On Absolutely Convergent Fourier Series

C. W. ONNEWEER

1. Introduetion

Let T denote the circle group and let Z denote the group of integers. We shall
consider functions f which are integrable on 7' and we shall denote their Fourier

coefficients by f(n), where n € Z. For f > 0 the set of all f€ L,(7T) such that

| f(n)lﬂ < oo will be denoted by A(f). Among the classical results in the
theory of absolutely convergent Fourier series are the following theorems [6, Vol. 1,
Chapter VI, 3].

TreorEM 1 (Bernstein). If f€Lip x for some o >3, then f€ A(L).

THEOREM 2 (Zygmund). If f is of bounded variation on T (f € BV) and if
f€Lipx for some «x >0, then f€ A(1).

Attempts to generalize these theorems have led to the following.

THEOREM 1A (Szész). If f€Lipx for some « with 0 < x <1, then f€ A(p)
Jor all B such that B > 2/(2x - 1).

Taeorem 1B (Hardy). If f€Lipa for some « with 0<oa <1, then
20<‘ni<w|n]_ﬂ|f(n)[ <o for all B such that § > (1 — 2a)/2.

Definition 1. Let f be a function defined on T and for r > 1, let

n—1
V.Ifl= sup(go \f@irs) — fla))',

where the supremum is taken over all finite partitions 0 < @< o1 < ... < @ < 270
of T. The function f is of r-bounded variation (f€r-BV) if V,[f] < oo.
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TaeorEM 2A (Hirschman [2]). If f€r- BV fm" some r with 1 <r <2,
and iof fE€Lipx for some x >0, then f€ A(1

It is well-known that each of the foregoing theorems is the best possible in a
certain sense [6, Vol. 1]. In [4, Exercise 1.6.6] Katznelson gave a new and very
simple example of a function in Lip 4 that does not belong to A(1). In the re-
mainder of this section we shall give a simple extension of Katznelson’s example
which can be used to show that all the previous theorems are sharp. We first give
the definition of the so-called Rudin-Shapiro polynomials P.(x) and @Q.(v). Let
Py(x) = Qy(x) = 1, and for m >0, let

Ppia(x) = Pu(a) + ¢**Qu(z) and Quu(2) = Pu(@) — €2 *Qn(x).

Next, let fut1(x) = Puti(x) — Pn(x) and for each « with 0 < x << 1, let

o0

g, (x) = Z 0Hrz)fk

It follows immediately from the definition of ¢, that g (n) =0 if » <0 and
that g, (n) = e(n)2 M2+ §f 281 <5 — 2% for some £ >1 and with e(n) = 4+ 1.

A proof similar to the one given by Katznelson for the case & = % yields the
following.

TrEOREM 3. For each x with 0 < x < 1 we have
(i) 9, €Lipx and g, €Lipy for any y > «,
(i) g, €a71-BYV,

(i) g, € A2/2x + 1)),

(iv) Z2nfRig ()] = .

2. Convolution functions

Throughout this section we shall denote the conjugate of a number p >1
by ¢, thatis, 1/p 4 1/g = 1. For f, g € L(T) the convolution f % g is defined by

(f * 9)() = f fl — tg(o)dt

Then (f *g)"(n) = f(n)j(n) for all n € Z. The following theorem is due to M. Riesz
(6, Vol. 1, page 251].

TuroREM 4. 4 continuous function f- has an absolutely convergent Fourier series
+f and only if there exist functions g, b € Ly(T) such that f= g k.
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The next theorem gives a partial extension of this result.

ToroREM 4A. If g, h € L,(T) for some p with 1 < p <2, then

g+h€A(p/(2p — 2)).

Proof. 1t follows from Young’s inequality and the Hausdorff-Young inequality
that

<« o0

S A <3 S g+ S hme < gl + 3 A < .

n=—0 n=—aoo n=—

that s, g xh € A(g/2) = A(p/(2p — 2)).
We next show that Theorem 4A is sharp.

THEOREM 5. For every p with 1 < p <2 there exist functions g, h € Lp(T)
such that g+h € A(B) for any f << p/(2p — 2).

Proof. We define the functions g and & by

(n'elog n)=t if n >1,

A/ == Z/ Py
gt) ) {O if »<1.

Clearly, g(n) 0 as n— co and

(é(n))”n” 2 z nP—2-P 9(10g n) -P _ z n- (log n)"P < oo,

2 n=2

ZE

because p > 1. A theorem due to Hardy and Littlewood [6, Vol. 2, page 129] im-
plies that g, and hence also %, belongs to L,(T'). Furthermore, if § < p/(2p — 2)
then

K 0

2 lg*h) () = Z ' log n) ¥ = oo,

n=—aw n=2

because 28/q << 1. Therefore, g = h ¢ A(fS).

