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If A is a von Neumann algebra, or indeed any Banach algebra, 9¢(, ) is
the quotient of the space of continuous bilinear maps 8 : AX A — A such that

88(a, b, ¢) = aS(b, ¢) — S(ab, ¢) + S(a, bc) — S(a, b)c = 0 (a, b, ¢ € A)
by the subspace of those maps of the form
S(a, b) = aR(b) — R(ab) + R(a)b = (3R)(a, b)

for some continuous linear map R : A — Y. The background to the present paper
is the three papers [6], [7] and [5], in which it is shown that 932, A) =0 for
type I von Neumann algebras and for hyperfinite von Neumann algebras. In this
paper we construct some non hyperfinite 1, factors which have this property.
Besides the three papers above we shall also use ideas from [4].

Levyma 1. Let G be a group of permutations of a set X, xy € X and H = {g:
19 € @G, gy = %y} Suppose H is amenable and G is 3-fold transitive on X. Then
H G, /=(X)[C1) = 0.

/®(X) is the space of bounded functions on X andif f€ /*(X), g€ G we
define gf by (gf)(z) = f(g7 ) (x € X). C1is the set of constant functions in /*(X)
and is closed under multiplication by elements of G sothatif F € /*(X)/C1, gF
is well defined. Saying (@, /*(X)/C1) = 0 means that whenever @ is a map
G — . *(X)/C1 with

ol < K g€G
D(gg’) = Plg) + 9P(9) 9.9 €4,
that is, if @ is a bounded crossed homomorphism, then there is ¥ € - *(X)/C 1 with
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Dlg) =gF — F g€aq,

that is @ is a principal crossed homomorphism. Saying that G is 3-fold transitive
means that if {x,, 2,, 25}, {21, 25, 23} are two sets of 3 distinct points of X then
there is g € G with gx; =z, 7 = 1, 2, 3. Amenability of groups is discussed in
[3, §17].

Proof. If X is finite the result is a consequence of [4, Theorem 3.4]. Accord-
ingly we assume X has at least 3 points. Let @ be a bounded crossed homomor-
phism as above. As H is amenable and as Z“(X)/C1 is the dual of / = {a;
a €.YX), (@, 1) = 0} and F +>gF is the adjoint of the map a+>ag where
ag(x) = a(gx) on 4, there is F in /=(X)/C1 with @)= hF — F forall
h in H [4, Theorem 2.5]. Replacing @ by ¥ :g+— D(9) — gF + F we see that
¥ is a bounded crossed homomorphism and ¥ is principal if and only if @ is.
¥ is zero on H so Y(gh) = ¥(g), g €G, h € H. Thus ¥ is constant on the left
cosets of H, which are in one to one correspondence with the points of X, and
so can be considered as a function ¥’ on X which is zero at z, If /0= {f:
f€.°(X), fx,) = 0} then the quotient map ¢ onto Z®(X)/C1 is one to one on
2% and if we define

(g o)) = flg™) — flg7w,) FELY, g€Q, v€X

then gof€.° and ¢(g-of) = gq(f). Thus we can assume that ¥’ takes values
in .©° rather than /*(X)/C1 and we have

P'gg') = ¥'(g) + g ¥'(g)

Let Oz, y) = (¥'(2))(y) (x, y € X). Then O is a bounded complex valued func-
tion on X x X which is zero if either variable is x,. The crossed homomorphism
property for ¥ shows

Oz, g'y) — Oz, gglxo) — O(gz, y) + Ogxy, y) = 0 g € G,z,y € X.

If z, y € X \ {x,} then there is g € ¢ with gz, = 2y gr = y and the above
equation yields O(x, 2) = O(y, y). If gy, = 2, 2 = ¢~y we get Oz, z) = O(g, gz)
so that, because G is 3-fold transitive on X, @ is constant off the diagonal of
(X N\ A{zo}) X (X \{z,})- If « is the value of @ on the diagonal and f the value
off the diagonal then writing g~y = 2 and choosing g with gz = 2z, we have

Oz, z) — Oz, ) + O(gx,, g2) = 0

so that if , 2y, 2z are distinct then & — § -+ o = 0. Defining ¢(x) = —p if = # x,
(%) = 0 we easily check that (gz, y) = ¢p(¢g~Y) — p(g7%) — @(y) for all
g€G, y€X. p€.° and this equation can be rewritten ¥'(gr,) =gogp — ¢
from which we see ¥(g9) = gq(¢) — q(¢).

