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Preface 

I n  1952, A.  P .  C a l d e r o n  a n d  A.  Z y g m u n d  [6] s h o w e d  t h e  b o u n d e d n e s s  o f  s i n g u l a r  

i n t e g r a l  o p e r a t o r s  in  t h e  LP spaces .  O n e  o f  t h e  m a i n  t o o l s  in  t h e i r  p r o o f  w a s  a n  

e x t e n s i o n  t o  m d i m e n s i o n s  o f  a f o r m  of  F .  R i e s z ' s  s u n  r i s i n g  l e m m a .  L a t e r  F .  J o n e s  

[15], a n d  E .  B.  F a b e s  a n d  N.  M. R i v i ~ r e  [9] f u r t h e r  e x t e n d e d  t h e  l e m m a  t o  p r o v e  

t h e  b o u n d e d n e s s  o f  p a r a b o l i c  s i n g u l a r  i n t e g r a l s  a n d  s i n g u l a r  i n t e g r a l s  w i t h  m i x e d  

h o m o g e n e i t y .  H o w e v e r  in  b o t h  cases  t h e  l e m m a  k e p t  i t s  g e o m e t r i c  f o r m  a n d  i t s  

e x t e n s i o n  w a s  o b t a i n e d  b y  a s i m p l e  c h a n g e  o f  p a r a m e t e r s  in  e a c h  c o o r d i n a t e  ax is .  

1 The research represented in this paper  was sponsored in par t  by  the  Nat ional  Science 
Foundat ion  grant  GP 15832. 
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In  this paper the covering lemma is substantially changed (see Theorems (2.1), 
(3.1) and (3.2), Chapter I), e]iminating its geometric form. This permits, among 
other things, the study of singular integrals in locally compact groups (see Section 
6, Chapter I). I t  also allows the study of singular integrals, in R m, where the homo- 
geneity is given by a one parameter group of transformations (see Section 7, Chapter 
I). 

The paper is divided into two chapters and contains essentially the results 
announced in [25] and [26]. The first chapter is devoted to the study of singular 
integrals, while the second shows some of its ~pplications to the theory of multipliers. 

In  the fourth section of the first chapter, we introduce the notion of singular 
kernels for a family of neighbourhoods of the origin. As we shall see later in section 
7, this contains the singular kernels studied in [6], [9], and [7]. No explicit use is 
made of the homogeneity (in the style of [12], [2] and [16]). In  the fifth section 
we show that  the maximal operator of such singular hltegrals is bounded in L e 
(1 ~ p ~ oo) and it is of weak type L 1. Theorems on pointwise convergence are 
immediate consequences without making any extra assumptions of smoothness 
on the kernels. This result is new even in the elliptic case studied by Calderon, M. 
Weiss and Zygmund (see [5]). 

In  the second chapter we make use of the theory of vector valued singular 
integrals developed in the first chapter and of the Riesz theory of interpolation to 
improve the multiplier theorems obtained in [12], [9], [27] and [18]. Some of the 
applications of these results yield the boundedness, in spaces of mixed norms, of 
multipliers such as the characteristic function of a convex set (in particular the 
characteristic function of the disc) and the bounded ratio of two polynomials (see 
Theorems (2.2), (2.3) and (2 .5)of  Chapter II). 

This paper is essentially self-contained. Necessary prerequisites are some basic 
properties of t h e  Fourier transformation, the Riesz theory of interpolation and 
vector valued integration. 

The author wishes to thank E. B. l~abes and L. KSrmander for  several useful 
conversations concerning the content of this paper. 

Chapter I 

1. Notation and preliminaries 

Throughout the paper C will denote a constant and a subscript will be added 
when we wish to make clear its dependance on the parameter  in the subscript. 

For a given set E, E' will denote its complement and XE its characteristic 
function. 

For the Banach spaces B 1 and B~, c~-(B1, B2) will denote the space of con- 
tinuous linear operators from B 1 into B2. 
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~(X, B, #) denotes the class of #-measurable functions from X into the 
Banach space B. 

LP(X, B) will denote the space of functions, f E ~(X, B,/~), such that  

(f ":" 
IlfIILP(X,B) = [ f ( x ) l ~  d@ < 0o 

X 

where [" Is denotes the norm on the space B. More generally if q~(t) is a non- 
negative Borel function of R+ = {t, t ~ 0}, we define 

L e , ( X , B , # ) =  { f ; f C ~ ( X , B ,  tt ) and f ~(If(x),.)dt,< oo} 
X 

The operator T from Lv(X, B1, #) into ~(Y, B2, v) is said to be sublinear 
if  when f, g and f + g~.Lo(X,B~,#)  

IT(f + g)(x)[B, _< 1T(f)(x)[B~ § [T(g)(x)lB, a.e. 

Let  2f,, denote the distribution function of the function f, i.e. 21..(t) = 
~({x, If(x)[. > t}). 

The following form of the Marcinkiewiez interpolation theorem will be used 
later in the chapter. (See also [20] and [29].) 

Definition (1.1). The sublinear operator is of weak type (q~, ~5) (or weak type 
Le) if and only if there exists a constant C, such that  

,r(:)(x)r.. >_ _< f :(x) -c,. :) 
X 

THEORE~ (1.1). Let T be a sublinear operator of weak types (4, ~b) and (% ~o). 
Net 

bp = max{/I tP-~(1/t)dt ; f :  t p-1 q~(1/t)dt} . 

I f  b• < oo, then for f ~ IY(X, B1) , [XT(f)lJ[p(x,,~) < b e r 

Proof. Let C be the larger of both constants used in the definition of weak 
types (4, 4)  and (% F). For f eLP(X,  B1) and t > 0, set f , ( x ) = f ( x )  when 
f f (x)  ]B 1 ~ t, f t (x)  = 0 otherwise and set f'(x) = f(x) -- f,(x). Since T is a sublinear 
operator of weak types (~b, ~b) and (%y~) 

2T(I) ' ,(t) ~__ ~T(f),~ (t/2) + 2T(f,)., (t/2) 

<c[ fw(2lf(x)l~./t)dt~+ fr ] 
(x, If(x)IB1 ~: t} {x, [f(x)lB, > ~} 
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From this estimate and interchanging the order of integration 

X 0 

cO 

IIT(f)IIEP(X,B~) = p f t. '  (t)dt 
0 

[ f (x )[B x c o  

tr-lyj(21f(x)lB,/t)dt -~- f t ~-l~(21f(x)lB,/t)dt } d# < 

[f(x)lB1 

The theorem follows. 

When 

< p f 

r  and F ( t ) = t q [ I n ( 2 + t ) ]  m (m----O when q - -  oo), 
representing the spaces LP(lnL) ~ and Lq(lnL) ~, the constant C~ of Theorem (1.1) 
is bounded by C'([r -- pl -"-1 + Ir -- qt-m-1). (C~ <_ C'Ir -- pl -"-1 when q = co). 

For the multi-index P -~ (Pl . . . .  , p~) we define the Banach space Xe(R ", B) 
X~,:ce~ X ~ ( ~  ~, B) (R ~ denotes the m-dimensional real space) as follows: 
X['(.R, B) = LVI(R, B), and if x' E .R m-l, pt = (Pl, " �9 �9 , P,,,-1), XP(.R m, B) = 
Le~(/l, XP'(/~ ~-~, B)). P 

Finally for f C L~(/~ ~, H), H a Kilber~ space, we define ~(f)(x) = [ , ,  f(y) 

exp (2zd<x, y>)dy and ~-~(f)(x) = dR[" f(y) exp (-- 2zd<x, y} )dy. 

2. The maximal function 

:Let {U,, cr C Re} be a family of open sets of _R" whose closure is compact. 
Definition (2.1). {U~, ~ > 0} is a Vitali family if and only if: 
1) For ~ < f i ,  U a c U  ~ and N ~ [ 7 ~ = { 0 } .  
2) m ( U ~ -  U~)< Am(U~) where m(.) denotes the Lebesgue measure and 

U ~ - - U . = { z , z = x - - y  and x, yeU~}. 
3) m(UJ  is a left continuous function of ~. ~n or words if  ~n/*~ ~hen 

m(V.~) z m(U~). 

~emarlc. Condition (3) is not essential. I f  the family {U~} satisfies (1) and (2), 
the family {U*}; where U* = U~<~ Us; satisfies (1), (2) and (3). 

The following is a covering theorem of the type studied by  A. 13. Calder6n [3], 
and R. E. Edwards and E. ~ewi t t  [8]. 

TI~Ol~EM (2.1) (Covering theorem). Let E 
a : E--> _R+ be a mapping satisfying: 

(a) a(x) is bounded and for every ~o > O, 
set of R'L 

be a measurable set in tY* and 

{x, x C E, ~(x) > ~0} is a bounded 
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(b) I f  x ~ x  and c~(x,)/c~, then x E E  and offx) >or 
Under these conditions, for each Vitali family  { Us) there exists a sequence {x~} c E, 

such that: 
i) {x~ q- U,(~)} is a disjoint family  
(ii) E G (J~=l [x~ ~- (Us(~n) -- Us(~)) ] 

(fii) re(E) < A ~.2=~ m(U~(~)). 

Proof. Let  ~1 = suP~eE ~(x) < ~ and choose a(yn)S~r By  (a) {yn} i s a b o u n d e d  
sequence. Choose a subsequence converging to a limit xl; by  (b) x 1 E E and 

= = (Un= 1 [x~ + (Us(x,) --  U~(~n))]). I f  A 1 = O a(Xl) a r For  ]c_>1 set Ak E N  k 

the theorem follows. Observe t ha t  Ak satisfies properties (a) and (b). I-Ience with 
the  above argument ,  set by  induct ion a(xk) = ak = sup~eAk_I a(X). Since the sets Ak 
form a decreasing sequence, the  ak also form a decreasing sequence. Therefore i f  
j < Ic, a i ~ ~ ,  and (x i q- U@ fl (xk ~ U%) ~ 0 there exist u E  Us~ and  
v E U % G  Ust such tha t  x i q - u = x k ~ v .  In  other words x ~ E x  i q - ( U s j -  U%) 
but  this is impossible by  construction. Hence the  family {Xk q- U%} is disjoint. 

To prove (ii) it  is enough to show t h a t  n~=l  A.  = 0,  or in other words t h a t  
c~--~0 as n--> ~ .  I f  this is no t  true, then  ~ , = ~ ( x ~ ) > e > 0 .  Hence {x~} is 
a bounded sequence and therefore F = I . l~ l  (x~ q - U % )  is a bounded set. Bu t  
re(F) = L % 1 re (Us . )  = 

Proper ty  (iii) is a clear consequence of (ii) and of the  defini t ion of Vitali i~milies. 

THEOREM (2.2) (The maximal  function). Let { Us} be a Vitali family, f E LI(R m, B). 
Define 

Then 

In  other words 

M(f)(x) ---- sup [f(Y) tBdY. 
s 

x+v s 

m({x, M(f)(x) > 1}) < A f ]f(y)[Bdy. 
Rra 

M is of wea]~ type L 1. 

