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Preface

In 1952, A. P. Calderon and A. Zygmund [6] showed the boundedness of singular
integral operators in the LP spaces. One of the main tools in their proof was an
extension to m dimensions of a form of F. Riesz’s sun rising lemma. Later F. Jones
[15], and E. B. Fabes and N. M. Riviére [9] further extended the lemma to prove
the boundedness of parabolic singular integrals and singular integrals with mixed
homogeneity. However in both cases the lemma kept its geometric form and its
extension was obtained by a simple change of parameters in each coordinate axis.

1 The research represented in this paper was sponsored in part by the National Science
Foundation grant GP 15832.
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In this paper the covering lemma is substantially changed (see Theorems (2.1),
(3.1) and (3.2), Chapter I), eliminating its geometric form. This permits, among
other things, the study of singular integrals in locally compact groups (see Section
6, Chapter I). It also allows the study of singular integrals, in R™, where the homo-
geneity is given by a one parameter group of transformations (see Section 7, Chapter
I).

The paper is divided into two chapters and contains essentially the results
announced in [25] and [26]. The first chapter is devoted to the study of singular
integrals, while the second shows some of its applications to the theory of multipliers.

In the fourth section of the first chapter, we introduce the notion of singular
kernels for a family of neighbourhoods of the origin. As we shall see later in section
7, this contains the singular kernels studied in [6], [9], and [7]. No explicit use is
made of the homogeneity (in the style of [12], [2] and [16]). In the fifth section
we show that the maximal operator of such singular integrals is bounded in L#
(1 <p << o) and it is of weak type L'. Theorems on pointwise convergence are
immediate eonsequences without making any extra assumptions of smoothness
on the kernels. This result is new even in the elliptic case studied by Calderon, M.
Weiss and Zygmund (see [5]).

In the second chapter we make use of the theory of vector valued singular
integrals developed in the first chapter and of the Riesz theory of interpolation to
improve the multiplier theorems obtained in [12], [9], [27] and [18]. Some of the
applications of these results yield the boundedness, in spaces of mixed norms, of
multipliers such as the characteristic function of a convex set (in particular the
characteristic function of the disc) and the bounded ratio of two polynomials (see
Theorems (2.2), (2.3) and (2.5) of Chapter II).

This paper is essentially self-contained. Necessary prerequisites are some basic
properties of the Fourier transformation, the Riesz theory of interpolation and
vector valued integration. ' ,

The author wishes to thank E. B. Fabes and L. Hérmander for several useful
conversations concerning the content of this paper.

Chapter 1
1. Notation and preliminaries

Throughout the paper C will denote a constant and a subscript will be added
when we wish to make clear its dependance on the parameter in the subscript.

For a given set K, E' will denote its complement and yz its characteristic
function.

For the Banach spaces B; and B,, £(B,, B,) will denote the space of con-
tinuous linear operators from B; into B,.
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X, B, u) denotes the class of u-measurable functions from X into the
Banach space B.
L*(X, B) will denote the space of functions, f € 7(X, B, u), such that

1/p
Iflrx, 5y = (fIf(x)H; dy) < ©

X

where [-|p denotes the norm on the space B. More generally if @(t) is a non-
negative Borel function of R, = {t,t > 0}, we define

Lo(X, B, p) = {f;fe?(X, B; p) and /¢(lf(w)l3)du < 00}
X

The operator T from Lu(X, By, p) into (Y, B,,v) is said to be sublinear
if when f, g and f+ g € L,(X, By, u)
IT(f + 9)@)|s, < |T(f)2)|p, + [T(g)(%)]5, a-e.

Let A, denote the distribution function of the function f, ie. 1 () =
u{=, |f@)p = 1}).

The following form of the Marcinkiewicz interpolation theorem will be used
later in the chapter. (See also [20] and [29].)