TaEOREM 6. If 9 € Ly(T) with 1 < p <2 and if h€Lipa with 0 < o <1,
then g=h € A(B) for all § such that 2p/(2xp + 3p — 2) < .

Proof. First choose § such that 2p/(2ap 4 3p — 2) << § << ¢q. Then Young’s
inequality implies that
S bt < B2 9—F 3 s
> lg)h(n)F < 7 2. gy + ¢ 2. b(n)e"P = 4 4 B.

n= - o0 n=—aw n=—ao
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Since B > 2p/(2ap -+ 3p — 2), we have fq/(¢ — ) > 2/(2« + 1). Hence, The-
orem 1A implies that B is finite. Also, the Hausdorff-Young inequality implies
that A4 is finite. Therefore, g xh € A(f).

Choosing B = 1 in Theorem 6 we obtain the following corollary. It shows how
we can ameliorate functions in Lipx with 0 < « <1, which are not necessarily
in A(l), into functions in A(1l) by means of the convolution operator.

COROLLARY 1. Let g€LT), 1<p<2 and h€Lipx, 0<a <% If
Cx + 1)p > 2, then g =h € A(1).

We now show to what extent Theorem 6 and Corollary 1 are the best possible.

THEOREM 7. Let p and « satisfy the conditions 1 < p <2 and 0 < ax < 1/p.
Then, (i) for all o, with 0 < x, < & there exist functions g and h with g € Ly(T)
and h G Lip &, and such that g «=h € A(2p/(2ap + 3p — 2)), (ii) for all p, with
1< py<p there exist functions g and h with g€ L, (T ) and h € Lipax and
such that g=h & A(2p/(2xp -+ 3p — 2)).

Proof. (i) If y is defined by y = & + 1/g, then 2/(2y + 1) = 2p/(2ap + 3p — 2).
Let h =g,, then, according to Theorem 3(i), % € Lipx,. Let g be defined by
( {2"‘(7“"1) if 2571 <n < 2¢ for some k> 1,

n) —=
=10 if n<o.

Then g(n)\ 0 as n— oo and

é(n)PnP“2 < 5: 2k—19—kr—apolt—1(p—2) o,
1 k=0

[\%E]

Eal
|
|

because 1 — (y —a)p +9 — 2= (x; — «)p < 0. Thus, g€ L,(T). Further-
more, if n € Z and if 227! <n < 2* for some k > 1, then

Gh(n) = 274 s(m)2™ Mt — oz = g ),

that is, g * h = g, Since, according to Theorem 3(iii), g, € A2p/(2xp + 3p — 2)),
we have established (i).

(ii) The proof of (ii) is similar to the proof of (i). In this case the functions ¢
and % are chosen as follows. Let % = g, andlet g(n) = 0 if n < 0 andlet g(n) =
27 Kr—o) if 95! <<y < 2¢ for some k>0 and with y =« 4 1/g. Then it is
clear that the functions g and % satisfy the conditions mentioned in (ii).

Remark 1. The following case of Theorem 7 is of special interest. For each p
such that 1 < p < 2 and each « such that 0 < & < (2 — p)/2p there exist
functions g and h with g € L,(T), h €Lipx and g =h & A(1 ). This improves
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a result of M. and S. Tzumi [3, Theorem 3] who proved for each p with 1 < p < 2
and each s with s > 2 the existence of functions g in Ly(7T) and % in LyT)
such that ¢ xh € 4(1).

3. Multipliers of type (I,(Z"), I,(Z"))

In this section we shall define a collection of functions on the n-dimensional
torus 7. We shall use these functions to show that certain results of Hahn [1]
about p-multipliers on 7™ are the best possible. Furthermore, for » = 1 these
new functions will be the same as the functions g, which were defined in Section 1.
Throughout this section we shall use the notation & = (zg, %, ..., 2, ;) for ¥
in T and m = (mg, my,...,m, ;) form in Z~

Definition 2 [2]. A bounded and measurable function f defined on 7™ is a
p-multiplier, 1 <p << oo, if for every function F in [,(Z"), the function 7T'(f)F
is again in [,(Z"), where T(f)F is defined by

T(f)F(m) = 2 F(m — k)f(k).

kez™

The set of p-multipliers will be denoted by M,.

Definition 3 [1, page 327]. Let « be a positive real number and let «, be the
largest integer less than «. For 1 << p << oo, Lip (x, p) is the class of all func-
tions f defined on 7™ such that for |k| < x, we have (9/dx)¥f € L,(T") and for

k| = oy we have
Fl k
e

(e
4y, o fp

where for each B and &« in 7" we set A,f(x) = f(x +h) — f(»).