_Proof. Since m(U. +~ [f(y)lBdy is a continuous funct ion of x, 

lower semi-continuous and  hence measurable. Le~ 

M(f)  is 

f 
E = {x, ! If(Y)IBdy >__ m(U~), for some 0 r  

x+u a 
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{ 1L } For x E E  set a ( x ) = m a x  ~ ,m(U~)  +u~]f(Y)]Bdy> 1 . I t  is easy to see 

that  the set E and the mapping a(x) satisfy the conditions of Theorem (2.1). 
Hence there exists a disjoint sequence {x. § U%} such that  

M(f)(x) > 1})<_re(E)<_ A ~ m(U%) < A ~ f ,f(y)]Bdy ~ A f ]f(y)lBdy. m ( { x ~  
n = l  n = l  d J 

Xn+ Uan .R m 

Theorem (2.2) has as an immediate consequence a differentiation theorem for 
the family {U~}. 

THEOI~EM ( 2 . 3 ) .  Let 
every x C R" 

{ Us} be a Vitali family, f E LI(R m, B). 

lim 1 f ~-~o m(U~) if(y) -- f(x)1~dy =- O. 
*+ u a 

As a consequence for any such x, 

lira 1 f ~o m( V~) f(y)dy 
. + v ~  

=f(x) .  

Then for almost 

Proof. For f C/l(Rm, B) set 

i f  M'(f)(x) = lim ~ If(y) --  f(x)[Bdy. 
~o m(U~,) 

M'(f) is well-defined almost everywhere and M'(f)(x)< M( f ) ( x )§  [f(x)l B a.e. 
Consider a sequence {fn} of continuous functions with compact support such that. 
[[fn--f[ILI(R',B) "--> O, aS n--~ ~ .  Note that  the regularity of U~'s implies tha t  
.M'(fn)(x) = 0 everywhere. Set g, = f -- f,. Then 

m({x, M'(f)(x) > t}) ---- m({x, M'(g,)(x) > t}) < 
2A 

< m({x, M(gn)(x) > t/2}) § m({x, Ig.(x)1. > t/2}) < - / -  Ilf - f.II.(R~,B) 

Since n and t are arbitrary, it follows that  m({x, M'(f)(x) > 0}) ---- 0 and the 
theorem is proved�9 

Theorem (2.3) can be extended to all finite measures showing that  when # is 
a finite singular measure with respect to the Lebesgue measure, 

I/~(x § U~)I. 
lim - -  0 
,-~o m( U~) 

a . e .  
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I f  the U~'s are convex and symmetr ic  sets (U s = --  Us), then  U s -- U s C 2 U s 
and hence m(U~ -- Us) < 2~m(U~). In  part icular  when the  U~'s are m-dimensional 
intervals Theorem (2.3) implies Theorem 6 of [13]. Rela ted results are also obtained 
in [22] and [23]. 

3. The weak type estimate 

Definition (3.1). {Us, ~b} is a regular Vitali family  if  
(1) {U~} is a VitMi family  
(2) r  R+ is a continuous and onto mapping with  the proper ty  t ha t  

U s --  U~ C U~(~) and m(Ue~(~)) <_ Am(Us). 
I t  is immediate  f rom definit ion (3.1) t ha t  ~b(c~) > ~ and tha t  ~b can be chosen 

to be non-decreasing. Observe also t ha t  (J~ U s = R% 

TH~ORE)~ (3.1). For f ELl(t l  ", B) and a regular family {U~, qS}, 
a disjoint sequence {x~ @ U%} such that 

L 1 If(y) IBcly < 1 < re(U%) If(y) IBdY ( i )  m(U.(~)) ~ +  v . ( ~ , . )  - -  ~+%~ 

(ii) _For x ~ 0 ~  (xn 4- Ue)(~n)), [f(x)l . < 1 a.e. 

there exists 

{ i f  } Proof. Let  E-= X,m(U~) ~+v~ [f(y)[,dy>_ 1 for some ~ . For  x E E  set 

{ } ~(x) = sup c~ ; m(U~) +v~ ]f(y)IBdy >__ 1 . 

In  vir tue of Theorem (2.1) there exists a sequence {x~} c E such tha~ i f  
~ ~- a(x~), {x~ -4- U%} is disjoint and E c (J~=i [x~ -k (U% -- U%)] c (J2_i (x~ d- 
U| If(x)[~ _< 1 a.e. outside E. 

l~rom Theorem (3.1) we can deduce a decomposit ion theorem for functions of  
L~(R ~, B). 

TItEOlCE~ (3.2). For f C LI(R "*, B), and a regular Vitali family { Us, q)}, we 
can write f = g  ~ h, where 

(i) g e LI( R ", B) Cl L~~ R ", B) with Hgl]L~(R~,B) <-- A and ]IgI[~p(R~,.) --< AP--II[f[[LI(R~,B) �9 
(A is the constant of Definition (3.1).) y .  

(ii) h----~n~=lhn, the support of hn is containedin xn-f- U~, / ~+% hn(y)dy=O, 

and ~ = 1  m(U~) < AI]f[Ir~(Rm, ). Moreover the supports of the h,'s are disjoint. 

Proof. Consider the sequences {x~}, {con} of Theorem (3.1) and write fin = ~b(ccn). 
:Let Vn be a sequence of measurable disjoint sets, such tha t  
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(a) x o +  U~=c V. c x . +  U~ 
(b) U.% vo = U.C~ (x~ + U~n). 

Set 

fly 
I 

m(V,,) f(y)dy for x e V. 

g(x) = ~ 

[ f(x) for x eo=~U Vo. 

Let  h(x) = f(x) -- g(x) = ~=~ (f(x) -- g(x)) Xv~(x) = ~=~ h,(x), where h, = (f  -- 
g)zG. In virtue of (i), Theorem (3.1), 

f ) f Ilgll~ _< sup ]f(y)]Bdy <_ A sup ]f(Y)lBdy ~ A . 
n 

Similarly 

V n V n m 

(~=(o)" 

F 
f(x) I~ dx < A p-1 ] If(x)Is dx. 

tr  m 

Clearly the support  of h. is contained in xn q-Uzn and 

Moreover from (i), Theorem (3.1), we have, 

f ~,~+%. h.(y)dy = O. 

~m(U~,) <_ A ~m(U~,)<_ A ~ f If(y)lsdy <_ A f If(y)lBdy; 
n = l  n = l  n = l  

x~+ ucq ~ Rm 

and the theorem follows. 

T~nOR~M (3.3). Let T be a sublinear operator satisfying: 
(i) For f e LP(R =, Bo) f3 L~(R ", Bo) , 0 < p < m, 

IT(f)(x)]B1 < IS(f)(x)lB1 + Ollf[[L~(l~m,G) a.e., 

where S is a sublinear operator of weak type LC 
(ii) There exists a regular Vitali family { U s, qS} such that if f C Li(R m, Bo) and 

f = g -4- h as in Theorem (3.2), then for every positive t, 

m({x, lT(th)(X)lB~ > t}) < CIIf]ILI(Rm,.o) . 

Under assumption (i) and (ii) we conclude that T is an operator of weak types L 1 
and L p, and hence bounded in Lq for 1 < q < p (see Theorem (1.1)). 
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Proof. Let  f E LP(R"*, Bo) and set fi = fy<,, If(~)IBo_<,} and fi + f '  = f. Then 
f, C L~'(R "~, Bo) N L~(.R "~, Bo) and [ft(x)IB. ~--t, therefore IT(S)@)]B, --< ]S(f,)(x)IB, < Ct 
a.e., and 

m({x, iT(f,)(X)IB, > (O + re)t}) ~ m({x, IS(f,)(X)IB= > t}) 

< C f,(x) dx <_ ~ If(x) I~o dx 
R m  R m 

f '  E LI(R ", Bo) and we set f'/t -= h -t- g as 
the argumen,t shows tha t  

m({x, ]T(tg)(x)]B, > t}) _< 

in Theorem (3.2). Since 

C 
i; f Ig(x) l~ dx.  

R m  

Finally our asstlmption (ii) gives us 

m({x, IT(th)(x)IB, > t}) ~ C f'(x) 
R m  

Put t ing  (3.3.1), (3.3.2) and (3.3.3) together, 

C' f 
m({x, tT(f)(x)J~, > 2(CA + 1)t} _< ~ J 

f '  L ~_ C -i f(x) 
R I n  

If(x)l~o dx.  

(3.3.1) 

]g(x)lB~ < A  

(3.3.2) 

dx . (3.3.3) 

A similar argument  applies to the case f E LI(R m, Bo) and the theorem follows. 

_Remark (3.1). When T is couantably subadditive, 

i.e. ET(~f~)(X)[B1 ~_ [T(fn)(X)[B1 a.e. (~ ]f,I eL~(_R'~,Bo)), 
n ~ l  n ~ l  n = l  

condition (2) of Theorem (3.3) can be replaced by the stronger condition: 

(2') I f  the support  of f is contained in x -}- U~ and f has mean value zero 

f IT(f)(x)[B, dx < C f ,f(X)lBo dx. 

("+ Vo(~))' R.~ 

Proof. 

m({x, [T(th)(x)]B1 > t}) < m({x, IT(th)(X)lB, > t} f'l 

n { u [x~ + U~(~,.)]}') d- m( U [x~ + U~(~n)] ) < 
n n 

1 f 
n ~ l  

(~ (~+ v~(~n)))" 
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1 

(xn + v ~(~,,) )' R" 

2~ m 

If(X) IBo dx 

4. Singular integrals 

To avoid nota t ional  difficulties, th roughout  this section we will work  wi th  
complex valued functions. The extension of  the  results to vector  valued functions 
will be br ief ly discussed in Section 7. 

Definition (4.1). The function k(x) is a singular kernel for the  regular Vitali 
family {U~, q~} when 

1) For  every  $2 compact ,  ~ c / ~  ['l {0}', k E L1($2). Moreover the  integral 

f ,  vrk(x)dx is uni formly bounded  independent ly  of  c, and 7, and its limit 
exists for f ixed y as cr tends to zero. 

The integral, I ]k(x) Idx, is uni formly bounded  independent ly  of 2) 0r 

J U" a n U~(a) 

Set k~,y(x) = k(x)zv, nvv(X ). For  fELe(Rm) ,  1 ~ p  < m, let 

K~,~(f)(x) = (k~, r* f)(x) = f <(x _ y)f(y)dy. 
R m  

The convolut ion is well-defined almost  everywhere  and it belongs to LP(R"). 

T~]~ot~E~ (4.1). Let k(x) be a singular kernel for the family {U~, qs}, where 
k(x) satisfies: 

C Uz, the integral, [ ]k(x -- y) -- k(x)Idx, is uniformly bounded (4.1.1) 17 Y 
independently of ft. J v'~(~) 

Under condition (4.1.1) we conclude 

(i) I f  f eLl(Rm), m({x, [K~,~(f)(x)[ > 1}) _< Cllfltl 

(ii) I f  f e LP(Rm), 1 < p  < ~ ,  IIK~,r(f)ll P < C/Efll•. Here C~ ~_ C (p _ 1) -[-p 

and C depends only on the uniform bounds of Definition (4.1) and condition (4.1.1). 