Definition (1.1). The sublinear operator is of weak type (@, D) (or weak type
Ly) if and only if there exists a constant O, such that

flx) )
)
TureorEM (1.1). Let T' be a sublinear operator of weak types (D, D) and (y, p).

Set
b, = max {/1 tP~  p(1/t)dt ;fw 1 @(l/t)clt} .

0

w({e, [T()@)ls, = 1)) <O f @(

If b, < oo, then for f€L’X, B), ”T(f)“{P(X,Bg) <b, CP”f”’iP(x, B)*

Proof. Let C be the larger of both constants used in the definition of weak
types (@, ®) and (yp,y). For f€ LP(X,B;) and t> 0, set f(zx)= f(xr) when
|f(z)|p, < t, filx) =0 otherwise and set f*(x) = f(x) — f(x). Since T is a sublinear
operator of weak types (@, @) and (w,y)

ZT(f), "(t) S A'T(f‘),v (t/2) + ZT(ft)sV (t/2) S

30[ [ vevebpia+ [ oeu@sni
@ 1/Gip, < 0 1 70Ip, > 9
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From this estimate and interchanging the order of integration

«©

T (o 5y = 7 f P g (O <

0

@B, o
<p0 [ { [ eer@isma+ | tP—‘@(zmx)}Bl/t)dt} du <
X 0 |f&) B,

<5025, [ |f)t,de.
The theorem follows.

When @) = t?(In(2 + )" and () = tIn(2 + )]" (m =0 when g = ),
representing the spaces LP(InL)" and Li(InL)™, the constant C, of Theorem (1.1)
is bounded by C'(fr — p|™* '+ jr — q|™™ 1. (C, < O"fr — p|™""! when ¢ = ).

For the multi-index P = (p,, . . ., p,,) we define the Banach space X"(R™, B) =
XpXE, ..  Xtm(R™ B) (R™ denotes the m-dimensional real space) as follows:
Xi(R,B) = LP(R,B), and if 2’ €R™', P = (p,...,Pm1), X (B™ B)=
Lr~(R, X¥'(R™', B)).

Finally for fe€ LY(R™ H), H a Hilbert space, we define 7(f)(z) = f fly)

™

exp (2aide, My and TP = [ ) exp (— 2aie, p)iy.

2. The maximal funetion

Let {U,x € R.} be a family of open sets of RB™ whose closure is compact.

Definition (2.1). {U, o > 0} is a Vitali family if and only if:

1) For « <p, U,cU; and N, U, = {0}

2) m(U, — U,) < Am(U,) where m(.) denotes the Lebesgue measure and
U,—U,={zz2z=2—y and 2,y €U}

3) m(U,) is a left continuous function of «. In other words if &.« then
m{Ux,) # m(U,).

Remark. Condition (3) is not essential. If the family {U,} satisfies (1) and (2),
the family {UF}; where U} = U, Uy satisfies (1), (2) and (3).

The following is a covering theorem of the type studied by A. P. Calderén [3],
and R. E. Edwards and E. Hewitt [8].

TaEOREM (2.1) (Covering theorem). Let E be a measurable set in R™ and
o: B — R, be a mapping satisfying:

(a) o(x) s bounded and for every o> 0, {x,x € H,x(x) > x,} ts a bounded
set of R™.
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(b) If xn—x and o(xn) o, then x €L and «x) > .
Under these conditions, for each Vitali family {U_} there exists a sequence {x.} C E,
such that:
i} {&n + Uy} 9 a disjoint family
(ll) Ec U:LO:I [x" + (Ua(xn) - Ua(xn))]
(i) m(B) < A 271 m(Usg,) -

Proof. Let o, = sup,eg x(x) < oo and choose x(y.) ;. By (a) {y.} isabounded
sequence. Choose a subsequence converging to a limit x;; by (b) 2, € £ and
a(w) =0y For k>1 set Adp=EN Ui [# + (Uppy — Up))))- I 4, =0
the theorem follows. Observe that A, satisfies properties (a) and (b). Hence with
the above argument, set by induction x(xi) = o = supse;_; (x). Since the sets Ax
form a decreasing sequence, the o« also form a decreasing sequence. Therefore if
J<k, o5=o, and (@ + Usx) N (v + Us) = O there exist u € Uy and
v € Uy, € Us; such that x; + u = 2 + v. In other words ax € 4 + (Uy; — Us)
but this is impossible by construction. Hence the family {xx 4 Us,} is disjoint.

