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I f  ~ is a yon  N e u m a n n  algebra, or indeed any  Banach  algebra, c)~2(~l, 9/) is 
the  quot ien t  of the  space of  cont inuous bil inear maps  S : 9~ • 9~ -+  ~I such t h a t  

bS(a, b, c) ~- aS(b, c) - -  S(ab, c) -[- S(a, bc) --  S(a, b)c = 0 (a, b, c E 9.1) 

b y  the  subspace of those maps  of the  form 

S(a, b) = aR(b) --  t~(ab) + R(a)b = ((~R)(a, b) 

for some cont inuous l inear map  R : 9~ --> 9~. The  background  to the  present  paper  
is the  three  papers  [6], [7] and  [5], in which it  is shown th a t  c2/~(% ~l) = 0 for 
t ype  I yon  N e u m a n n  algebras and  for hyper f in i t e  yon  N e u m a n n  algebras. In  this 
paper  we cons t ruc t  some non  hyper f in i t e  I I  1 factors  which have  this p roper ty .  
Besides the three  papers  above we shall also use ideas f rom [4]. 

LEMMA 1. Let  G be a group of permutat ions  of a set X ,  x o c X and H = {g : 
: g E G, gx o ---- x0}. Suppose H is amenable and G is 3-fold transitive on X .  Then  

l )  = o.  

f ~ ( X )  is the  space of bounded  funct ions  on X and  if f E F~176 g E G we 
define gf by  (gf)(x) ~ - f (g - lx )  (x q X). C 1 is ~he set of cons tant  funct ions in ~ ( X )  
and  is closed under  mul t ip l icat ion by  elements  of  G so t h a t  if F E f ~ 1 7 6  1, gF 
is well defined.  Saying 90(G,  / ~ ( X ) / f J  1) = 0 means  t h a t  whenever  q~ is a map  
G -+ ~ ~(X)/C 1 wi th  

Ilq~(g)li < K g E G 

q)(gg') = qS(g) + gqb(g') g, g' E G, 

t h a t  is, i f  q~ is a bounded  crossed homomorphism,  t h en  there  is F C ~ ~176 1 with 
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+(g) = g ~ -  ~ g c r  

t h a t  is ~b is a pr incipal  crossed homomorphism.  Saying t h a t  G is 3-fold transi t ive  

means t h a t  if  {x 1, x~, x3}, {x~, x'  2, x~} are two sets of 3 dis t inct  points  of  X t h en  
there  is g C G wi th  gxl = x'i i = 1, 2, 3. Amenabi l i ty  of  groups is discussed in 
[3, w 

Proof .  I f  X is f ini te  the  resul t  is a consequence of [4, Theorem 3.4]. Accord- 
ingly we assume X has at  least  3 points.  L e t  ~b be a bounded  crossed homomor-  
phism as above.  As H is amenable  and  as f ~ 1 7 6  1 is the  dual  of ~ - { a ;  
a E ~ ( X ) ,  (a, 1 ) ~  0} and  F ~ g F  is the  adjoin t  of  the  map  a ~ a g  where 
ag(x) = a(gx) on ~00, there  is F in ~ ( X ) / C 1  wi th  ~b(h)~  h F -  F for all 
h in H [4, Theorem 2.5]. Replacing ~b by  T : g ~ q~(g) - -  g F  -~ F we see t h a t  
T is a bounded  crossed homomorph i sm and  T is pr incipal  i f  and  only  i f  ~b is. 
T is zero on H so T ( g h ) =  T ( g ) , g E G ,  h E H .  Thus  T is cons tan t  on the  left  
cosets of  H ,  which are in one to  one correspondence wi th  the  points  of  X,  and  
so can be  considered as a funct ion  T '  on X which is zero at  x 0. I f  ~ 0 = { f :  
f E S~(X) ,  f(Xo) = 0} then  the  quot ien t  map  q onto  ~ |  1 is one to one on 
+~ 0 and  i f  we define 

(g o f ) ( x )  = f (g-~x)  - -  f (g- lxo)  f C ~0, g E G, x e X 

t hen  g o f E ~ 0 and  q(g o f )  = gq(f) .  Thus  we can assume t h a t  T '  takes  values 
in +~ ra the r  t h a n  F ~ ( X ) / C 1  and  we have  

T'(gg ' )  = ~ ' (g )  + g o ~g'(g'). 