Proof. I t  is not  difficult  to see tha t  k~, 7 also satisfies condit ion (4.1.1). In  fact ,  
if y e U~, ~b(fil) = o~ and ~(2)(t) = (/)(~(t)), 
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f Ilc~,,r(x ~_ ] -  y) -- k(x)ldx -k 
i , .  

Y) k~,~(x) ldx 
v'~(~) ~:'~(~) 

+2( ftk(x)ldx+2fl (x)Idx+ flk(x)ldx)<_C. 
To apply the weak type estimates obtained in Section 3 we must have a result in 

L p for some p, 1 < p < c~. The key argument lies in the L 2 space where we make 
use of the Fourier transform. More precisely we prove the uniform boundcdness of 
K~, r in L2(R m) showing that  ]~(k~,r)(x)[ < C, where 7(.) denotes the Fourier 
transform. The fact that  the Fourier transform is an isomctry in L 2 finishes the 
argument. 

To simplify the notation call h ( x ) :  k~,r(x), and X ( y ) =  exp (2ui<x, y>). 
Set H x = { z ,  IX(z)-- 11 >_21, x, zeRm} ,  and A~--{~, u ~ r l H , ~ #  0}. 
Since U~ U~ ~ R ~, A # 0. On the other hand ~b is continuous and r > ~, 

hence there exists fi~ ~ A such that  q~(fil) = f l e  A. Define the sequence {ft,} 
by q~(fi,) = fi,_~. Take z 6 U~ 13 H~, then 

f f ~(h)(z) = h(y)X(y)dy  = X(~) h(y --  z )X(y )~y .  

R m  R m 

Hence 

/ .  
(1 X(z)) ~(h)(x) = ] [h(y) -- h(y -- z)]X(y)dy -~ 

R m 

~_ f [h(y) -- h(y -- z)]X(y)dy -k 

+ f h(y)x(y)dy + fh(y)[x(y)- 1]dy + 

u'~ n u,~(~) uz.. 

§ Ia § 15. 

From condition (4.1.1) it follows tha t  Jill < C. Meanwhile ]/2] _~ C and 
II41 _~ C by definition of singular kernels (see Definition (4.1)). On the other hand 

[Ia[ 1][k(y)[gy. Since 2 U z c  V~,_2, if y e Uz2 ., 

then 2Jy6 U~ for 0 _ ~ j _ ~ n - -  1. ]-[ence for such y, IX(y) 2 j -  11 < 1/2 for 
O ~ _ j ~ n - - 1 .  Therefore [ X ( y ) - - l [  < 2 - " .  Hence l I a ] ~ C ~ , ~ = 2 2 - " ~ _ C  '. 
Finally since U~ c z -k Uo(z) 
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t J  

(u~(~)+z) (ur n v'~l 

+ f h(y)[1 - x(y)  y - f h(y)dy = zI1 + II2 + II3. 

Observe tha t  U' U' ~t Cl (z 4- U~(~)) c ~ n U~(~(~)). I fence b y  definit ion of singular 
kernels IIill < C and ]II3] < C. The integral  II~ is identical  to 13. 

Therefore HK~,,,(f)[12 = H~(k~,~) ~(f)El~ ~< C[IJ(f)!12 = CilfN~- 
To prove par t  (i), we make  use of  R e m a r k  (3.1) (remark to Theorem (3.3)) wi th  

T =- S = K~,,. Clearly, f = ~ , ~ f . ,  IK~,,(f)l <~ ~.~_~ lK~,~(f.)]. On the other  

hand, if  f has suppor t  in x + U~ and J,+vff(y)dy = o, 

K~,,(f)(z) = f k~, ~(z -- y)f(y)dy = f [k=,,(z - -  y)  - -  k~, ~(z x ) J f  (y)d~/ . I 

Therefore 

(~+ vr (x+ ~rr 

= f lf(y)I{f lb(z-- (y-- x)) -- b(z)ldz}dy <_ 

since y - - x C U ~ .  
Theorem (3.3) also yields tha t  ]lK~,7(f)l]e <_ C/lfjIp for 1 < p  < 2 where 

C p < C  + . To obtain  the  same result  for 2 < p <  co ac lass ica l  

dual i ty  a rgument  is u s e d . . / -  K~,,(f)(y)g(y)dy ~ . /n  f(y)K*,,(~)(y)dy, where 

k*(x) = / c ( - - x ) .  k* is also a singular kernel and satisfies condit ion (4.1.1). 
Therefore if  2 < p  < oo and l i p ' +  1/1)= 1, 

llK~,~(f)lI~,=sup { f K~,~(f)(y)~(y)dy }= sup { f f(y)K*,/j)(y)dy < 
Ilgllp,~ IIg]lp,=l 

Rm IR m 

< s u p  {llfllp IIK*,~(~)II~,} _< Cl[fll~ �9 
I[gllp,=l 

The proof  of  the theorem is now complete. 
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5. The maximal operator for singular integrals and the pointwise convergence 

Let  0 be a bounded  open set whose bou n d a ry  is of measure  zero. I f  x does not  
belong to the  b o u n d a r y  then  in v i r tue  of (1) Defini t ion (4.1) and the boundedxmss 
of O,K~,~(;go)(X ) has a l imit  as cr y--> oo. Therefore,  i f  3 0 denotes the  
class of simple funct ions over  bounded  open sets whose b o u n d a ry  is of  measure 
zero, and if  f E N0 

l im K~,r(f)(x) = K(f)(x)  a.e. (5.1.1) 
(~--~0 

Hence Theorem (4 .1 ) impl i e s  t ha t  for f e 5  o, re{x, IK(f)(x)l >_t} <~Ilfll~, 
1 < is < c~. t~rom this inequal i ty  the  opera tor  K can be ex tended  b y  con t inu i ty  
to  the  ent ire  class LP(Rm), 1 < 19 ~ oo. The main  quest ion s tudied in this  section 
is whether  the  iden t i ty  (5.1.1) holds for eve ry  funct ion f E LP(R'~), 1 <--1)< oo. 
To answer the  quest ion we have  to t u rn  our  a t t en t ion  to the  corresponding maximal  
operator .  

t~emark (5.1). Let, f e L P ( R " ) ,  1 ~ i s  ~-- ~ .  Set E l =  {x;  (Ik~,~l �9 Tfl)(x) = 
§ ~ ,  for some (or Then  m ( E f ) =  O. 

Proof. Consider the sequences ~n --> 0, y, --> (~. Set 

E .  4 = {x, ( Ig~ . ,~ l  * Ifl)(x) = § ~ } .  

Clearly UnEn, f = E f .  Since m ( E n , f ) =  0 the  r emark  follows. 
After  R e m a r k  (5.1) when x ~ E/  we can def ine the maximal  opera tor  of  the 

family 
~ ( f ) ( x )  = s u p  lg~,~(f)(x)t �9 

(~, r) 

The nex t  theorem shows t ha t  c Hl has the  same boundedness  proper t ies  as the  
kernel  K: ,  r. 

TnEORm~ (5.1) (The max imal  operator) .  I f  k(x) is a singular kernel satisfying 
condition (4.1.1) of Theorem (4.1), the operator ~ is of weak type L 1 and bounded 
in ZP(R~) for 1 < 19 < ~ .  

Proof. F or  f e 3 0, set K~(f)(x) = lira K~,r(f)(x ). I f  Q~(x) = x - U~, then  
y--> cO 

IK~(f)(x)f ~_ IK~(f)(x) --  K(f)(xl)  § K(zo~(~)f)(x~)l § 

§ ]K(z%(J)(xx) I --- _ f  [k(x - y) - k(x I - y)]f(y)dy + IK(f)(xl)i § 

(x_u~), 

§ IK(f)(x~)[ § IK(zo~(~)f)(x~)t. 
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Assume, for simplicity,  t h a t  m(O~ A U'~) = 0. Then  the  above inequal i ty  is 
well-defined for a lmost  eve ry  x r The average of  the  inequal i ty  over  Xl E x - -  U s 
with @(fi) = cr and the  sup remum of all such fl's yield 

Rl( f ) (x )  = sup 
~, ~(~)=~ 

where 

and 

IK~(f)(x)i  ~_ Rl(f)(x) + S(f) (x) ,  

[~--@-~;f ({f)' ~(x-'> - ~(xl-'>I ]f(Y)Idy}dXl 1 
(.-v/~) - 

] S(f)(x) = sup [K(f)(xl) [dx 1 
x - u ~  x - U ~  

In  v i r tue  of condit ion (4.1.1) of Theorem (4.1) it  follows tha t  IIRl(f)lI~ ~ crlfri~- 
On the  o ther  hand  f rom K61der's inequal i ty  and the  cont inu i ty  of  K in LP(Rm), 
l < p <  0% 

1 f ( & f  )., m(U~) [K(zq~(*)f)(xj)[dXl ~ IK(zqA~)f)(xl)[Pdxl 
x-- Ufl Rm 

,1. 
~_ Bq ~ rf(y)l~dy) 

x- -U a 

Therefore  if  M(f)  denotes as in section 2 the  maximal  funct ion of f ,  

S(f)(x) < 2A{M(K(f))(x) + [M(PfL,)(x)Jl/P}. 

Wi th  such an est imate,  i t  is easy to see t h a t  S is an opera tor  of weak type  L p 
and bounded  in Lq(R ") for p < q <  oo. 

I f  the  a rgument  used for K s is repea ted  for Ks, r, i t  shows t h a t  

[K~,~(f)(x)[ ~ f ]k(x -- y) -- k(x~ -- y)[ !f(Y) flY + 

(x -  v~)' n (,~- v 0 

+ . f  ]k(x -- y) -- k(x~ -- Y)I If(y)]dy + !K~(f)(x~)[ + [K(zq~(~)f)(x~)l �9 
(x-u~), 

The averaging a rgument  now yields IK~,~(f)(x)[ <_ l~(f)(x) + 2S(f)(x), where /~ is 
the  sum of  B 1 and the  snpremum over fi of  the  average of the  two integrals above.  