To prove (ii) it is enough to show that N>, 4. = &, or in other words that
%, —>0 as m—> co. If this is not true, then on = x(x.) > ¢ > 0. Hence {x.} is
a bounded sequence and therefore F = U;_, (#» + Us,) is a bounded set. But
m(F) =32 m(Us,) = co.

Property (iii) is a clear consequence of (ii) and of the definition of Vitali families.

TrEOREM (2.2) (The maximal function). Let {U,} be a Vitali family, f € LM(R™, B).
Define

1
M) = sup ;s [ 1)y

x4 Ua

Then

mifw, M(P)@) > 1) <4 [ 1f)lsdy
Rm
In other words M is of weak type LM

1
Proof. Since m f eet, If@)|gdy is a continuous function of =, M(f) is

lower semi-continuous and hence measurable. Let

B = {z, f If(y) pdy = m(U,), for some «}.

x4+ Uy
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1
For z €E set «(x) = max {oc ; () /x+Ua 1) | gdy > 1} . Tt is easy to see
that the set E and the mapping «(x) satisfy the conditions of Theorem (2.1).
Hence there exists a disjoint sequence {x, 4 Us,} such that

m{z, M(f)@) > 1}) < m(B <Az m(Us,) <Az F) sy < 4 f F@) ndy .

n+ U RrR™M

Theorem (2.2) has as an immediate consequence a differentiation theorem for
the family {U,}.

TuHEOREM (2.3). Let {U,} be a Vitali family, f € L\(R™, B). Then for almost
every x € R™

tim < [ 176) — oy 0.

x+U

As a consequence for any such =,

hm*ﬁff My = f(@)

a0 m(U
x+U

Proof. For f€ LYR™ B) set

—_ 1
() =T s [ 1) = f@lay

o—~>0

x4 Uac

M'(f) is well-defined almost everywhere and M'(f)(x) < M(f)(x) -+ |f(x)]p a.e.
Consider a sequence {f,} of continuous functions with compact support such that
Ife — flos@mp— 0, as n— co. Note that the regularity of U,’s implies that
M'(f.)(x) = 0 everywhere. Set ¢, = f — fa. Then

m({x, M'(f)(x) > t}) = m({z, M'(gn)(x) > t}) <

24
< m({z, M(gn)@) > ¢/2}) + m({@, |gu(x)|5 > /2}) < - If — fullx@m,p)

Since » and ¢ are arbitrary, it follows that m({z, M'(f)(z) > 0}) = 0 and the
theorem is proved.

Theorem (2.3) can be extended to all finite measures showing that when p is
a finite singular measure with respect to the Lebesgue measure,
lu@ + U,)lp

hm ———— =0 a.e.
o0 m(U(x)
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If the U,’s are convex and symmetric sets (U, = — U,), then U, — U, c 2U,
and hence m(U, — U,) < 2"m(U,). In particular when the U,’s are m-dimensional
intervals Theorem (2.8) implies Theorem 6 of [13]. Related results are also obtained
in [22] and [23].

3. The weak type estimate

Deftmtwn 3.1). {U,, @} is a regular Vitali family if
) {U,} is a Vitali family
(2) @: R, — R, is a continuous and onto mapping with the property that
Uy—U,c Uyy and m(Uyy) < Am(U,).
It is immediate from definition (3.1) that @(x) > « and that @ can be chosen
to be non-decreasing. Observe also that U, U, = R™

TrEOREM (3.1). For f€ LYR™ B) and a regular family {U,, D}, there exists
a disjoint sequence {x, -+ Ua,} such that
1

. 1
O oy orevaey FOy <1< s sy
(ii) For x¢U;l; @ + Usy), [f@)p <1 ae.