L e t  O(x,  y) ~ (T '(x))(y)  (x, y E X). Then  O is a bounded  complex va lued  func- 
t ion  on X • X which is zero i f  e i ther  var iable  is x 0. The  crossed homomorph i sm 
p r o p e r t y  for  T shows 

O(x,  g-~y) - -  O(x,  g-~Xo) - -  O(gx, y) + O(gx o, y) ~-- 0 g E G, x,  y C X .  

I f  x, y E X ~ { x 0 }  then  there  is g E G  with  gx o - - x  o, g x ~ - - y  and  the  above  
equa t ion  yields O(x,  x) ~ O(y,  y). I f  gx o ~-- Xo, z ~ g - l y  we get  O(x,  z) ---- O(gx, gz) 
so tha t ,  because G is 3-fold t rans i t ive  on X,  O is cons tant  off  the  diagonal  of 
(X ~ {x0} ) • (X ~ {x0}). I f  ~ is the  value of  O on the  diagonal  and  fi the  value  
off  the  diagonal  t hen  wri t ing g-~y ~ z and  choosing g wi th  gx ~--x  o we have  

O(x, z) - -  O(x, x) § O(gxo, gz) = 0 

so t h a t  if  x, x o, z are dis t inct  t hen  ~ - -  fi ~- ~ = 0. Defining ~(x) = --fi  if x :fi Xo, 
~(xo) --~ 0 we easily check t h a t  O(gxo ' y) : F(g4y)  _ q)(g-~xo ) _ ~(y) for  all 
g E G ,  y E X .  ~ E ~ ~  and  this  equa t ion  can be rewr i t t en  T ' ( g x o ) = g o q ~ - -  
f rom which we see T(g)  = gq(~) - q(q~). 

T ~ E o ~  2. Let  (Z, ~) be a locally compact,  g-compact  measure  space and G 

a group of  homeomorph i sms  of  Z such that ~ o g is absolutely cont inuous  wi th  respect 
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to ~ for all g in G. Let K be an amenable normal subgroup of G and H an 
amenable subgroup containing K.  We suppose that 

(i) ~ ; N c ' Z U g = ( 0 )  i f  g # e  

(ii) K is ergodic on Z 

(iii) G is 3-fold transitive on the left coset space G/H 

where the notation is that of [1, p. 134]. Let 95 be the yon ~Veumann algebra con- 
structed from Z, ~, G [1, p. 133--135]. Then 9E~(~N, c~) = 0. 

Proof. We shall use the  nota t ion  of [1, Ch. 1, w in par t icular  t ha t  o f E x .  1 p. 137. 
Let  910 be the  norm closed *subalgebra  of  ~ ( ~ )  genera ted  b y  the  operators  

{ q ) ( T ) ; T  EtZ} ,  {Uk;/c C K}, 91 the weak  closure of 92[ 0 , go the norm closed 

algebra genera ted  by  {q)'(T) ; T E tZ} and {U~',; h E H} and ~3 the  weak  closure 
of  go. I t  is easy to see tha t  the  subgroup cU of the  un i ta ry  group of 910 generated 

b y  the { r  U - 1 =  U * E a }  and { U k ; / c E K }  is an extension of the  abelian 
group {qs(U): U - l =  U* E t;Z} b y  a group isomorphic with K and so ~Zd is 
amenable  [3, Theorems 17.5 and 17.14]. Thus  91 0 is s t rongly amenable  [4, Pro- 
posit ion 7.8]. Similarly ~3o is s t rongly amenable.  I f  M is a t ransla t ion invar iant  
mean on ell then defining 

( P X ~ , ~ ) =  M ( U * X U ~ , v )  ~ , ~ E  ~,  X e?-~(~O), 
UE IZ 

where the right hand  side indicates the  value  of M at the  funct ion U ~+ ( U * X  U~, ~]), 
! 

we define a project ion P : ~E-(~) --> 910 = 91' with P ( X B )  = P ( X ) B ,  P ( B X )  = 