I-]:enee IIR(f)llo~ _< CllfLo. 
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To extend the est imate to every funct ion of L~(R ~) ['1 L~(R~), observe t h a t  S 
is a bounded operator in /2(R~); therefore if  f ~ LP(.R ") ~ L~(R'~), choose f~ ~ ~0 
such tha t  I]f- -- ftl~ --> 0 as n --> ~ and Iif-]l~ ->  llfll~. Then in vir tue of the 
domina ted  convergence theorem, K~,~(fn)(x) converges to K~,~(f)(x) everywhere. 
Choose an adequate  subsequence such tha t  S(f,,)----> S(f)  a.e. Then 

IK~,,~(f)(x)] <_ Cllfllo~ -~ 2S(f)(x) 

except  for a set of measure zero which does not  depend on (0r 7). Hence 

~(f)(x) < cllfllo~ § 2s(f)(x) a.e., 

and  the f irst  condition of Theorem (3.3) is satisfied. 
Le t  h ~ ~ = 1  h~ be defined as in the second condit ion of Theorem (3.3). The 

support  of hn is contained in xn ~- Uzn and its mean  value is zero. We will divide 
the  ~ = 1  hn(x) into three flmctions according to f ixed values of x, cr and y. Le t  
~b(al) ~ -a ,  r set I i ( x ,a , y )  ~ { n ;  where either ~ < f l ~ < ~  and 

! 
x e xn + U~,, or fi~ _< ~ and x e (x,, + U~) N (x, + Ur I2(x, ~x, ~) = 
{ n ; c c > f i n  and x n E ( x +  U ~ ) g l ( x ~ -  Uv(~))}, Ia(x ,a ,y )  ~-{n; where either 

t ! 
c r  and x E ( x ~ +  U ~ ) f l ( x ~ - ~  Uo(r)), or fi,_<0r and x C ( x n +  Uo(~))N 
(xn -]- Uo(~)) N (x~ + U'r,)}. Le t  h(O(Y) ~- ~,e,,( .... r) hn(y), 1 < i < 3, and set 

_F ~- [.J~=l (x, ~- (Jo(o(~)))" Then when x ~ F, K~,~(h)(x) : ~=1 K~,~(h(1))(x) �9 Now 
we set 

9~,(h)(x) ~- sup ]K~.~(h)(O(x)l, i : 1, 2, 3. 

Observe from Theorem (3.2) t h a t  

m({x, ~(h)(x) > C}) < m({x, ~(h)(x) > t} n F) + 

f + m({x, 9/fl(h)(x) < C} gl F') < C If(x) ldx -}- ~ m({x, ~ ( h ) ( x )  > C/3} n F ' ) .  
i = 1  

R m  

I-[ence it suffices to prove t h a t  

m({x, 9tl,(h)(x) > C} ~ F') <_ C f If(x)Idx 
R• 

where C is a f ixed constant  depending only on the bounds of the kernel /c given 
in definit ion 4.1 and  the  bound given by  condition (4.1.1). 

When  x ~ Eh (see Remark  (5.1)) 

(x,,+v~ 2 
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(~n+ u&) 

:~ f I~(x - v ) -  k(x - xo)l I~(v),ey. < 
n ~ l  J 

(-n+ % )  

Therefore if E 1 = {x, ci'fll(f)(x ) :> 1} fl E '  ['1 E~, 

�9 flk(x-v)-k(x-x211a(v),}av<_Qalll<_2cl,f,,, 
F, (xn+ved 

in virtue of condition (4.1.1). 
To s tudy cBfe(h)(x), set E(x, ~) = (x + U~)' and let V. denote the support 

of hn. V~fl V ~ =  0 for n e r o  and V. c x . +  U&. Set 

1 
c,,(x, a) -- m(-~) f zE,. ~)h(y)dy . 

v,, 

Clearly [c.(x, ~)l < 2. Then for x ~ Eh, 

IK~' '(h(2))(x) i <~o~1,(~.~ ~, , s f  k(x -- Y)ZE(~, ~,)h(y)dy [ < 
L, 

7,~ 7,, 

v. ,-yeu'~-,(~)n v~(a) 

f I~(* - v) - ~(x - xo)I(lh(v)I + 2)~v + C. 

v. 

Therefore 

.({x,'~.(f)(x)>_~+,>nrn.;)<_ f [~ f t,(x-v>-,(x-xo>t(,a(v>,+e)gvJ gx 
F" V. 

<_ C' ~. [-([h(y)[ -t- 2)dy < C'([Ihlll § 2 ~. m(V,)) < C"[lflI1. 
n , ]  rt v,, 

The operator c ~  a is handled with a similar argument, and the theorem is proved. 

The pointwise convergence of the singular integrals is an easy consequence of 
Theorem (5.1). 
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THEOREM (5.2). Let f C LP(R"), 1 ~_ p < ~ .  Then 

lim K~,~(f)(x) ---- K(f)(x)  a.e. 
Ot-->-O 
y-->- co 

Proof. For  f C LP(R"), 1 <_ p < 0% set c)~i'(f)(x) = lira IK~,y(f)(x) --  K(f)(x)l .  
c~t' is well-defined almost everywhere, and ~-~o 7---> oO 

~)~Z'(f)(x) < 9]~(f)(x) -t- [K(f)(x)l a.e. 

Consider a sequence {f,}, f ,  e S 0, such tha t  IIf, - fllp --> 0. Le t  g, = f -- f , .  
Since ~/]~'(f,)(x)-----0 a.e. 

m({x ; ~]~]l'(f)(x) > t}) = m({x; 9/]/'(f - - f , )  > t} 

< m({x ; ~ ( g 2 ( x )  > t/2}) -t- m({x ; IK(g~)(x)I > t/2}) 

f ~-- ~,-T-/ J If(x) - -  f , (x)Fdx . 

Since n and  t are arbitrary,  ~ ' ( f ) ( x )  = 0 a.e. and  the  theorem follows. 

6. Singular integrals on locally compact groups 

I t  is plain from the proofs of most of the theorems of Sections 2 through 5 t ha t  
the results remain valid i f  ~m is replaced by  a locally compact  group G and the 
functions take  values in a Kilbert  space. In  this section we outline briefly the 
modifications necessary to extend the  results. 

The Lebesgue measure/~m, must  be replaced by  a Kaa r  measure of the group G; 
and the absolute values by  the appropriate norms. The defini t ion of regular Vitali 
families does not  imply tha t  either ~b(~) > a or U~ U~ -- G for a general group G. 
I-Ience these conditions must  be added. Wi th  such modifications Theorems (3.1), 
(3.2), (3.3), Remark  (3.1) and Theorems (4.1), (5.1), (5.2) remain valid over any  
locally compact  Abelian group G, for functions taking values in a ]{ilbert space. 
The proofs are identical. 

The definit ion of singular kernel is 
Definition (6.1). For  each x E G, let It(x) be a bounded linear operator from the 

Hi]bert  space H 1 into the Kilbert  space H~. /c(x) is a singular kernel for the  
regular Vitali family  { U~, ~b} when 

1) For  every ~9 compact,  t g C  G N {e}', k E LI(D). Moreover the integral, 

__./,nv..k(x)dx,~ is an operator, uniformly bounded in ~ and 7, and its l imit exists 

for every f ixed 7 as a tends to zero. 
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/ .  
2) I f  h C//1 with Ihl~, ~< 1, the integral / , Ik(x)[h] IH~dX is uniformly 

bounded in ~x and h. J v~nu~ 

Set ~)]i(f)(x) = sup~,~ IK~,~(f)(x)l,, 

We realmounce Theorem (5.1), since the conclusions are slightly different. 

THEOREM (6.1). Let G be a locally compact Abelian group. 
a singular kernel for the regular Vitali family {U,, r Assume 

f l(k(x -- y) -- k(x))[hJ]HdX 
ur 

is uniformly bounded in fi and h whenever y E Uz and th]~ < 1. 
Then 

1) m({x, cfi~ll(f)(x)l~ >_ 1}) < C f tf(x)lH~dX, 
G 

2) for 1 < p < 2 ; IC~(f) ILP(G,H~) < C~[fILP(~,HO . 

k : G - *  ~ ( H 1 ,  H2), 

(6.1.1) 

T~IEOREM (6.2). When k(x) and k*(x) (the adjoint operator)are singular kernels 
for the family {U~, r and both satisfy condition (6.1.1); then conclusion (2) of 
Theorem (6.1) is valid for all p, 1 < p < oo. 

Theorem (5.2) should also be reannounced accordingly. 
To prove the L2-boundedness of the kernels it suffices to change, in Theorem 

(4.1), exp (27d<x, y>) by a(y) (the characters of the group). Observe that  Parseval's 
identi ty remains valid on L2(G, H), the space of square summable functions from 
the Abelian group G to the gi lber t  space H. 

Actually with the exception of the L2-boundedness of the singular integrals 
the rest of the theory developed in Sections 2, 3, 4 and 5 is valid whether the group 
G is Abelian or not. Therefore, if the boundedness in L 2 is assumed, all the other 
theorems follow for the non-Abelian ease as well (see also [17]) 1. 

In the non-Abelian ease sometimes it is impossible to construct a regular Vitali 
family for all values of c~. In those cases where the construction is possible for 

< %, and provided that  the L2-boundedness holds, the results of the previous 
sections remain valid for the local truncations k~,~0. 

7. Homogeneous kernels 

Let n:/~+--> ~ ( / ~ ,  R m) be a continuous mapping with the properties 

(1) ~(~#) ~ ~(~). n(#), n(1) ---- I,  the identity-matrix. 

1 See also A. Knapp and E. Stein, Intertwining operators for semisimple groups. Ann. of 
Math., 93 (1971), 489--578. 
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(2) For  0 < I < 1, I]~(2)[] ~ 2, ([I.I] denotes the norm in ~-~(R', R ' ) ) .  

For  simplicity, we let ~ ( ~ ) =  Tz. 

TH~,O~E~ (7.1). Set F(x,  r) = ][T~-,(x)I I. There exists a unique solution r = r(x) 
for x --Ta O, such that F(x,  r(x)) = 1, and moreover the solution has the following 
properties: 

(i) r(x + y) ~_ r(x) + r(y) and r(x) = O i f  and only i f  x = O. ( In  other 
words r(.) is a metric.) 

(ii) r(T~(x))= 2r(x) 
(iii) I f  HxlI ~_ 1, r(x) ~ HxII. I f  IIxlI >_ 1, r(x) ~ [lxI]. 

Proof. The existence of a unique solution r = r(x), such tha t  F(r, x) = 1, is 
a consequence of  the  following propert ies of the  function F ,  for f ixed x 6 R ~ 17 {0}', 
( r (o)  = o).  

(1) F(x,r)---~O, as  r - ~  ~ ,  

(2) _F(x, r)  - +  ~ ,  ~s r --> 0, 

(3) F(x, r) is a continuous decreasing funct ion of  r. 
I f  r ~ 1, F(x,  r) = I]T,-i(x)]l ~_ []T,-lli[lx][ ~_ r-lIlxH, and (1) follows. 
On the other  hand if  r _~ 1 and x = T,(y), then IlxlI _< HTrl]]Iyl] _~ rF(x, r). 

Hence F ( x , r ) - +  ~ ,  as r - + 0 .  
Final ly if  r 1 < r2, F(x, r2) = HT~-,(x)H = ]lT~1,~-l(T,-dx))H ~ rlr2-1F(x, q) ~_ F(x, q). 

The cont inui ty  of  the  f lmction F(x,  .) is clear. 
I t  is easy to see tha t  r ( x ) = O  if and only if  x = 0 .  
Set ~1 ---- r(x), "~2 -~ r(y). To prove tha t  r(x + y) ~_ r(x) + r(y), it is enough 

to show tha t  llT(x~+~)_~ (x + Y)]I ~ 1. B u t  

[IT(~.~+~.~)-,(x + Y)[[ ~__ [IT(~+~)-~x~(Tx-~(x))[[ + 

+ IIT(~,+~,~)-,z,(T~,-dY))]I ~_ 21(i I -~ A2)-IHT&_,(x)]I ~- 

+ ).z(Xl + t~)-l]ITz_,(y)]] ~ 1 . 