1
Proof. Let E = {x, () fx+Ua Ifw)lsgdy =1 for some zx}. For x € £ set

o

1
*(z) = sup {cx 0 o, Ty = 1}.

In virtue of Theorem (2.1) there exists a sequence {x.} € £ such that if
&n = &(®n), {Zn + Ug,} is disjoint and F c Usl; [%n + (Us, — Us,)]c Uy (@0 +
Usay). |f(x)|lg <1 ae. outside E.

From Theorem (3.1) we can deduce a decomposition theorem for functions of
LMR™ B).

TrEOREM (3.2). For f€ LY (BR™ B), and o regular Vitali family {U,, D}, we
can write f =g -+ h, where

() g€LNR™ B)NL*(R, B) with [glyogmm < A and |g)Eegn.s < A7~ fligm s -
(4 s the constant of Definition (3.1).)

({) k=221 hn, the support of hy is containedin x.-+ Us,, / U5, ha(y)dy = 0,

and > m(Us,) < Al|fllzyzmz). Moreover the supports of the h,’s are disjoint.

Proof. Consider the sequences {x.}, {x.} of Theorem (3.1) and write 8, = D(x.).
Let V. be a sequence of measurable disjoint sets, such that
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(@) @+ Us,c Vacan+ Us,
()Un ].-[Il’l'iUn_~ xn+Uﬂ)

Set
1
[mff(y)dy for €V,
g(x) = ! i
Ilf(ac) for x ¢y Van.

Let A(x) = flz) — g(x) = D .1 (fx) — g9(x)) 1, (&) = fo:l ha(z), where k. = (f —
9)xv,. In virtue of (i), Theorem (3.1),

Hgliwssup( (V)flf Ide><Asup( (Um) [lfy)ls dy < 4.
#n+Ug,
Similarly
llglle =rgly < V)f!f Imly) dx+f1f x) |5 de < AP~ lflf(m [pdx .

(U Vn)

Clearly the support of h, is contained in .+ Ug, and f ha(y)dy = 0.

Xt Uﬁ

Moreover from (i), Theorem (3.1), we have,

iMs

M(Us) < A3 m(Usr) = A § [11@1sdy < 4 [ 1ft)lady
ot Uy R

and the theorem follows.

TaEOREM (3.3). Let T be a sublinear operator satisfying:
(i) For f€LP(R™ By) N L*(R™ B,), 0 <p < o0,

IT(f)@)]p, < I8(N@)s, + Clfllogm zy e,

where S is a sublinear operator of weak type LP.
(i) There exists a regular Vitali family {U,, @} such that if f € L\(R™, B,) and
f=9+h as in Theorem (3.2), then for every positive t,

m({z, |[TEh)(@)|z, > t}) < Cllfllgm ny -

Under assumption (i) and (ii) we conclude that T is an operator of weak types L'
and LP, and hence bounded in L for 1 << q<<p (see Theorem (1.1)).
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Proof. Let f€LP(RE™ By) and set fi—= fr., @B, <8 and f; + f* =f. Then
fi € LP(R™, By) N L*(R™, By) and |fi(x)|g, <t, therefore |T'(fi)(x)|s, < I8(fi)(x)|s, < Ct
a.e., and

m{{x, T (fi)(x Dt} < m{z, 1S(f)(@)|p, >1}) < (3.3.1)

<0f| () dx<tpf1f )5, da .

f* € L{R™, By) and we set f'/t =h -+ g as in Theorem (3.2). Since |g(x)|, < 4
the argument shows that

oo
(e, 119)@) s, > ) < ;[ lot@)is,da. (3.