TurOREM 2. Let (Z, v) be a locally compact, o-compact measure space and G
a group of homeomorphisms of Z such that v o g is absolutely continuous with respect
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to v for all g in G. Let K be an amenable normal subgroup of G and H an
amenable subgroup containing K. We suppose that

i) anaU,={0} if g+e
(il K s ergodic on Z
(ili) G 15 3-fold tramsitive on the left coset space G[H

where the notation is that of [1, p. 134]. Let % be the von Neumann algebra con-
structed from Z, v, G [1, p. 133—135]. Then (B, FB) = 0.

Proof. We shall use the notation of [1, Ch. 1, §9], in particular that of Ex. 1 p. 137.
Let 9, be the norm closed *subalgebra of <£($) generated by the operators

(BT ;T e}, {Uv;k €K}, A the weak closure of Ay B, the norm closed

algebra generated by {@'(T); T €2} and {U,;h € H} and B the weak closure
of B,. It is easy to see that the subgroup U of the unitary group of %, generated
by the {@(U); U1— U* €@} and {Us;k € K} is an extension of the abelian
group {@®U): U= U* €} by a group isomorphic with K and so “U is
amenable [3, Theorems 17.5 and 17.14]. Thus 9, is strongly amenable [4, Pro-
position 7.8]. Similarly %, is strongly amenable. If M is a translation invariant
mean on U then defining

(PX&,m) = M (U*XUE& ) En€d, XeLH),

UelYy

where the right hand side indicates the value of M at the function U (U*XUE, x),
we define a projection P:<4(§H)— Ay = A’ with P(XB) = P(X)B, P(BX) =
= BP(X) for Be W', X € gﬁ(f:)). There is a similar projection ¢ onto B’

By [5, Lemma 5.4] to show 9%, 9) = 0 it is enough to show that if S:
DBx B — P is separately ultraweakly continuous, 68 =0 and S(a, b) =0 if
either ¢ or b liesin 9, (and so tooif @ or b liesin ) then § = 6E, for some
norm continuous map R,: % — 3. Using [7, Theorem 2.4] we see that there is
a norm continuous map R: B — L(H) with § = R and by [5, Lemma 5.5]
with M = L(H) we can take R to be ultraweakly continuous. As R(ab) =
= aR(D) + R(a)b for all @ in A using the definition of amenable algebra [4, §5]

~

we see that there is z € ££(9) with R(a) = ax — xa for all a¢ in 9, and so,
by ultraweak continuity, for all ¢ in A. Replacing B by a+> R(a) — ax 4 za
if necessary we can assume R is zero on 9. Replacing E by QR if necessary
we can assume in addition that B maps % into ¥’. We have 0= S(a, b) =
— aR(b) — R(ab) a € U, b € 93. Similarly R(ba) = R(b)a a € A, b € %.

The set of generators of %A, is mapped onto itself under the automorphism
X U* XU, of L(8) so UF AT, = A forall g in ¢. Hence R(T,)UF AT, =
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= R(AU,) = AR(U,) forall 4 € %, g €6, so that R(T,)TF € A'. Also R(U)U?
€ B’ because R(fJg) and fJg are,

9 is a direct sum of copies of $ so any element L of <£(§) can be repre-
sented as a (' X G matrix with entries from <£(§). We shall investigate the special
form this matrix takes when L € A'N B'. As LO(T) = O(T)L wehave L, , T =
=TL,, forall T in Z,s,u in (. As (Z is maximal abelian this shows L, , € (Z.
A similar calculation starting from L@'(T) = @'(T)L shows L, , € U, U} =
= Uy so L, €N U, ,={0} if s#~wu Thus L, , =46,,Y, where
for each s in @, Y, €¢Z. The equation LU= UiL shows ¥, = U, Y U¥
for k€K, u €. The equation Lﬁ,’, = U,L shows Y, =7, for all w€@,
heH. Thus Y,=U}Y, U, =U}Y, U, =UFY U, w€G, k€K. As K
is ergodic on Z this implies Y, =y, for some y, € C. Thus if L € A" N B’
then

Ls,t = 6s,t?/t1$

for some complex valued function y on G which is constant on the left cosets
of H. Clearly y is bounded. Writing JL for y we see that J is a linear isometry
of AW NP onto /°(X) where X is the space of left cosets of Hin G. More-
over f]gLﬁ: €EA'NYB and J(f]gLﬁ:) = gJL where the product of g €@,
JL € /*(X) is as defined in Lemma 1. Another calculation shows that J(73 N A’) =
= C1.

