Since the exact sequence

0

+ 0

> colim K§%—> colim _|_| M. -

ce 1M, > colim colim, IEM ;

is isomorphic to (*) then by Lemma K ~ | | K. /K. Hence K is injective and
our conclusion follows.

CorROLLARY. Lei A be a Grothendieck category with a sirict cogenerator. Then
inj dim colim M; < sup inj dim M;
for any directed system M1 €1, in SA.

Proof. It follows from our assumption that <A has an injective cogenerator K.
For each object M of <A we set QM) = [[ E; where Hy= K and f runs
through all morphisms from M to E. It is clear that the natural morphism
M — Q(M) is a monomorphism and any morphism A: M — N induces a natural
morphism Q(h): Q(M) — Q(N) such that @ becomes a covariant endofunctor of A.

We shall prove the corollary by induction on d = sup inj dim M;, since there
is nothing to prove provided d = co. In virtue of Theorem 1 it is sufficient to pass
from d — 1 to d. For this purpose observe that from a directed system of exact
sequences

0 > M; > QM) > K; >0
we derive the exact sequence
0 » colim M; —> colim Q(M;) > colim K; > 0

where the middle object is injective by Theorem 1 and the last one has injective
dimension less then d by the inductive assumption. Hence the corollary follows.

2. Pure-injectives and pure-projectives

Let A be a Grothendieck category. Recall that an object M of A is finitely
generated if for each directed family M, i € I, of subobjects of M with M = J;c; M;
there is an j € I with M, = M. M is finitely presented if it is finitely generated
and every epimorphism N — M, where N is finitely generated, has a finitely
generated kernel. <A is said to be a locally finitely presented category if it has a family
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of finitely presented generators. A short exact sequence in <A is pure if every
finitely presented object is relatively projective for it.

By [8], pure sequences in a locally finitely presented category form a proper
class which is closed under directed colimits. Moreover, in this case there exist
enough pure-projective objects.

The following result is an extension of the Theorem 4.2 in [3] from module
categories to locally finitely presented ones.

THEOREM 2. Let A be a locally finitely presented category. The following statements
are equivalent:

(a) All objects of A are pure-projective.

(b) Every pure-projective object of A is pure-injective.
Moreover, if A has enough pure-injectives then (a) is equivalent to the following
statement

(c) Hwvery pure-injective object in A is pure-projective.

Proof. The implications (a) = (b) and (a) = (¢) are trivial, and (¢) = (a) may
be proved as the one in [3, Theorem 4.2].

To prove (b) = (a) observe that every sequencs of the form (*) is pure. It is
trivial if the set I is finite. The general case follows by transfinite induction on the
cardinality |I| using the fact that (*) is a directed colimit of sequences of the form
(**). Assume (b). By [8, Lemma 4] every object is a directed colimit of finitely
presented (so pure-injective) objects. Then it is sufficient to show that every sequence
of the form (*), with M; pure-injective, splits. But this follows from the above
remarks and the arguments from the proof of Theorem 1. This completes the proof.

After not hard modifications of arguments from [3, Sec. 5] and [7, Sec. 1] one
obtains

THEOREM 3. Let <A be a locally finitely presented category. If
0 K > P, e > P, M 0

is a pure exact sequence in <A and Py, ..., P, are pure-projective objects then K
is an N, -directed union of pure-projective subobjects (which are N, G-pure sub-
objects of K in the sense of [3, Sec. 5]).

Note Added tn Proof. Theorem 1 and Corollary have been proved by Jan-Erik
Roos in the paper »On the structure of abelian categories with generators and exact
direct limitsy (to appear).
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