Obviously, if p, > p, then Lip (x,p,) C Lip (x, p,); so, in particular,
Lip (x, o) € Lip (&, p) for all p>1 and for all « > 0. Hahn proved the
following [1, Theorems 12’ and 20].

|
= 0(h1*™) if &« — oy < 1,

P

= O(lh)) if o — oy =1,

THEOREM 8.
(a) If 1< p <2 and « > n/p, then Lip(x,p)C M, for 1 <r < .
(b)Y If p>2 and « >nfp then Lip(x,p)C M, for 2p/(p + 2) <r <
< 2p/(p — 2).
(¢) If njp <« <nf2, then Lip(x,p)C M. for 2n/(n + 20) < r <
< 2n/(n — 2«).



56 C. W. ONNEWEER

We shall prove that these results are sharp in the sense that for p > 2 we
cannot replace &« > n/p by o« > nfp in Theorem 8(a) and (b), whereas the con-
clusion of Theorem 8(c) does not hold for » = 2»n/(n + 2x) or r = 2n/(n — 2«).
We do not know whether the conclusion of Theorem 8(a) holds if 1 < p < 2
and « = n/p.

THEOREM 9.

(@) If p=>=2 and if o« =n[p, then Lip (x, o) & My, on particular,
Lip (n/2, ) ¢ M,.

(b) If 0< & <m/2, then Lip (x, ) Mynion:

In order to prove Theorem 9 we first define functions A, (x) for each x > 0.
For convenience we shall write # for 2" and w. for exp (2ni/#). For ¢ =0, 1,
2,...and I=0,1,...,% — 1 we define the trigonometric polynomials Pu(x)
inductively. Let Py (x) = ... = Py () =1 for all « € T". Next, assume that
the polynomials Pgu(x) have been defined for some £ > 0 and all [ with 0 <
<l< #i. Each j with 0 <j < # has a unique representation of the form

J=Jdo+ 21+ ... +2 Y 1

with j;, €{0,1}. Let j = (jo....,J,_1)€Z" and let j-o = joxg + ... + Joo1®u1-
Next, for | with 0 <! < # we define P, () by

k

n1
Py u(x) = Z wle? ** Ppi(%).
j=o

Since
Aol #if I =0,
Vo__
n — . ~
j=0 0if [ =1,2,...,%—1,
we have for arbitrary complex numbers ¢, , ..., ¢z,
-1 a1 -1
1j 2 ~ 2
2| 2 ool =17 3 1o
i—0 j—o j=0
Therefore,

a1 n—-1 n—1

> Pul) =3 | Zow’ze"f'”"“Pk_lj(xW = 7D |Py_yy(%)]F = @
=0 j=— 0

1=0

Hence, for each k > 0 we have
[ Pro(@)ll, < Ak+D2,

Also, |Py(m)| =1 if m = (m,,..., m,_,) with 0 <m, < 2* for i=0,1,...,
n—1, and Py(m) =0 otherwise. For k >1 let fi(%) = Py(®) — Pr_1o(%),
and for « >0 let
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o« 1

ka(x) = kzjlﬁ_ k(" E) fk(x)

We can show that %, € Lip (x, o). The proof requires a long and tedious com-
putation which we shall omit. We only observe that we need an »n-dimensional
version of Bernstein’s inequality: if f is a trigonometric polynomial on 7™ of
degree k, that is,

f(x) = z cjel'f~x,
jezr
with max; (1jo| + il + - - . + [j._sl) = &, then for each of the first order partial
derivatives of f we have

B

<kl

Proof of Theorem 9. (a) Consider the function F which is defined on Z® by
FO)=FO,...,00)=1 and Fm)=0 for m 20 and m € Z" C(learly,
F €1,(Z"). We shall prove that h,, € My, ., For each m €Z" we have

n/p

F(m) = 5 F(m — k)h,,(k) = h,,(m).

kez™

T(h

n/p
Also,

z \i&n,P(k)]2P/(”+2) — i (2’"' _ Q(k‘l)n)zfnk(pﬂ)ﬂp-2p!(p+2)
rezn ' k=1

2kn2—kn = 00,
1

\%
(M)
M

t}}at is, T(h,,)F €ly, 9 Therefore, h,, € My, 2
Since My, 10 = Moz Wwe also have h,, & M, .
(b) For each « such that 0 < x < n/2 we have

z ";a(k) l2n/(n+20¢) > % i 2kn2—nk(2cx+n)/2n- 2nf(2x+n) = 0.
rezZ" k=1

Therefore, an argument as in (a) shows that h, € M, .., and hence also,
ha e "Zl,[2n/(n72(x)'

Remark 2. For each n the function &,, provides an example of a function
in Lip (»/2, co) which does not have an absolutely convergent Fourier series.
Hence the n-dimensional version of Theorem 1 is sharp. This and related results
were established by Wainger [5].
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Remark 3. The functions g, as defined in Section 1 also provide new examples
that show that several of the results of Hirschman on p-multipliers cannot be
improved as was already pointed out by Hirschman in [2].

The author would like to thank Professor L.-S. Hahn for a number of helpful
conversations on the subject of this paper.
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