I t  is immedia te  from the  definit ion tha t  r(T~(x)) = At(x). I f  tIxH ~_ 1, then 
I[Til~,l_,(x)[[ < lixii-lilxil _ 1, in other  words r(x) ~ Itxll. The reciprocal  inequal i ty  
follows similarly. 

Consider the  following change of  variables induced b y  the metric  r(x), x -+ (x', r), 
where x' 6 S ~-1 (S ~-1 ~ {x, IIx[] = 1}) and T,(x') = x. I f  x' is expressed in a 
coordinate sys tem of S m-1 

t 

X 1 = C OS ( 4 1 )  . . . COS ( ~ m - - 1 )  

x" = sin (r  
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The change of variables is expressed by, x -~  (r, ~ b l , . . . ,  ~b~_l). To compute 
the Jacobian  of the t ransformation,  we observe t h a t  Tx = exp (1) In 2), where 
P is a m •  m real mat r ix  (the infini tesimal generator of the group). 

I ~ e n c e  

ax ax [ax'  \ 
- -  r - l P T r ( x  ') = r - lTr(P(x ' ) ) ,  and aq), - -  T r ~ )  , 1 < i < m - -  1. 

ar 

Then J ( x  ; r, q51, . . .  , q~,,-1) = det (r - lTr(P(x ' ) ) ,  

T , ~ - ~ I ) ,  . . . , T ,  \ a r  r'r(e)-~H(q5) ' 

where t r  (P) denotes the trace of P and 

( 0x, 0x,] 
H(•) = P(x'), 0 r  0~_:1" 

I t  is not  hard  to see t ha t  i f  da denotes the classical measure over S ~-1, then  
H(q~)dr  = (P(x ') ,  x')da; where the  ident i ty  is understood as measures over S ~-1. 

Set U s = {x ; r(x) < o~} and qs(~) = 2~. Then U s --  U s C U2~, and  m(U2~) ---- 
2"(P)-~m(U~). To prove the last iden t i ty  i t  suffices to integrate  the characteristic 
funct ion of U2~ and  to change variables into the  polar-like coordinates discussed 
above. 

Def in i t ion  (7.1). A funct ion k(x) is a homogeneous kernel wi th  respect to  the  
group {Tx} when 

(1) /c(x) is defined in / ~  ffl (0}', /c E LI(S~-I), and  

f k(x')H(r f k(x')(t'(x'),x')d~=O. 
Sin--1 Sin--1 

(2) lc(T~.(x)) ---- A-'~(e)/c(x), for x r 0. 

I t  is clear, in vir tue of the properties observed above, t h a t  a homogenous kernel 
is a singular kernel for the  regular Vitali family  {(x, r(x) ~ ~}, 2~}. Now set 

]c(x) when e ~ r ( x )  ~ R  

]c~,R (x) ---- 0 otherwise 

and K~,R(f)(x)  = (]c~,R * f ) ( x )  for f e / 2 ( / ~ ) ,  1 _~ p < ~ .  

THEOREM (7.1). Let  k(x) be a homogenous kernel for  the group {T~}, sat is fy ing 

f ]Ic(x - -  y) - -  k(x)]dx (7.1.1) <_ C .  

<x, r(x) >_ 2 , (y ) )  
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Then, i f  9 ~ ( f ) ( x ) =  sup~,R [K~,R(f)(x)l, 9 ~  is of weak type L 1 and bounded 
in Le(l~ '~) for 1 < p < ~ .  Moreover 

lim K~,R(f)(x) = K(f)(x) a.e., for every f e LP(R=), 1 ~ p < m. 
s-->O 

Theorem (7.1) is a consequence of Theorems (5.1), (6.1) and (6.2). 

Condition (7.1.1) is easily implied by  a Dini condition of the kernel over the 
unit sphere. More precisely, set o~(t)= sup { [ k ( x -  h ) -  k(x)[}. 

xEsm--1; Ilhll_<t 

f? THEOREM (7.2). I f  w(t)t-ldt ~ C, condition (7.1.1) is satisfied. 

Proof. Let x', y' E S =-1 
co 

f 
r(x)>_2r(y) 2r(y) Sin- -1  

oo r 1/2 

fT,(y) r-''-I f - f  r dr < C (r(y)r -1 < C co(] (y)[) _ co )r-ldr < C o.~(r)r-idr < . 

2r(y) 2r(y) 0 

When P = I, T~(x) = Xx, r(x) = [[xl], and H(qi)dq5 = &r. In such case the 
corresponding homogeneous kernels are the elliptic kernels studied by  A. P. Calder6n 
and A. Zygmund in [6]. For those kernels the pointwise convergence was studied b y  
Calder6n, M. Weiss and Zygmund in [5]; however theorems (5.1), (5.2) and (7.1) 
yield a better result even in this case. 

I f  P is a diagonal matrix, the kernels obtained are the parabolic and the semi- 
elliptic kernels or kernels of mixed homogeneities studied by  F. Jones in [15] and 
E. B. ~'abes and N. M. Rivi~re in [9]. 

The general t reatment  over a group {Ta} was first considered by  M. de Guzman 
in [7], where he proves the continuity of the kernels in L2(R=). 

Chapter II 

1. Vector valued multipliers 

In this section we s tudy some vector valued applications of results obtained 
in section 6, Chapter I, when the group G is R =. 

Let ~ = ~H denote the Fourier transform in the space L2(R ", H). For 
a E L~(R m, ~ ( H  1, He) ), f E L2(R ", H1), set Ta(f) = ~[(a~H,(f)).  More explicitly 
Ta is defined by  the composition 
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L (R , -  L (R Itl) 

T~ a 

L2(R "~, H2) ~ H~ L~(R,~, 112). 

Since the Fourier transform is an isometry in L2(R m, H)  it follows that  

I]Ta(f)fIL~(R "~, H~) ~-- HaHL~ ", s H2))llfl]L~{R". H1) " 

The operator T~ so defined is called a multiplier. Our aim is to s tudy multiplier 
operators that  are bounded in the spaces L e. 

In [12] L .  I~Srmander showed that theorems of  the type of Theorem (3.3) of 
Chapter I could be used to prove the boundedness in Lp of multiplier operators. 
Basically the idea is to require enough smoothness on the Fourier transform of the 
kernel (i.e. the multiplier) so that  the kernel will satisiy the integrability condition 
imposed in Theorem (4.1), Chapter I. 

We will prove a vector valued multiplier theorem when the regularity conditions 
of the multiplier are imposed over a regular Vitali family of convex symmetric sets. 
First we have to set up the adequate notation to state the multiplier theorem. 

:LEMMA (1.1). Let C be a bounded convex, symmetric, open set in R "~. There 
exists a linear invertible operator f rom R "~ in to  t~ "~ such that 

S 1 = {x, Ix] _~ 1} C T-I(C)  C S,~ = {x, lxl ~ m } .  

The proof of the lemma may be found in  [14]. We will briefly outline a very 
simple argument showing the existence of such mapping if we allow T-I(C) c S~ 
where T depends on m only. In any case such a result will suffice for our appli- 
cations. 

L~t E be the symmetric ellipsoid of maximal measure with E c C. L e t  T~ 
be any invertible linear operator over / ~  such that  TE(E) = $1. I t  suffices to 
prove 4hat  T~(C) c {x, [xl _~ ~} :for some fixed number v independent of C. 
We argue by  contradiction. I f  it is not t~ue, there exist points {x, -- x} c TE(C) 
very far away. But  then the convex symmetric set generated by  S 1 and (x, --  x} 
would contain a symmetric ellipsoid E'  such that  re(S1) ~ m(E') .  On the other 
hand, since E '  c TE(C), it follows that  T ~ ( E  ') c C and m ( T ~ ( E ' ) )  > re(E) 
contradicting our assumption that  the measure of E is maximal. 

Throughout this chapter the sets U~ of a regular Vitali family will be assumed 
symmetric and convex, We will say that  { U~, n E Z} is a lactmary sequence of 

the family { U~, ~b} when ~+1 = ~b(a,). Lemma (1.1) allows us to choose a sequence 
of invertible operal/ors, T~ E ~ ( R  ~, -R ~) such that  

S~ c T:~(U~,)  c S~. (1.1.1) 
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We will fix the family {T,, n E Z} and we will consider, from now on~ the pair 
(U~, T,). I t  is useful to point out that  

for r > 0, 2 ~ U~,_~ c U~,, or equivalently 2 -~ U~,+, D U~. (1.1.2) 

Let a be a measurable function defined from R ~ into ~_Z(H1, H~). We say 
that 

a ~ 5"(R m, ~-~(H~, H2)) if <a(x)[hl] , h 2 > e 5 ( R ) ,  

the class of temperate distributions, for each h~ E H~, h~ EH~. When a E 
Z'(R ~, ~(H~, H~)) we define D~a (D ~ denotes the ~-partial derivative with 
respect to x) by the identity 

<D~a(x)[hx], h2> = D~( <a(x)[hi], h~>). 

The following is one of our main multiplier theorems. 

THEOI~EM (1.1). Let fii, 1 ~ j < m, 
T.), n E z }  be 

a E L~ m, ~-~(H~, He) ). 

n , j  
114 _< [~I -< 2~ 

Then the multiplier operator T , ( f ) =  ~/-l(a~(f)) satisfies: 

(i) m({x, IT,(f)]H, ~ 1}) < C [  If(x) lH,dx 
J R m 

(ii) when 1 < p ~ 2, [IT,(f)]ILV(nm, H~) ~ CpIlf]ILp(Rm, Hi) 
where C and Cp depend only on Co, the family  {U~, ~} and the L ~176 norm of a. 
(Cv, of course, depends also on p.) 

be positive integers such that ~i~1 1/fl i < 2, 
a laeunary sequence of the family {U~, r and let 

Set a , ( x ) ~  a(T,(x)) and assume that 

Proof. To simplify our notation we set U~, ~ V,. Let F E C~(R "~) be a non- 

negative function equal to one in 1/2 < lxl _~ v and having its support in 
1/4 ~_ IxI < 27. Set ~(x) = ~ ' , ~ _ ~  ~(T~(x)) .  From properties (1.1.1) and (1.1.2) it 
follows that  when x E V, FI V',_~ 

(a) T:~(x) e {y, 1/2 < IYl ~ v} and 
(b) for r ~_ 0, [T~,(x)I _~ 2 - ~  and 

Hence 1 < ~(x) = ~(40_~<_ 2~<_2~p(Ty~(x)), and 
ferentiable function. Set b(x) ~ a(x)/q~(x), 
b(x)~f(TZl(x)). Observe that  ~ , e z  a(") = a. 