= B P ( X )  for B E 91', X E 5~(~)). There is a similar project ion Q onto ~3'. 
B y  [5, L e m m a  5.4] to show 9~2(c75, ~r~) = 0 it is enough to show tha t  if S :  

qvo• N _+ ~/r~ is separa te ly  u l t raweakly  continuous,  dS = 0 and S(a, b ) =  0 if 
either a or b lies in 910 (and so too if  a or b lies in 91) then N =  dR 0 for some 
norm continuous map  Ro : ~N -~  ~-r--~. Using [7, Theorem 2.4] we see tha t  there  is 

a norm continuous map /~ : ~ --~ ~ ( ~ )  with S = dR and b y  [5, L e m m a  5.5] 

with ql~ = ~ ( ~ )  we can take  /~ to be  u l t raweakly  continuous.  As R(ab) = 
= aR(b) -~ l~(a)b for all a in 91 using the  definit ion of  amenable  algebra [4, w 

we see tha t  there  is x C ~ ( ~ )  with J ~ ( a ) = a x - - x a  for all a in 910 and so, 
b y  n l t raweak  continui ty,  for all a in 91. Replacing _R by  a ~+ t~(a) - -  ax -~ xa 
if  necessary we can assume R is zero on 9I. Replacing /~ b y  QR if necessary 
we can assume in addi t ion tha t  R maps  9~ into ~3'. We have 0 = S(a, b) = 
= aR(b) - -  R(ab) a E 91, b E 9~. Similarly JR(ba) = R(b)a a E 91, b E ~ .  

The set of  generators  of 910 is mapped  onto itself under  the  au tomorphism 

X ~ +  U* X~/g of  ?~ (5 )  so U* 9 l U g =  91 for all g in G. Hence  _R(Ug)U* A U g =  
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= R(A~Ts) = A/~(~Ts) for all A C 91, g E G, so t ha t  R(~;g)U* E 9/'. Also R(~Tg)Ug* 

E ~ '  because /~(~?g) and  ~?g are. 

is a direct sum of copies of ~ ~) so any  element L of ~_Z(~) can be repre- 
sented as a G • G mat r ix  wi th  entries from ~(~)) .  We shall investigate the special 
form this matr ix  takes when L E 9/' fl ~ ' .  As Lq~(T) = r  we have Ls,~ T = 
= TL~,= for all T in ~ ,  s, u in G. As ~7~ is maximal  abelian this shows Ls, ~ E ~Z.. 
A similar calculation s tar t ing from Lq~'(T) = qb'(T)L shows Ls, u E U~ ~ U* ---- 
= ~  Us~-, so L ~ , , E ~ N ~ U s ~ _ , = { 0 }  if  s veu.  Thus Ls0~= ~,~Y, where 

for each s in G, Y, E ~ .  The equat ion LUk = (TkL shows Yk~ = UkY,,U* 

for / c E K ,  u E G .  The equat ion LLT~= l~'hL shows Y , h =  Y~ for all u E G ,  
h E H .  Thus Y~ * * * = UkY~Uk, u E G ,  k E K .  As K Uk Yk~Uk : Uk Y~-,k~Uk = 
is ergodic on Z this implies Y ~ = y ~ I  o for some y ~ E C .  Thus if  L E  9/ 'A !3' 
then  

L~,t = (5~,ty~Io 

for some complex valued funct ion y on G which is constant  on the  left cosets 
of H.  Clearly y is bounded.  Wri t ing  J L  for y we see t ha t  J is a linear i sometry  
of 9~'N ~ '  onto ~ ( X )  where X is the space of left eosets of H in G. More- 

over UgLU* e 9/' gl ~ '  and  J(UgL~]*) = gJL  where the product  of g E G, 
J L  C f ~ ( X )  is as defined in L e m m a  1. Another  calculation shows tha t  J ( ~  N 9/') = 
= e l .  

r u t   0(g) = The equat ion  S ( @  = where 

S(U v Ug,)Ug, Ug*-*E~ and R(Ug,,)Ug* C 9~'~1~'  for all g " E G  shows t h a t  

bR(~7, Ug,)U~ U* e ~ f'l 9/' from which we see gq~o(g') -- #(gg') + #(g) E C 1. 
Thus q~b 0 is a bounded crossed homomorphism from G into /~  1. Le t  
z ~ / * ( X )  wi th  q#o(g) = gq(z) --  q(z) (using the Lemma)  and let L 0 E 9~' N ~ '  
wi th  J L  o = z .  We have 

--  U~L oU~ + Lo) E C l 

so t h a t  - *  -- U~LoU ~ + L o E C I~  ~ ~/~. Thus defining R0(B) = R(B) --  
--  (BL o --/LoB ) for all B in ~ we see t h a t  R o is an u l t raweakly  continuous 
map from ~ into !3'. 