RM

Finally our assumption (ii) gives us

dx (3.3.3)

m((, [T(Eh)() s, > 1)) <0f| = fi) dx<0fI @),

Putting (3.3.1), (3.3.2) and (3.3.3) together,

0/
il 1T()@) 5, > 204 + 1 < [ (7, de
A similar argument applies to the case f € LY(R™ B,) and the theorem follows.

Remark (3.1). When 7T is countably subadditive,

ie. IT(Zlfn)(%)fBl < ZI IT(fa)(@)]5, ae. (Zl |fa] € LY(R™, By)),
condition (2) of Theorem (3.3) can be replaced by the stronger condition:

(2) If the support of f is contained in z - U, and f has mean value zero

T(f)@)y, dz < C f @), de
(- Ug(a))’ R™
Proof.
m((z, |T()(@) |5, > ) < m({z, |[PEh)@)]s, > £} N
N {U [, + Uggyl) - m(U [z, + Uggey]) <
1 0
< n |T'(th)(x) |, dx + glm(U‘P(fxn)) <

(U (ont U,
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Z f T(th,) () s, dw—l—Azf]fx)lB de <

®nt U(D((xn) ) R™

<c / @), da.

4. Singular integrals

To avoid notational difficulties, throughout this section we will work with
complex valued functions. The extension of the results to vector valued functions
will be briefly discussed in Section 7.

Definition (4.1). The function k(x) is a singular kernel for the regular Vitali
family {U,, ®} when
1) For every 2 compact, 2 c E"N{0}, k € LY(2). Moreover the integral

f v nu k(x)dz is uniformly bounded independently of &« and y, and its limit
exists for fixed y as « tends to zero.

2) The integral, f o |k(z)|dx, is uniformly bounded independently of «.

o U(D(a)

Set &y, (x) = k@) v n Uy(x). For feLP(R™), 1 <p <o, let

K, (@) = (ky,, *f)@) = f (& — )W)y

The convolution is well-defined almost everywhere and it belongs to LP(R™).

THEOREM (4.1). Let k(xz) be a singular kernel for the family {U,, @}, where
k(x) satisfies:

(4.1.1) If y € U,, the integral, f o Jk(x — ) — k(x)|dz, is uniformly bounded
independently of p. o)
Under condition (4.1.1) we conclude

i) If feLNE™), m({=, K, ()| >1}) <Ofly
i) If fELPR™), 1 <p < o, |K, (Nl < C,lfll, Here opgc'(

57
w—n"7?
and C depends only on the uniform bounds of Definition (4.1) and condition (4.1.1).

Proof. Tt is not difficult to see that k, , also satisfies condition (4.1.1). In fact,
if y€eU, OB;) =« and PV = D(D(t)),
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f g (2 — 1) — ko (@)l < f k( — y) — k(@)lde +

U's(8) V's(8)

+2( [ wwus+z [ peus [ [k(x)ldx)so.

U, n U¢z(a) U'ﬁln U@z(ﬁ) U’yn U@a(y)

To apply the weak type estimates obtained in Section 3 we must have aresult in
LP for some p, 1 < p < oo. The key argument lies in the L? space where we make
use of the Fourier transform. More precisely we prove the uniform boundedness of
K, , in I*R"™) showing that [F(k, )@)| < C, where 7(.) denotes the Fourier
transform. The fact that the Fourier transform is an isometry in L? finishes the
argument.

To simplify the notation call A(x) =k, (x), and X(y) = exp (2milz, y)).