We will sketch the main steps in the proof. 
We show that  ~(a (~)) E L~(R "~, ~(H1,  H~)) 

~ff=_~ ~(a 0)) satisfy condition (4.1.1) of Chapter I, uniformly in N, 

IT~_~(x)[ ~ 2". 

is a bounded, infinitely dif- 
b,(x) = b(T,(x)) and a(")(x) = 

and tha t  the kernels k N = 
for another 
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family {ct/~, q~'} 
I then completes the proof. 

When 7i ~ flJ 

/ ,, [ ID,~i(an)(x)[h] I~dx < C 
1/4 _< I~1 -< 2~ 

Therefore, D~(an) also verifies property (1.1.3). I t  then follows that  

sup f ID:~(bn)(x)[h]l~dx ~ CIh]2H~ 
1/4 __.< Ix] ~_~ 2v 

Since a(n)(T,,x)= bn(x)~f(x), from (1.1.4) it follows that  

related to the original family { U~, ~b}. Theorem (3.3) of Chapter 

114 ~ Ix] E 2v 

(L1.4) 

n e Z ,  v j ~ f l j  
R m  

I f  we Fourier transform the left side we see that  

f l(xyi~(aO))((T*~)-lx)[ h] I~= (det T~)-~dx -- 
Rra 

f I(T*~x)~J~(a(n))(x)[hJ]2H, (det T~)-ldx < C[hI2H~, 
R m 

where T* denotes the adjoint fii operator of Tn and det (Tn) the determinant 
of T.. I-[ence if P(x)= ~'7--1 IxJJ § 1, 

f L .dx <_ (To) lhI:.,. (1..5) C det 1 

R m  

Without loss of generality we may assume that  fll--~ fi2--~.. .  ~ tim. Set 
S~ = (~/~&~) and let r(x) be the metric associated to the group {S~, ~ E/~+} 
(see section 7, Chapter I). Then P(x) ~ C(1 ~-r(x)) ~,~. 

I f  V] denotes the polar set of Vn, i.e. V~ = {x ; <x, y> ~ 1, for every y C V~}, 
set W~ = V~ and 9 ~  = W~ when ~ C (2 n-l, 2~]. We will show that  {~t/, 2a} 
is a regular Vitali family. 

We point out that  
(I) A c B  iff B ~  ~ 

and 
(II) if T is an invertible operator, T E ~(R", R"), (T(A)) ~ = (T*)-I(A~ 

To show that  (c/1~, 2a) is a regular Vitali family it suffices to show that  
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W n - -  W n : 2 W  n ~ W n +  1 , 

but  since 2V_,_~ c V_, the p rope i ty  is an immediate  consequence of (II). 
We also point out t ha t  S~_ 1 c T * ( W _ , ) c  $1 and therefore 

i f  k - ~ n + r ,  r > 0 ,  then  W _ ~ + ~ 2 * W  ~ and hence T*(Wk)~2"S,--  1. (1.1.6) 

I f  k =  - - n + r ,  r<O,  then  W _ , + , c 2 ~ W _ ,  and hence T*(Wk) c2~Sx �9 (1.1.7) 

We are now ready  to complete the  proof. We go back to inequal i ty  (1.1.5). 
Observe t ha t  

f 
Rm Rm 

oo 

1 f rf~m(X1/~J ) dr_ 
(1 + r(x)) 2~'~ dx = C,, j (1 -4- r) : ~  r 

0 

since ~.j~=l 1/~i < 2. Using Cauchy's  inequal i ty  and (1.1.5), 

f l~(a("))(x)[h] IHdX < C lh]H, 
Bm 

and 

f l~(a("))(x)[h]lH~dX ~_ Clhl.,(f P(x)-2dx) ~]2 �9 
(wk), (T~( ~k))" 

Then 

Hence 

where 

f I~(a("))(x)[h] IH,dX <~ C2 - ~  ]hlH,, 
(wk)' 

1 ( 2 -  ~. 1/fli)> O. 
8 = ~ -  j = l  

To s tudy  the case k - l - n = r < 0 ,  we set 

h~y")(x) = [exp (2zi<x, y>) --  1]a(")(x) . 

h(y")(T,(x)) = [exp (2~i<x, T*(y)>) -- 1]b,(x)~v(x) . 

sup f ID~(h(y~)(T(.)))(x)[h]]2 flx <_ Cih 2 * ]H, IT, (Y)] �9 
la[ ~ M,  nEZ 

Rm 

T*(W~) ~ {x, Ix] >_ 2"~-1}. 

(1.1.9) 

(1.1.s) 

~rom (1.1.6) it  follows tha t  when k + n = r > 0, 
On the  other hand  when lxl ~ 1, Ixl ~ r(x) ~" and so 
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Observe tha t  ~(h~))(x) = ~(a(n))(x,  y) -- ~(a(n))(x). l%epeating the above 
argument,  instead of (1.1.4) we obtain 

f [[~J(a('O)(x y) --  ~(a('))(x)](h)lHdX CIh]s,[T*(y)] . <_ (1.1.10) 

When r = k ~ n < 0 and y E Wk, (1.1.7) shows tha t  IT*~(y)l <_ 2"w. There- 
fore put t ing  (1.1.9) and (1.1.10) together, when y E Wk_l 

f ][~(a(~))(x --  y) -- ~(a("))(x)](h)ldx <_ ClhlH. (1.1.11) 
nEZ , 7  

(wk)" 

I-Ience if A~(x) = ~Tnl<_iv at~)(x), it follows from (1.1.8) that  ~(AN) is an integr- 
able kernel. 

Since (1.1.11) implies 

f [[~(AN)(x --  y) --~(A~)(x)](h)[udx CIhIH, < 

(w~)" 

uniformly in N whenever y E Wk_l, TaN(f) ~ ~(AN) * f satisfies the conditions of 
Remark  (3.1) (remark to Theorem (3.3)), Chapter I, for the regular Vitali family 
{~=, 2=). 

I-[ence 

m((x, [T~N(f)(x ) [H~ >-- 1}) ~ C f If(x) 1.,d~ 
R m 

where C is independent  of N. To finish the proof it suffices to observe tha t  for 
a good function f, 

ITAN(f)(x)-  T,(I)(X)IH-~O a.e., as 2~-~ ~ .  

Note. The functions ~(An) are actually singular kernels for the family {~/~, 2a} 
according to Definition (6.1) with bounds independent  of N. 

Let  a*(x) denote the adjoint  operator of a(x). 

TKEOREM (1.2). JLet a(x) and a*(x) satisfy condition (1.1.1), or the stronger 
condition 

flj, nEZ 
1/2< Ix I ~2z 

Then both Ta and Ta. are of weak type L 1 and bounded in L ~ for all p such 
that 1 < p < ~ .  
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_Proof. The proof follows by  a simple dua l i ty  argument .  See Theorems (4.1) and 
(6.2), Chapter I. 

Theorems (1.1) and  (1.2) are an extension of the multiplier theorems presented 
in [9] and [12]. The reason for choosing a sequence //1, �9 �9 �9 fin is to allow for multi-  
pliers which are not  very  smooth with  respect to some variable provided, t h e y  are 
sufficiently smooth with  respect to the others. In  fact the theorems could be s ta ted  
in terms of fractional derivatives. In  such cases we m a y  allow fil --~ 1/2 q- s provided 
the rest of the  fli's are sttfficiently large. 

THEOREM (1.3). Let H 1 ~ H a --~ L~(R k) and g(x, 2) e L ~ ( R " •  For 
h ~. L2(Rk), set a(x)[h] = ~yl(g(x,  .)~(h)). Assume that 

sup f ID~(~t(T~x, 2))[adz <_ Co, 
~ez, ~i' ~eRk J J 

l[4_<ix[_~ev 

where T ,  and fij are as in Theorem (1.1). ~or  f e LP(R "~, H) set T.(f) =- ~-l(a~(f)). 

Then T~ is of weak type  L 1 and bounded in LP(R "~,H) for any  p, 1 < p <  ~ .  
The theorem is an  immedia te  consequence of Theorem (1.2). 
Observe t h a t  if  we ident i fy  f c LF(R "~, H)  with f E XP~2(R'~+k), t hen  T , ( f )  ~-- 

~,~(gT~,~(f)). We will present another  theorem of a similar na ture  later in section 
2 (Theorem (2.1)). 

I t  has been pointed out  in previous papers (see [2], [12] and [27]) t ha t  the 
Li t t lewood-Paley inequalities m a y  be regarded as expressing the cont inui ty  of 
vector valued kernels. We will prove extended forms of those inequalities using 
Theorem (1.2). The advantage  o f  the multiplier theorem is the fact  t h a t  the 
operators are defined explicitely in terms of multiplier functions. 

Le t  r(x) be the homogeneous metric associated to a one parameter  group of 
operators {L~, ~ E//+} (see section 7, Chapter  I). Define a(x) ~: c~-(C, H),  where 

H =  ; l h l . =  t ) l  ~ < ~ , 

0 

by  a(x)[c] ~-- t . r(x) exp (-- 1/4t . r(x)) �9 c. For  f E LP(R m) set T , ( f )  = ~- l (a~( f ) )  
and g ( f ) :  IT,(f)!H. 

THEOREM (1.4). There exists a constant Ce such that 

Cjlllfil~ <-- I[g(f)He ~ cpl]fllp for every p, 1 < p < oo . 

Proof. Choose U s = L~(S1), ~b(~) = 2~, T ,  = L2- and  V, ~-- U2,. A straight-  
forward calculation shows that, a~(x) ~ a(T,x)  verifies the condition of Theorem 
(1.2). Hence 
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IiT~(f)llLP(R'~.H) = Ilg(f)[I. ~ CpI[flIp, 1 < p < 0o.  

To reverse the inequal i ty  it  suffices r observe tha t  

a) when F E LP(R ", H), 1 < p < ~ , llT,.(F)[1Lp(n~,c) _< CpIiF[IiP(,~,H) 
b) when f e L~(n~), T . . (T , ( f ) )  = f . 

When r(x) = Ix], g(f) is the classical g-function of a half  space. Wi th  a similar 
technique we will derive inequalities concerning lacunary  part i t ions of the  spectra 
of L p functions. 

Le t  (V,, T,) be a lacunar::  sequence of a regular Vitali family  and ~0 an in- 
f ini tely differentiable funct ion with  compact  sapport  away from the origin. Le t  
l~(H) denote the Hilbert  space of square summable sequences wi th  values in the 
Hilbert  space H.  Define a ( x ) 6  ~ ( H ,  l~(H)) by  

a(x)[h] = {q~(T;~x)h, n r Z}, a E L+(R ~, ~(U, l~(U))) . 

