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1. Introduction 

Let T denote the circle group and let Z denote the group of integers. We shall 
consider functions f which are integrable on T and we shall denote their Fourier 

coefficients by f(n), where n E Z. For  fl > 0 the set of all f E LI(T  ) such tha t  

~=_oo I](n)1 ~ < ~ will be denoted by A(fi). Among the classical results in the 
theory of absolutely convergent Fourier series are the following theorems [6, Vol. 1, 
Chapter VI, 3]. 

T~EOREM 1 (Bernstein). I f  f e Lip ~ for some a > �89 then f c A(1). 

THEOREM 2 (Zygmund). I f  f is of bounded variation on T ( f  C BV) and i f  
f e L i p a  for some a > 0 ,  then f e A ( 1 ) .  

Attempts to generalize these theorems have led to the following. 

THEOREM 1A (Szs I f  f E Lip ~ for some ~ with 0 < o~ ~_ l, then f C A(fl} 
for all fl such that fl > 2/(2a q- 1). 

THEOREM 1B (Hardy). I f  f E L i p ~  for some ~ with 0 < o ~ < 1 ,  then. 

~o<l,i<r162 < oo for all fl such that fl > (1 -- 2a)/2. 

Definition 1. Let f be a function defined on T and for r ~ 1, let 

n--1  

v , E f l  = sap( _5o - 

where the supremum is taken over all finite partitions 0 ~ x0 < xl < . . .  < x, < 2~v 
of T. The function f is of r-bounded variation (re r-BV) if Vr[f] < oo, 
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THEOREM 2A (Hirschman [2]). 
and i f  f E Lip s for some ~ > 0 ,  

I f  f E r -BV for some 
then f E A(1). 

r with 1 < r <  2, 

I t  is well-known tha t  each of the foregoing theorems is the best possible in a 
certain sense [6, Vol. 1]. I n  [4, Exercise 1.6.6] Katznelson gave a new and very  
simple example of a funct ion in Lip �89 tha t  does not  belong to A(1). In  the re- 
mainder  of this section we shall give a simple extension of Katznelson 's  example 
which can be used to show tha t  all the  previous theorems are sharp. We first  give 
the  definit ion of the so-called Rudin-Shapiro polynomials P,(x)  and Q,(x). Let  
Po(x)=Qo(x)= 1, and for m>_0,  

Pm+I(X) = Pm(X) ~- e~2"%Qm(x) 

Next, let f~+l(X) : Pm+l(X)  - -  Pro(x)  

let 

and  Qm+x(x) = Pro(X) --  ei2mxQm(x). 

and for each ~ with  0 <  ~ <  1, let 

g~(x) = ~ 2-k(~+~)fk(x). 
k= l  

I t  follows immedia te ly  from the definit ion of g~ tha t  g~(n) = 0 if  n _< 0 and  

t h a t  O~(n) = e ( n ) 2  -k(~+�89 if  2 k - x _ < n <  2 k for some k > l  and  with  e ( n ) = - b l .  
A proof  similar to the one given by Katznelson for the case ~ = �89 yields the  

following. 

THEOREM 3. For each ~ with 0 < ~ < 1 we have 
(i) g~ E Lip ~ and g~ ~ Lip y for any y > ~, 
(ii)  gc~ E 0r 

(ill) g~ ~ A(2/(2~ ~- 1)), 
(iv) ~2=in  ('~ = ~ .  

2. Convolution functions 

Throughout  this  section we shall denote the conjugate of a number  p > 1 
b y  q, t h a t  is, l ip  -~ 1/q = 1. For  f ,  g E L I ( T  ) the convolution f �9 g is defined by  

( f  * g ) ( x )  = f f(x - t ) g ( t ) d t .  

T 

Then  ( f  �9 g) ̂  (n) = ](n)~(n) for all n E Z. The following theorem is due to M. Riesz 
(6, Vol. 1, page 251]. 

THEORE~ 4. A continuous function f has an absolutely convergent Fourier series 
~if and only i f  there exist functions g, h E L2(T ) such that f = g �9 h. 
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T h e  next  theorem gives a part ial  extension of this result. 

THEOREM 4A. I f  g, h E Lp(T) for some p with 1 < p ~ 2, then 

g �9 h E A(p/ (2p  --  2)). 

Proof. I t  follows from Young ' s  inequal i ty  and the  Hausdor f f -Young  inequal i ty  
tha t  

t ha t  is, g �9 h E A(q/2) = A(p/(2p -- 2)). 
We next  show tha t  Theorem 4A is sharp. 