Because /Lo E 9/' and R ( A B )  = AR(B) ,  B ( B A )  = 2R(B)A and _R(A) ---- 0 

if  A ~ 9/, B ~ ~ ,  R o has the  same properties. In  addit ion if  g ~ G then  /?o(fig) ---- 

= (R(Us)U* -- ~7~Log~* + L0)U ~ e ~ .  Thus i f  T E ~ ,  g E G then  Bo(q~(T)Ug ) : 

= Og(T)Ro(~7) E ~?~. As R o is u l t raweakly  continuous and  the u l t raweakly  closed 

linear span of the 09@) Ug is ~2~ we see t h a t  R 0 ( ~  ) _~ ~2~. For  all B x, B~ in 
w e  h a v e  

S(B~, B~) -~ B~R(B~) --  R(BxB~) + R(B~)B+= = B~Ro(B~) --  Ro(B~B~) + Ro(B~)B v 
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Thus  to  provide  our  example  we have  only  to  show th a t  the  hypotheses  can be 
satisfied in some s i tua t ion in which ~ is a t y p e  I][ 1 fac tor  wi thou t  p rope r ty  P 
[8, Defini t ion 1]. To faci l i tate  this we simplify condit ion * [1, p. 135]. 

L]~MMX 3. Let Z be a locally compact a-compact metrizable space, ~ a positive 
Radon measure on Z, s a homeomorphism of Z. Then the following condition * is 
satisfied i f  and only i f  v((z : z E Z, sz : z}) = O. 

(*) For each measurable set Z' in Z with v(Z') r 0 there is a measurable 
subset Z" of Z'  with r(Z")=/= 0 and Z " n  8 Z " =  0 .  

Proof. I f  F = { z : z E Z ,  z = sz} has v(F) = O, Z'  c Z, v(Z') > 0 
is a metr ic  on Z comparable  wi th  the  topology  t h en  

and  d 

Z~ = {z : z e Z',  d(z, sz) > n -~} 

defines a monotonic  increasing sequence of  measurable  subsets of  Z wi th  union 
Z ~ F  where v ( Z ~ F ) = v ( Z ) >  0. Thus  for some n , v ( Z , ) >  O. Taking  a 
compact  subset  K of Z ,  wi th  v(K) > 0 and  a ball B centre  z 0 of  radius (2n) -1 
wi th  ~ ( B n K ) >  0 we pu t  Z " = B f ] K .  Then  if  z E Z "  we have  d(z0, s z ) >  
> d(z, sz) --  d(z 0, z) > (2n) -1 showing sz ~ Z". The  converse is obvious. 

= Q~ Example 4. In  Theorem 2 let  Z Z 2 , t h a t  is the  p roduc t  of a countable  
n u m b e r  of  copies of  the  group of  integers rood 2, the  factors  being indexed b y  
pairs  of  ra t ional  numbers ,  wi th  the  usual  p roduc t  topo logy  and let  v be H a a r  
measure  on Z wi th  v(Z) = 1. Thus  Z is a compac t  metr izable  group.  Le t  Z 0 = 
( z : z E Z ,  z e :  0 for  all bu t  a f ini te  number  of  p E  Q2} and let  K be the  set of 
all mappings  of  Z onto  i tself  of  the  form z ~ + z ~ - z  0. K is t hen  an abelian 
g roup  of  homeomorphisms  preserving v and, in par t icular ,  is amenable  [3, 
T he o re m 17.5]. I f  F EL~(v)  has F ( l c z ) : F ( z )  for  a lmost  all z in Z for each 