TH]~ORE~ (1.5). For f C / : ( R %  H), set T~(f) ~- "~-l(a~(f)). Then 
type L 1 and bounded in jLp for 1 < p < o~. More explicitely i f  

f~ ----- ~-~(q:(T~x)~(f)) ,  1 < p < ~ ,  

]IT.(f)HLI'(,'~,I~(H)) : ll(~ lf~(x)12H)l/2]lp <-- C, f Lp(t{m.H). 
nEZ 

T .  is of weak 

(1.5.1) 

The proof is a s t ra ightforward consequence of Theorem (1.2). 
Inequal i ty  (1.5.1) is an extension to R ~ of a well-known inequal i ty  of Li t t lewood 

and  Pa ley  (see also [18] and  [27]). 
A different m-dimensional result can be obtained from i terat ion of the one 

dimensional form of inequal i ty  (1.5.1). (See also [18].) 
Le t  N = (n 1, . . . ,  n~), nj E Z. Le t  ~ be a differentiable function on the real 

line wi th  compact  support  away from the origin. For  f E Le(R '~, H) set 

fN = ~-l(~(2" 'xl)F(2~x2).- .  q~(2"mXm)~(f)) �9 

TttEOI~E~ (1.6). For all p with 1 < p < 0o, 

f]{fN}[ILP(Rm. Z~(.)) --< CITfHLF(Rm,.). 

Proof. The result  follows by  induct ion over the number  of variables using the 
inequal i ty  (1.5.1). Assume the  theorem is t rue in R m-1. Set ()~ = le(H), the Hilber~ 
space of (m -- 1) tuples of square summable sequences wi th  values in H.  Le t  

= ( n l , . . . , n m - 1 ) ,  then  fN = (f~)~m" I f  we use the inequal i ty  (1.5.1) on 
f ~  E / 2 ( R  ~, c)() the theorem follows. 

We can fur ther  extend Theorem (1.6) wi th  the use of interpolat ion theory.  
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Let  P = (Pl . . . . .  P~), Pj > 1. XP(R ", H) will denote the Banach space of 
measurable funct ion from R ~ to the  Hilbert  space H,  such t h a t  

H) = ( f ( . . . ( f lf(x) l".= dx=)V=- . . . )"'/"= d@ < o o .  

1t R 

(See definit ion in Section I, Chapter I.) 

THEO~E~ (1.7). For f CXP(Rm, H), set fN as in Theorem (1.3). Then for 
l < p i <  oo, l < j < m  

II{fN}IIxP(R",~(m) --< CpIIfllx P(R'~, m "  

Proof. Let  P ---- (p, q). For  f C Xe(R 2, H) set T~(f) = {'Y(q~(2"x,)~(f)}, i -= 
1, 2. To prove the theorem, for this case, it  suffices to show t h a t  Ti is a bounded 
operator  from Xe(R2, H) into XP(R ~, 12(H)). The boundedness of T~ is an im- 
mediate  consequence of Theorem (1.5). 

For  the operator T 1 we argue as follows. Write  

Tl(f)(x~) = f k(x~ -- yl)f(yx)dy~ where f(Yi) E Lq(R, H) 
R 

and  k(x) C ~(Lq(R,  H), L~(R, H)) with I]k(x)lls Lq) = IIk(x)l].z(H, n). 
Observe t h a t  Theorem (1.1) shows tha t  

f Ilk(x1 -- Yl) -- <-- C when lYi] < ]~( Xl)  ll.g(I-I, H)dXl  o 

[x, I > 2a 
Observe also tha t  Theorem (1.5) implies the boundedness of the operator  T 1 

when p =- q. Therefore; using Remark  (3.1) (remark to Theorem (3.3)) of Chapter  
I,  wi th  B o = B 1 ~ Lq(R, H), the boundedness of T 1 follows for all p,  1 < p < q. 
To obtain the range q < p < 0% it  suffices to observe that ,  repeating the above 
argument ,  T* is bounded f rom XP(R2,1~(H)) into XP(R2, H) for 1 < p  < q .  
The general case follows by  induction.  

J .  lViarcinkiewicz noted  in [20] t h a t  inequalities of  the type  of Theorems (1.5) 
and  (1.7) are useful in the s tudy  of multipliers t ha t  satisfy a variat ional  condition. 
We will apply  this principle to obtain some multiplier theorems. 

Observe t h a t  if  a C ~ ( H , H ) ,  and a is normal,  i.e. a a * =  a'a, t hen  a 
u(aa*) 1/2 = (aa*)l/2u where u is a un i t a ry  t ransformat ion  (see [24]). We denote 
(aa*) 114 by  a ~. 

Definition (1.1). I e t  g(x) be a funct ion from _R ~ into %t~(H,H). The variat ion 
of g is f inite if  there exist a sequence {gn(x)} and  a constant  M satisfying 

1) gn(x) = ~_-o~ a,,rZQn,,(X), where a~., is a normal  bounded operator in H 

and Q ~ . r = { x ,  x j > 4 , ~  depending on ( j , n , r ) ,  1 < j  < m } .  
2) For  h, E H, 
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3) i[gn(x) -- g(x)l[j:(,,,) --> 0 as n --> ~ ,  for almost  every x E R m. 

We define VH(g) as the in f imum of the constants M assumed in Defini t ion 
(1.1). I t  is clear from the definit ion t h a t  g E L~(R m, ~-L-(H 1,//2) ) and  Ng][~ ~< V~(g). 
The discussion of the var iat ion will be left for the nex t  section. 

L~MMA (1.2). I f  {at} satisfies condition (2) of Definition (1.1), and h E H, then 

la (h)l <_ MIhl: .  . 
r ~ - -  c s 3  

Proof. 

la~(h)l 2 = < ~ a~(a~(h)), h> <-- I ~ a~(a~(h))tHthIH <~ M~/2 ( ~ ta~(h)I~H)~/21hl, , 

and the  lemma follows. 
Le t  P be a mult i- index as in Theorem (1.7). 

T H E O R ~  (1.8). Consider g E L~(R m, c-L(H, H)) such that VH(ff) < ~ .  Define 
T : Xe(R  ", H) -~ XP(R ", S) ,  by T(f)  = ~-~(gJ(f)). Then for 1 < p, < ~ ,  
1 < i < k ,  T is a bounded operator and I[T[I <__CeVH(g ). 

The proof of the  theorem makes use of the following lemma. 

LEMMA (1.3). I f  {fi) E Xe(R ", 12(H)) and U({fi)) is defined by [U({fi))]~ = 
U~(fi) : ~-~(ZQS(fi)), where Q~ is a set of the type used in Definition (1.1), then 

U is a bounded operator in XP(R "~, l:(H)) for 1 < Pi < ~ ,  1 ~_ j < m. Moreover, 
the norm of the operator U depends Only on P. 

Proof. Assume by  induct ion t h a t  the lemma is t rue in R ~-1. Le t  ~ be the real 
number  correspondi~g to x 1 in the defini t ion of Q~. Le t  J = {x, x 1 ~ o} and  
Q, be the  set defined b y  all the remainir~g variables (x 2 . . . .  , x,,). 

Observe t h a t  if  g~(x) ~- exp (-- 2~ i xl~)f,(x), then  

U~(fi)(x) = exp (2~ i x~2~)~-~(ZjZq~(gr))(x) . 

Set c~(f) = 7_l(ZjT(f)) and U~(f) = 7-~(ZsJ(f ) ) .  Observe t h a t  O(~ = 1/2(1 A- ~ )  

where I is the  iden t i ty  operator  and  ~( is the vector valued Hilbert  t ransform 
in the x~ variable. More explicitely 

~)~ (f)(x) = lim 7 f(x~ -- t, x 2 . . . .  , x,,)dt . 
~ - 3 - 0  

R->~ ~<ltl<_n 

Hence, using Theorem (6.2) of Chaloter I,  ~s and therefore c)g are bounded 
operators in LP(Rm, H). The interl3olatiou a rgument  of  Theorem (1.7) shows t h a t  
9~ is also bounded in X~(R ", H). Therefore using the inductive hypothesis,  
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oo 

II u((fd)lix%~,~<.)) = I1( ~ I U~(f~)(x) ]2H)I/2I[XP(~m) = t19(({ U.(g.) })][~l~(~m ,'(H)) 
r =  - -  o o  

i 

< C~II{ U.(g~)}llx~(.-~.,,(.)) < C':l{g.}[liP(:,,,(.)) C'/l{fi}!lxP(.,~,,~(.)). 

Proof of Theorem (1.8). Le t  g~(x) be an element of the sequence approaching 
g(x) as in Definit ion (1.1). g,(x) ~ a=,rgQ,,~(x), and a, ~ = - a ~ a ~ u ,  = # # , , , ~ n ,  r ~ r ( ~ n ,  r " 

In  vir tue of condition (2) of Definit ion (1.1) 

l~2-1(g~7(f)) 12 = I ~ a~(~-l(ZQ.,J(u,a~f)))12 <~ M ~. l~-l(;gqn:(a~f))12 . 

Let  [U~({fi})]~ = ~-~(Z0.,J(fi))- I t  follows from Lemmas  (1.2) and  (1.1) t h a t  

I1 (g~" (f))llx (R ,m < M~/ellU~({a~,(f)})llxP(Rm, t~(m) < 
< C~MX/=ll{a~(f)}ll:(~,~,,~(.)) <_ C~Mllfll::(.~,~,.). 

To complete the proof we observe t ha t  l lT- l ( (g~-  g)~(f)llx~'(R'a,H)-~ 0 aS n - +  oo 
for good functions f .  

Usirg  Theorem (1.8) we can extend the inequal i ty of Theorem (1.7) to the ease 
9 = Z~, where I = {x, 1 < Ix 1 < 2}. S3t I N = {x, 2"J < Ixj] < 2nj +1, nj ~ Z, 
1 < j < m} and fN = ~-I(Z~N~(f)). 

T H E O Z ~  (1.9) (Littlewood-Paley).  For f C XV(R "*, H), 1 < pj < ~ ,  

IlfllxP<l~,,,,H) <_ CeI[{fN}IIxP(R'~, ,~(H)) < C'pIIflI:(R,~, m" 

Proof. Let  ~v be any  differentiable funct ion wi th  compact  support  away from 
the  origin such t h a t  ~v(x)= 1 for x C I .  For  f E X P ( R  "~,H), set 

gN = ~-1(~(2"1xi). . .  ~(2"~xm)~(f)) 

and  T(f)  = {g~}. Theorem (1.7) shows tha t  T is a continuous mapping from 
XP(R m, H) into XP(R m, 12(H)). Let  {hN} e XP(R ", l~(H)) and set 

S({hN} ) = {~-I(ZI~(hN)))  --~ ,CT-l(a~({hN})), 

where a(x) C 5~(12(H), 12(H)) is defined by  the iden t i ty  

a(~)({C~}) = {z~(x)C~,}.  

iS easy to verify tha t  Vz~(H)(a ) = 2 ~. Therefore Theorem (1.8) shows tha t  
S is a bounded operator in XP(R '~, 12(H)). Hence T o S is a continuous operator  
f rom XP(R% H) into XP(R ~*, 12(H)). But  T o S(f) = S({g,~}) = {fN}, t h a t  is 

II{fN)IIxP:',,~<H)> < C/IfllxP<Rm, H) 
On the other hand,  if  T* denotes the adjoint  operator  of T, T* is a continuous 

operator  from XP(R',I~(H)) into XP(R'~,H) and T * ( { f N } ) = f .  Therefore the 
theorem follows. 