THEOREM 5. For every p with 1 < p ~< 2 there exist functions g, h E L~,(T) 
such that g * h ~ A(fi) for any fi < p/(2p -- 2). 

Proof. We define the  functions g and h b y  

{ ~ l / ' l o g n ) - i  i f  n > 1 ,  

~(n) = h(n) = if n < 1. 

Clearly, ~(n) ~ 0 as n--> ~ and 

(~(n)) pnp-2 ~ ~ np-2-P/q(log n) -p  : ~ n - l ( l o g  n )  - p  < ( ~ ,  

n=2 n=2 n--2 

because p > 1. A theorem due to H a r d y  and Li t t lewood [6, Vol. 2, page 129] im- 
plies tha t  g, and hence also h, belongs to Le(T ). Fur thermore ,  if fl < p/(2p -- 2) 
then 

((g , h)~ (n)[~ = ~ (nl/qlog n)-2~ = oo, 
r t ~  -- oo n ~ 2  

because 2fl/q < 1. Therefore, g �9 h ~ A(fl). 

T~EOREM 6. I f  g E Lp(T) with l < p ~__ 2 and i f  h E Lip ~ with 0 < o~ < 1, 
then g , h C A(fi) for all fl such that 2p/(2ap Jr 319-- 2 ) <  8" 

Proof. Firs t  choose fi such tha t  2p/(2~p + 3p -- 2) < fi < q. Then Young ' s  
inequal i ty  implies tha t  

. . . .  - -  q . . . .  q . . . .  
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Since fi > 2p/(2~p ~- 3p --  2), we have flq/(q -- fl) > 2/(2~ ~- 1). Hence, The- 
orem 1A implies t h a t  B is finite. Also, the Hausdorff -Young inequal i ty  implies 
t h a t  A is finite. Therefore, g �9 h E A(fi). 

Choosing fi = 1 in Theorem 6 we obtain the  following corollary. I t  shows how 
we can ameliorate functions in Lip ~ with 0 < ~ < ~ _ ~, which are not  necessarily 
in A(1), into functions in A(1) by means of the convolution operator.  

COROLLAI~Y l. Let g E Lp(T), 1 < p _~ 2, and h C Lip ~, 0 < a < �89 I f  
(2a~-  1)p > 2 ,  then g . h E A ( 1 ) .  

We now show to wha t  extent  Theorem 6 and Corollary 1 are the best possible. 

THEOREM 7. Let p and ~ satisfy the conditions 1 < p < 2 and 0 < ~ < l ip .  
Then, (i) for all ~ with 0 < ~ < ~ there exist functions g and h with g E L~(T) 
and h E L i p ~ l  and such that g , h  ~ A ( 2 p / ( 2 ~ p - ~  3 p - -  2)), (ii) for all p~ with 
i < P l  < P there exist functions g and h with g E L~(T)  and h E L i p a  and 
such that g �9 h ~ A(2p/ (2ap  -~ 3p --  2)). 

Proof. (i) I f  y is defined by  y = ~ + l/q, then  2/(2y + 1) = 2p/(2ap + 3p --  2). 
Le t  h ~ g~l, then,  according to Theorem 3(i), h C Lip ~1. Le t  g be defined by  

g(n) ~ {~ -k(~-~') if  2 k - l ~ n <  2k f~ s~ k ~ l ' i f  n _ ~ 0 .  

Then ~ ( n ) ~  0 as n--~ ~ and  

k ~ l  k = 0  

because 1 - -  ( y - - ~ l ) p  J r P - -  2~ -  ( ~ l - - a ) P <  0. Thus, g E L e ( T ) .  Fur ther -  
more, i f  n E Z  and  if  2 k - ~ n <  2 k for some k > l ,  then  

g(n)h(n) = 2-k(Y-~)s(n)2- k(~+�89 ~- s(n)2- k(:, +�89 : ~(n),  

t ha t  is, g �9 h = g~. Since, according to Theorem 3(iii), gr ~ A(2p/(2ap ~- 3p - -  2)), 
we have established (i). 

(ii) The proof of (ii) is similar to the proof  of (i). In  this case the functions g 
and h are chosen as follows. Le t  h = g~ and  let ~(n) = 0 if  n < 0 and  let ~(n) = 
2 -~(y-~) if  2 k-~ < n <  2 k for some k > 0  and  wi th  y - ~ a - ~ -  1/q. Then it is 
clear t h a t  the functions g and  h sat isfy the conditions ment ioned in (ii). 