Put  @yg) = J(R(ﬁg) ﬁ;‘). The equation S(U~g, l7g,) = (5R(Z7g, ﬁg,) where
S0, U, U0 €B and R(U)UL€eWA NY for all g €G shows that
SR(U,, U U3U* € BN A from which we see gPyg') — Plgg’) + Dlg) € C 1.
Thus ¢®, is a bounded crossed homomorphism from G into Z“(X)/C1. Let
2 € /*(X) with ¢®,(g) = gq(z) — q(z) (using the Lemma) and let L, € %' N B’
with JL;=z. We have

JRUO)T* — U L,0* + L) € 1

so that R(U)0¥ — U,L,U* + L, € € Iz € 9. Thus defining Ry(B) = R(B) —
— (BLy— LyB) for all B in 93 we see that R, is an ultraweakly continuous
map from 9% into %B'.

Because L, €A and R(4B)= AR(B), R(BA) = R(B)4A and R(4)=0
if A€, BE€ 7%, R, has the same properties. In addition if ¢ € G then RO(U~g) =
= (R(U)U* — U,L,0F + L)U, € B. Thusif T €Z,g€G then Ry(S(T)T,) =
= @(T)Ro(ﬁg) € %. As R, is ultraweakly continuous and the ultraweakly closed
linear span of the @(T)U, is B we see that Ry(%) & 9. Forall B, B, in B
we have

S(By, By) = B R(By) — R(B,By) + R(B1)By = B,Ry(B,) — Ro(BB,) + Eo(By)B,.
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Thus to provide our example we have only to show that the hypotheses can be
satisfied in some situation in which % is a type II, factor without property P
[8, Definition 1]. To facilitate this we simplify condition * [1, p. 135].

Levma 3. Let Z be a locally compact o-compact metrizable space, v a positive
Radon measure on Z,s a homeomorphism of Z. Then the following condition * is
satisfied if and only if v({z:2 € Z, sz = 2}) = 0.

(*) For each measurable set Z' in Z with v(Z') + 0 there is a measurable
subset Z" of Z' with v(Z") #0 and Z"NsZ"' = .

Proof. f F ={2:2€Z, z=s2} has »(F)=0, Z’CZ, v(Z')>0 and d
is a metric on Z compatable with the topology then

Zy=4{2:2€Z, d(z, s2) > n1}

defines a monotonic increasing sequence of measurable subsets of Z with union
Z\ F where »(Z \ F)=1v(Z)> 0. Thus for some n,»Z,) > 0. Taking a
compact subset K of Z, with »(K) > 0 and a ball B centre z, of radius (2r)7!
with »(BN K)> 0 we put Z"= BN K. Then if z € Z" we have d(z, sz) >
> d(z, s2) — d(zy, 2) > (2n)! showing sz ¢ Z”. The converse is obvious.

Example 4. In Theorem 2 let Z = ZY', that is the product of a countable
number of copies of the group of integers mod 2, the factors being indexed by
pairs of rational numbers, with the usual product topology and let » be Haar
measure on Z with »(Z) = 1. Thus Z is a compact metrizable group. Let Z; =
{2:2€Z, 2z, =0 for all but a finite number of p € @2} and let K be the set of
all mappings of Z onto itself of the form z+>2 1 2, K is then an abelian
group of homeomorphisms preserving » and, in particular, is amenable [3,
Theorem 17.5]. If F € L*(») has F(kz) = F(z) for almost all z in Z for each
k € K then we have ff(z — 2)F(2)dv(z) = ff(z)F(z)dv(z) (fE€C(Z), 2 €Zy). As
Y f fz —y)F(z)dv(z) is continuous and Z, is dense in Z this shows Fv is an

invariant integral on C(Z) and hence F is a constant. Thus K is ergodic on Z.