274 ARKIV Fhl~ 1KATEM~kTIK. Vol.  9 NO. 2 

With the aid of Theorem (1.9) we can now improve Theorem (1.8). 

THEOREM (1.10). (The multiplier theorem.) 
Let T : XP(R m, H)  --> XP(R '~, H)  be defined as T ( f )  : ~-~(g?(f)) .  For the multi- 

index N,  let l~v be defined as in Theorem (1.9). Then i f  1 < Pi < ~ ,  1 ~ j  ~ m 
and IITII denotes thenorm of T as an operator in XP(R ~, H);  we have 

[[Tl[ ~ Cp SupNV~(XzNg ) . 

Proof. Define G : R m --> ~(12(H),  12(H)) by G(x)({hN)) : {Z~Ng(x)h~ }, and for 

F e XP(R  "~, l~(H)) set S(F)  ~ ~-I(G~(F)). In virtue of Theorems (1.8) and (1.9), 
if F : {~-I(ZI~(F))}, then 

I[T(f)]]XP(Rm, H) ~ CPI](~ I~-l(Z INg~(f) ) ]~)V2I]xP(nm) : 
N 

= C.llS(F)lIx-(~,,~w)) _< C'~V,,w)(G)iIFtIx~(~..,~(.)) <_ 

<_ C'~ V,~(H)( G)[]flIxPm,,,, . )  �9 

But it is easy to verify tha t  Vz,(H)(G ) ~ sup~ V~(Zz~g), hence the theorem follows. 

2. Multipliers in R ~ and applications 

In this section we consider some applications of Theorem (1.7) when H = C 
and when H ~ L~(Rk). 

For the case H = C, the second condition of the definition of functions of finite 
variation becomes ~r~_~la. ,r[  __< M. Therefore it coincides with the definition 
of variation given in [18]. Theorem (1.10) extends Theorem (3.3) of [18] to the X P 
spaces. We point out that  in this ease the notion of finite variation is equivalent 
to the classical notion of bounded variation in R ~. More precisely if g is a function 
of bounded support, then Vc(g ) = V(g) < ~) if and only if 

a~g 

a x l . . . a x m  - - # '  

where /~ is a finite measure. (The identity should be understood in the sense of 
distributions) also [/~I(R m) = V(g). For details see [16]. 

When H ~ L~(Rk), we restrict our attention to mappings g : R ~ --> ~(L2(Rk), 
Z2(Rk)) defined by a function g(x, ~), ~ e/~k as follows. 

For h e L2(Rm), g(x)(h) ~ ~Y-l(g(x, .)J(h)). ~ and ~-1 denote the Fourier and 
the inverse Fourier transforms in Le(Rk). 

LEMMA (2.1). Let g be defined as above (H = L2(Rk)). 

V.(g)  < sup Vc(g(', ~)) �9 

Then 
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Proof. I f  Vc(g(., ~)) < M,  for almost every ~, a uniform approximat ion argu- 
ment  shows t h a t  there exists a sequence {g~(x, ~)} such t h a t  

1) g,(x, ~) ~-- ~ 2 = - ~  a,,,(~)ZQ,,,(x), 

2) ~:~=-~o la.,,(~)l < M, 
3) g,(x, ~) -+ g(x, ~) as n --> ~ almost everywhere in /~m+~. 
For  h E L~(R ~) define A, , , (h)  = ~Y-i(a,,,U(h)). Clearly A , , ,  is a normal  

| Z operator and A~, (h )  = ~-I(la,,,j~/2~(h)). Set g,(x) ~-- ~ . . . .  A , , ,  ~,,,(x). Observe 

tha t  

A,,,(h,)[IL,(nb =IJ  ~ Ia,,~(')11]27(h~)(')]12L~(Rb < 

<ll ~ la...(')ll/~lli~(,~)F( ~ I~(h.) ~'1/~: _ _ �9 J .(Rk) < M ~ llh, l l [~(~).  

Therefore to coral)fete the proof of the lemma it  suffices to show t h a t  
[]g,(x) --  g(X)II~:(H,~) --> 0, as n --> ~ ,  for almost every x E R ~. Bu t  

[Ig.][~(.~+k) _< sup Vc(g.(', ~)) _< M ,  

and proper ty  (3) implies t ha t  for almost  each x E R" ,  g,(x, ~) -+ g(x, ~) a.e. in 
R k. ]~ence Jigs(x) --  g(x)I]~:(~,,) --> 0, and the lemma follows. 

In  virtue of L e m m a  (2.1) we can reannounce Theorem (1.10) for this case as 
follows. Le t  N,  IN be defined as in Theorem (1.10), x E R m, ~ E R k. 

THEOREM (2.1). For f E XP(R m, L2(Rk)) define 

T ( f )  = ~-l(g~(f))  where g(x)(h) = ~7-[i(g(x, .)~(h)),  (h E L2(Rk)) . 

I n  other words T ( f )  = ~[1~71(g(. ,  . ) T J J f ) .  Then for 1 < pj < ~ ,  i f  
denotes the norm of the operator T in XP(R ", LU(Rk)), 

IITII _< Cp . s u ~ , N  V(~'xNg(. , ~)) �9 

W h e n  m--~ 1, we obtain the following apl~lications of Theorem (2.1). 

IITIl 

THEOREM (2.2). Let S be a convex set of t ~ •  k (x E R, ~ ERk). Define T ( f )  ~- 
~-- ~-l(gs~(f)) ,  where the Fourier transforms are taken in both variables. Then T is 
a bounded operator in Xe~2(R • t~ k) for  every p, such that 1 < p < ~ .  

Proof. In  vir tue of Theorem (2.1) it  is enough to observe t h a t  V(g(. , ~)) < 2. 

THeOReM (2.3). Let P(x,  ~), Q(x, ~) be two polynomials in the variable x (x E R, 
E R k) with degress n 1 and n 2 respectively. Assume  that IP(x,~)/Q(x, ~)] _< M 

for every (x, ~). Set T ( f ) =  ~ - i ( p / Q ~ ( f ) )  (the Fourier transforms are taken in 
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both variables). Then T is a bounded operator in XP~2(R • R ~) for every p such 
that 1 < p < ~ .  Moreover IITII ~ Ce(n ~ @ n2)M. 

Proof. Assume P and Q are real valued. Then 
b 

< d x  . 

g 

Note tha t  (P/Q)' changes sign only when P'Q @ PQ' = o. Le t  xj(~) (1 < j < n 1 ~- 
n 2 -  1) be the zeros of P ' Q @ P Q ' .  Then 

b 

d .  < (a, + (b, + _1 __ ~ (xj(~), ~) <__ 3(n 1 @ n 2 ) M  . 

a 

When P and Q are complex valued, taking real and imaginary parts reduces the 
problem of the previous case. 

Theorems (2.2) and (2.3) are the best possible of their kind. More precisely, when 
S = {(x, ~) ; x 2 @ 1~] ~ < 1} and T( f )  = ~-l(Zs~(f)) ,  if T is a bounded operator 
in XP~q(R• k) for all p, such tha t  1 < p  < ~ ,  then q = 2. (See [11].) Similarly 
if  Q(x, ~) -~ I~] 2 - x ~- i and T( f )  = ~-l(1/Q~(f))  the same observation is valid. 
(See [19].) In both cases the papers quoted prove that  T is not a bounded operator 
in LP(R k+i) for either p < 2(k @ 1)/k; however the main estimates obtained in 
[11] and [19] imply our remark. 

With the use of interpolation theory, Theorems (2.2) and (2.3) can be extended 
to classes of functions related to Le(R k+l) where p ranges over (2(k @ 1)/k Jr 2, 
2(k @ 1)/k). (See Theorem (2.5).) 

In our  use of the l~iesz theory of interpolation we follow the notation introduced 
in [4]. 

Let P be the multi-index (Pl, �9 �9 �9 , pro). With XP(jk)(R "~) we denote the space 
of mixed norms where the j,h and the k ~h variables with their pj and pk norms 
have been permuted. 

LEM•A (2.2). Assume that j < k. I f  1 ~ P1 ~ pk, then XP(R ~) ~ XP(jk) (R "*) 

and moreover ][f]]xe ~_ I]fHxvO0 . 

Proof. When pj ~ pk the lemma is trivial. When pk ---- 1 the lemma is a con- 
sequence of Minkowski's inequality. The general case follows by interpolation. 

Given two Banach spaces B 0 and B 1 we denote [Bo, B1]~, 0 ~ ~ ~ 1, the 
a-intermediate space for the I~iesz interpolator of the pair (Bo, B1). 

Set B~P)(R m) p 2 = X 1 X 2 . . .  X~(R~), and by induction 

B<p) = P X ~ +  1 X1  2 m X m ( R  ) ] j / ( j+ l )  j + l k  ~* ] . . . .  
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TI~EORE~ (2.4). Define Q-= (ql . . . .  , q,~) by 

j/qk = 1/19 ~- (j -- 1)/2 when 1 < k <_j, and qk = 2 for j < k < m .  

Then i f  

1<19<_2 (2j/ j+l<qk<_2, for l < ~ < j )  

we have XQ(R m) D B}P)(R"). Moreover Hfllxo <_ Hf[IB}~). I f  

2 ~ p <  o e ( 2 < _ q k < 2 j / j - - 1 ,  for l < / c < j ) ,  

then XQ(R ") C BJP)(R'~) and IIflIB~Y) <_ IlfllxQ . 

Proof. We argue inductively. The result is trivial when j = 1. If, say, 1 < 19 --< 2, 
set qj = 2jp/ ( j  -~- 1). In  virtue of Lemma (2.2) and interpolation theory 

X } + l X l  . . 2 m �9 . X m ( R  )]j/(j+~) C 
x)X~+x  X = ( R  )]j/(j+~) �9 �9 �9 " ~ j  ~ ' ~ j + l  �9 �9 �9 , . . . . . .  - -  

- -  X~J+l  "yqj§  312 X 2 ( R  m) 
- -  �9 �9 �9 ~ ' j + l  "~jzc2 . . . .  

The second par t  of the  theorem follows with a similar argument.  
To make the notat ion more adequate with the results of Theorem (2.4) set 

Bp(R,~) ]~(q) / ~  where 1/19 -~ m/2 (m ~- 1)/q. Withsuchnota t ion ,  Theorems 
(2.2), (2.3) and (2.4) imply 

T ~ o ~ E ~  (2.5). Let T ( f ) =  (g  (f)), where g(x) is the characteristic function 
of a convex set (as in Theorem (2.2)) or the bounded ratio of two 19olynomials (as in 
Theorem (2.3)). Then 

2 m  
(i) F o r  - -  < 19 < 2, HT(f)IILp(R,~) < HT(f)]lBe(.m) < C/IfH.~( .m),  m - ~  l --  --  -- 

2m 
(ii) For 2 ~ 19 < HT(f)II%(..~) < CellfHuv(,m ) < CeHflTL~(.m) �9 

The theorem is a simple application of the theory of interpolation. 
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