Remark 1. The following case of Theorem 7 is of special interest.  For  each p 
such t h a t  l < p <  2 and each ~ such t h a t  0 < ~ <  ( 2 - - p ) / 2 p  there exist 
functions g and  h wi th  g E Lp(T), h E L i p s  and g .  h ~A(1).  This improves 
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a resul t  of M. and  S. Izumi  [3, Theorem 3] who proved  for each p wi th  1 < p < 2 
and  each s wi th  s > 2 the  existence of  funct ions  g in Lp(T) and  h in Ls(T) 
such t h a t  g . h S A ( 1 ) .  

3. Multipliers of type (ll,(Zn), Ip(Z")) 

In  this section we shall define a collection of  funct ions on the  n-dimensional  
torus  T". We shall use these funct ions  to  show t h a t  certain results  of H a h n  [1] 
abou t  p-mul t ip l iers  on T ~ are the  best  possible. Fu r the rmore ,  for n ---- 1 these 
new funct ions will be the  same as the  funct ions g~ which were def ined in Sect ion 1. 
T h r oughou t  this section we shall use the  no ta t ion  x = (x 0, x l , . . . ,  xn_l) for x 
in T" and m =  (mo, m 1 . . . .  , m , _ l )  for m in Z n. 

Definition 2 [2]. A bounded  and  measurable  funct ion  f def ined on T n is a 
p-mult ipl ier ,  1 _< p _< 0% if for  eve ry  funct ion  F in /p(Zn), the  funct ion  T ( f ) F  
is aga in  in / / Z ' ) ,  where T ( f ) F  is def ined b y  

T ( f ) F ( m )  ---- ~, F ( m  --  k)](k).  
k E Z  a 

The  set of  19-multipliers will be deno ted  b y  M~. 

Definition 3 [1, page 327]. Le t  cr be a posi t ive real n u m b er  and  let  a ,  be the  
largest  integer  less t han  a. Fo r  1 < p _< oe, Lip (~, p) is the  class of  all func- 
t ions f def ined on T" such t h a t  for Ikl < ~ .  we have  (O/ax)kf E Lp(T n) and  for 
I/el ~ ~ ,  we have  

/ O \ k f t  

where for each h and  x in T"  we set 

Obviously,  if  P l  >--P2, t hen  Lip (~ ,p l )  C Lip (~,p2); 
L ip (~ ,  oo) c L i p ( ~ , p )  for all p > _  1 and  for all ~ > 0 .  
following [1, Theorems 12' and  20]. 

= O(Ihl ~-~*) i f  ~ - - a , <  1, 

= O(Ih[) if  ~ - - ~ ,  = 1, 

Ahf(x) = f ( x  4- h)  --  f (x) .  
so, in par t icular ,  
H a h n  p roved  the  

THEOREM 8. 
(a) I f  1 <19 < 2 and a > n/p, then Lip(o~,p) C M r  for 1 < r ~ oo. 
(b) / f  p > 2 and a > nip then Lip (a, 19) c Mr for 2t ) / ( t  9 + 2) < r < 

<_ 2p/(p 2). 
(c) / f  n i p <  a <__ n/2, then Lip(c~,p) c M r  for 2n/(n 4- 2 ~ ) <  r <  

< 2n/(n - -  2a). 
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We shall p rove  t h a t  these results are sharp in the  sense t h a t  for  p >_ 2 we 
cannot  replace ~ > nip by  cr >_ nip in Theorem 8(a) and (b), whereas the  con- 
clusion of  Theorem 8(c) does not  hold for r = 2n/(n ~- 2a) or r = 2n/(n - -  2~). 
We do not  know whe ther  the  conclusion of  Theorem 8(a) holds if  1 < p < 2 

and ~ : nip. 

THEOREM 9. 

(a) I f  p > 2 and i,f ~ = n/p, then Lip (~ ,  oo) dgM2p/(p+2); 
Lip  (hi2, oo) dg M 1. 

(b) I f  0 < a < n/2, then Lip (c~, m) ~ M2~/(,+2~). 

in particular, 

In  order  to prove  Theorem 9 we f irs t  define funct ions h~(x) for each c~ > 0. 
Fo r  convenience we shall wri te  ~ for 2 ~ and  r for exp (2~i/~). F o r  i = 0, 1, 
2 , . . .  and  l = 0, 1 . . . . .  ~ - -  1 we define the  t r igonometr ic  polynomials  P~t(x) 
induct ively .  Le t  Poo(x) . . . . .  Po~_l(X) = 1 for all x E T ". Next ,  assume t h a t  
the  polynomials  Pkt(x) have  been def ined for some k >_ 0 and all l wi th  0 < 
_< l < ~. Each  j wi th  0 < j < fi has a unique represen ta t ion  of  the  form 