For any one to one map « of Q* onto itself «':zi>{z,,:p € Q% is an
automorphism of the topological group Z and so is a homeomorphism preserving ».
G is the group of homeomorphisms of Z generated by K and the o' with « €
SL(2, Q) where the matrix group acts on Q2 inthe usual way. Every element of G
can be written k«', k € K, x €SL(2, Q) in exactly one way. If « € SL(2, Q), and
& is not the identity then « has an infinite number of non fixed points in its action
on Q% so we can find an infinite subset £ of @ with EN«(H) = 0. If k€K
is the homeomorphism z+>y -+ z then the equation ka'z =z is equivalent to
the system z, =z, +y, (p € Q%) so that if E, is a subset of E containing
exactly » elements the set of fixed points of kx’ is a subset of
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{2:2€7Z, 2, =2y) T ¥,, » € By}

where this latter set has » measure 2. Thus the set of fixed points of ka’ has
measure zero. If & € K then & has no fixed points unless % is the identity. Thus
by Lemma 3 we see that G satisfies condition *. ¢ is ergodic on Z because K is.
Thus [1, p. 135] condition (i) of Theorem 3 holds.

Let H be the subgroup of ¢ containing K and those homeomorphisms '
where o € I'y = {x:x €SL(2, Q), x,; = 0} and H, the group generated by
K and the «" with

o € I'y = {0 :0x €SL(2, Q), gy = 1, x5, = O}.

I’y is normal in I} and H, and H are the inverse images of [, and ', under
the isomorphism #:ka'+>« of G/K onto SL(2, Q) so that K is normal in
H,, H, isnormalin 7 and K, /K and H/H, are abelian. Thus [3, Theorems
17.5 and 17.14] H is amenable. In the usual way SL(2, Q) acts on the rational
projective line and I'; is the subgroup leaving (0, 1) fixed. Under x» the action
of G on G/H is mapped onto this action and it is well known that the action of
SL{2, Q) on the projective line is 3-fold transitive. Thus condition (iii) of Theorem 2
is satisfied. By [1, p. 135] % is a II, factor.

To complete our example we copy the argument in [8, Lemma 7] to show that
7% does not have property P. As ( contains a group isomorphic with SL(2, Z)
which in turn contains a free group on two generators ([2, p. 26]), G is not amen-
able [3, Theorem 17.16]. However 73 is spatially isomorphic with %3’ [1, p. 137,
Ex. 1] so that if %3 has property P so has %’ and in this case there is a state <
on L(H) with t(U*AU) = 7(A) whenever A € £(H) and U is unitary in
%’ [8, Corollary 6]. If F € /*(() and A is the element of () defined by
(Ap)s, = F(s)Iy if s =1, (4p),, = 0 otherwise, then denote t(dy) by MH(F).
M is then a state on /°(6) and M(gF) = ©(4,s) = ©(U,A;U%) = v(Ay) = M(F)
so that M is an invariant mean for /*(@).

References

1. DIxMIER, J., Les algébres d’opérateurs dans Uespace Hilbertien, 2nd, edition, Gauthier-Villars,
Paris, 1969.

2. Hary, P. and Harrrey, B., The stability group of a series of subgroups, Proc. London Math.
Soc. (3) 16 (1966), 1—39.

3. Hewrrt, E. and Ross, K. A., Abstract harmonic analysis, Vol. 1, Springer, Berlin, 1963.

4. JounNsoN, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).

5. —»— XKaprson, R. V. and RINGROSE, J. R., Cohomology of operator algebras I11, Reduction
to normal cohomology, Bull. Soc. Math. France 100 (1972), 73—96,



A CLASS OF II, FACTORS WITHOUT PROPERTY P BUT WITH ZERO SECOND COHOMOLOGY 159

6. Kapison, R. V. and Rincrosg, J. R., Cohomology of operator algebras I, Type I von
Neumann algebras, Acta Math, 126 (1971), 227243,

7. —»— —»— Cohomology of operator algebras II, Extended cobounding and the hyper-
finite case, Ark. Mat. 9 (1971), 55—63.

8. Scawartz, J. T., Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl.
Math. 14 (1963), 19—26.

Received September 11, 1972 B. E. Johnson
University of Newcastle

Newecastle upon Tyne
England