k E K then  we have  f f ( z  --  zo)F(z)&(z ) -- f f(z)F(z)dv(z) ( f  E C(Z), z 0 E Z0). As 

y~ff(z- y)F(z)dv(z) is cont inuous and Z o is dense in Z this  shows Fv is an 

i nva r i an t  integral  on C(Z) and  hence F is a constant .  Thus  K is ergodic on Z. 
F o r  any  one to  one map  ~ of  Q~ onto  i tself  a ' : z ~ - ~ { z ~ ( p ) ; p E  Q~} is an 

au tomorph i sm of  the  topological  group Z and  so is a homeomorph i sm preserving v. 
G is the  group of  homeomorphisms  of Z genera ted  b y  K and  the  a '  wi th  a E 
SL(2, Q) where the  ma t r ix  group acts on Q2 in the  usual way.  E v e r y  e lement  of G 
can be wr i t t en  /ca', /~ E K,  ~ ESL(2, Q) in exac t ly  one way.  I f  a E SL(2, Q), and  
a is not  the  iden t i ty  t hen  ~ has an infini te  n u m b er  of non  f ixed  points  in its act ion 
on Q2 so we can f ind an infini te  subset  E of Q2 wi th  E f l a ( E ) :  O. I f  / c E K  
is the  homeomorph ism z ~-> y - ~  z then  the  equa t ion  ]ca'z = z is equivalent  to  
the  system zp = z~(p) -~- yp (p C Q2) so t h a t  if E o is a subset  of E containing 
exac t ly  n elements  the  set of  f ixed  points  of /ca' is a subset  of  
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{z : z ~ Z, % = z~(~) § y~, p ~ Eo} 

where this la t ter  set has v measure 2 -~. Thus the set of f ixed points of k~x' has 
measure zero. I f  k E K then  k has no f ixed points unless k is the ident i ty.  Thus 
by  L e m m a  3 we see t h a t  G satisfies condition *. G is ergodie on Z because K is. 
Thus [1, p. 135] condition (i) of Theorem 3 holds. 

Le t  H be the subgroup of G containing K and  those homeomorphisms ~' 
where c ~ E / " I = { c ~ : ~ S L ( 2 ,  O), ~ =  0} and H~ the group generated by 
K and the c~' wi th  

a E r 2 = {c~ :~ E SL(2, O), oh1 = 1, ~21 = 0}.  

F 2 is normal  in 1"1 and  / /1 and H are the inverse images of /"2 and F 1 under  
the isomorphism s:/c~'~-> c~ of G/K onto SL(2, Q) so t h a t  K is normal  in 
H 1 , / / 1  is normal  in H and K, H1/K and H/H 1 are abelian. Thus [3, Theorems 
17.5 and  17.14] H is amenable. In  the  usual  way SL(2, Q) acts on the rat ional  
projective line and  /"1 is the subgroup leaving (0, 1) fixed. Under  z the action 
of G on G/H is mapped onto this action and  it  is well known t h a t  the action of 
SL(2, Q) on the projective line is 3-fold transit ive.  Thus condition (iii) of Theorem 2 
is satisfied. By  [1, p. 135] c~ is a I I  1 factor. 

To complete our example we copy the a rgument  in [8, L e m m a  7] to show tha t  
does not  have proper ty  P .  As G contains a group isomorphic wi th  SL(2, Z) 

which in tu rn  contains a free group on two generators ([2, p. 26]), G is not  amen- 
able [3, Theorem 17.16]. However  ~N is spat ial ly isomorphic with ~L~' [1, p. 137, 
Ex. 1] so t h a t  if  ~d has proper ty  P so has ~?-3' and in this ease there is a s ta te  

on ~ (~) )  wi th  T ( U * A U ) =  ~(A) whenever  A E~s  and U is un i t a ry  in 

~;~' [8, Corollary 6]. I f  F C f ~ ( G )  and A F is the element of ~-2(~) defined by 
(AF),, , = F(s)Ia if  s = t, (AF),, t = 0 otherwise, then  denote z(AF) by M(F). 

M is then  a state on / ~ ( G )  and M(gF) = z(AgF) : z(~J'gAf~7"g*) = z(AF) = M(F) 
so t ha t  M is an invar iant  mean  for f~ (G) .  
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