J = Jo q- 2jl -}- . . .  Jr- 2~-1J~-~, 

with j ,  e {0, 1}. Le t  j = (Jo . . . .  , j ,_~) E Z" and  let  ] -  x =-joxo q- . . .  q- j,_~X,_x. 
Next ,  for  l wi th  0 _ < I <  ~ we define Pk+xl(X) b y  

~ - 1  
P k + l / ( X )  = ~ (o~eii"x2kpkj(x). 

j = o  

Since 

we have  for a rb i t r a ry  complex numbers  

E I E 
t = o  1 = o  

Therefore,  

2_1 ~-1 ~-1 

=-~ eo~ = {2 i f / = 0 '  
j i f  l =  1 , 2 , . . . , ~ - -  1, 

CO , �9 �9 �9 , Cn--1 

= ~ Y. Icjl ~. 
j:O 

,.#,~q.~,zk-lp i,,~]2 = ~ ~ ip~_lj(X)[2 = ~k+l. E IPk,(x)l = = E [ E  ~=~ - - k - - l j ~ . ~ ,  I 
~=0 t = 0  j = 0  1 = 0  

Hence,  for  each k > 0 we have 

lipko(x)ll ~ < ~(k§ 

Also, I/3ko(m)l = 1 i f m = ( m o  . . . . .  ran_l) wi th  0 _ _ < m i <  2 k for i = 0 , 1  . . . .  , 
n - -  1, and  Pko(m) = 0 otherwise.  For  k > 1 let  fk(x) = Pko(X) --  Pk_io(x), 
and for ~ > 0  let  
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k ~ l  

We can show t h a t  h a E Lip (~, ~ ) .  The  proof  requires a long and  tedious com- 
pu ta t ion  which we shall omit.  We only  observe t h a t  we need an n-dimensional  
version of  Bernstc in ' s  inequal i ty:  if  f is a t r igonometr ic  polynomial  on T ~ oi  
degree k, t h a t  is, 

f(x) = ~ cieq'~, 
j E Z  n 

with max/ ( I  j01 + Ijll + �9 �9 �9 + I j , - l l )  = k, t hen  for each of the  first  order  par t ia l  
der ivat ives  of  f we have  

of <kllfll . 

Proof of Theorem 9. (a) Consider the  funct ion F which is def ined on Z" by  
F ( 0 ) ~ - - F ( 0  . . . .  , 0 ) ~ -  1 and  F ( m ) =  0 for m # 0  and  m C Z " .  Clearly, 
F E lr(Zn). We shall prove  t h a t  h,/p ~M2v/(p+2 ). For  each m E Z = we have 

T(h,/p)F(m) = ~ F ( m  -- k)f~,/e(k) = h,/~(m). 
kC~ Z n 

Also, 

i~,/v(k) 12p/(p+2) = ~ (2k, __ 2(k-1),)2 ,k(p+2)/2v. :p/(v+2) 
k E Z  n k = l  

� 8 9  2k"2 -k" = ~ ,  
k = l  

t h a t  is, T(h~/p)F ( ~ 1 2 p / ( p + 2 ) .  Therefore,  hn/p ~ M2p/(p+2). 
Since M2p/(v+2) = M2e/(v-2) we also have hn/~ C M2v/(p_2). 

(b) For  each ~ such t ha t  0 <  ~ < n / 2  we have  

oo 
i/~,(k) 12n/(n+2~) > �89 ~ 2kn2--,,k(2~+,)/2n. 2n/(Za+n) = ~ .  

k E Z  n k = l  

Therefore,  an a rgument  as in (a) shows t h a t  h a ~ M2n/(n+2a), and hence also, 

ha f~ M2n/(n 2~). 

Remark 2. For  each n the  funct ion hn/2 provides  an example  of a funct ion 
in Lip (n/2, ~ )  which does no t  have  an absolute ly  convergent  Four ie r  series. 
Hence  the  n-dimensional  version of  Theorem 1 is sharp.  This and re la ted  results 
were established by  Wainger  [5]. 
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R e m a r k  3. The functions go as defined in Section 1 also provide new examples  
t ha t  show tha t  several of the results of  Hi r schman  on p-mult ipl iers  cannot  be 
improved  as was a l ready poin ted  out  by  Hi r schman  in [2]. 

The au thor  would like to t h a n k  Professor L.-S. H a h n  for a number  of helpful 
conversat ions on the subject  of  this paper.  
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