Set H, ={z, |X(z) —1| >3, 2,2€R™, and 4 = {«, U, N H, # O}

Since U, U, = R™, 4 # @. On the other hand @ is continuous and D(x) > «,
hence there exists B; € A such that @(B;) — f € A. Define the sequence {f,}
by @(B,) = f._1. Take z€ UzN H,, then

(b)) = / )X (y)dy = X(z) | by — 2)X(y)dy -

Hence

(1 — X)) 7)) = f [2(y) — hly — 2)1X(y)dy =

I’
_ f hly) — hly — 21X @)y +
Up()
n f h) X )y -+ f By [X(y) — 1y +
Ug, N Ugp(g) Us,
n f h(y)dy — f My — Xy = I, + I, + I, + I, — I .
Ug, 1)

From condition (4.1.1) it follows that |I;] < C. Meanwhile |I,] < C and
1] < C by definition of singular kernels (see Definition (4.1)). On the other hand
[I3] < Zi‘;z fU'ﬁ2nnUﬁ2(n_l) X (y) — 1|k(y)|dy. Since 2U, C Uy ., if ye€ Uﬂz,J
then 2y €U, for 0<j <mn--1. Hence for such y, |X(y)* — 1] <1/2 for
0<j<mn—1 Therefore [X(y)— 1] <2 Hence [Lj<C>2,27"<C"
Finally since Uj; €z -+ Ugg,
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i@gzjiwxmwz=v[hmxww+

(U@ )+z) (U(p(ﬂ)+z)ﬂ U’ﬂl
+ [ 1t = X)dy — [ bty =11, + 11, + 11,
Ug, Ug,

Observe that U/;l N(z + Ugp) C U:% N Uyap) Hence by definition of singular
kernels |II;| < C and |II3) < C. The integral II, is identical to I.

Therefore ||K,,(fll = [7(k,,,) 7(Hle < O (Hll = Ollfll-

To prove part ( i), we make use of Remark (3.1) (remark to Theorem (3.3)) with
T=8=K,, Claly, f=2>", 1K, (N < >0 1K,,,(f.)]. On the other

hand, if f has support in x + Uﬁ and / v fly)dy = 0,
x4+ 8

.&Ama:jﬁw@—mmww:fww@—m—www—my@@.

x+Up ~+Ug
Therefore
fw |@<[ Uﬁa—m—m—wumw4w:
&+ Ug(p) =+ Ug(g)” =+ Up
:fu@ﬂfmw~@—w»—ummkysawl
x4 Uﬁ U (p( 8)

since y — x € U,
Theorem (3.3) also yields that [|K, (Nl < Ghlfl, for 1 <p <2 where
1
O = C( — 1 + p— 2
duality argument is used. Ka dy = f fa (y)dy, where

). To obtain the same result for 2 <Cp < oo a classical

B (x) =k(— x). k* is also a smgular kernel and satisfies condition (4.1.1).
Therefore if 2 <<p << o and 1/p" + 1/p = 1,

[ sy s {05z 0 <

< sup {Hpr H wr@Dllery < Clflle -

ilgllpr=

Ko, (Nl —sup {

The proof of the theorem is now complete.
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5. The maximal operator for singular integrals and the pointwise convergence

Let O be a bounded open set whose boundary is of measure zero. If 2 does not
belong to the boundary then in virtue of (1) Definition (4.1) and the boundedness
of O, K, (y)(®) has a limit as «—0, y-> co. Therefore, if S, denotes the
class of simple functions over bounded open sets whose boundary is of measure
zero, and if f€S,

lim K, (H@) = K(f)w) ae. (5.1.1)

Y0

or
Hence Theorem (4.1) implies that for f€3S, mix, |[K(f)(x)] >t} < t—:}|f||1’,’,

1 < p << oo. From this inequality the operator K can be extended by continuity
to the entire class LP(R™), 1 < p < . The main question studied in this section
is whether the identity (5.1.1) holds for every function f€ LP(R™), 1 <p << oo.
To answer the question we have to turn our attention to the corresponding maximal
operator.

Remark (5.1). Let f€LP(R™), 1 <p < co. Set Ep={x;(lk, |*Ifl)x)=
-+ oo, for some (x,y)}. Then m(E) = 0.

Proof. Consider the sequences o, — 0, y.-— 0. Set
E,;={x (IK,,,|*f)) =+ o}.
Clearly U E, ;= Ey. Since m(K, ;) = 0 the remark follows.
After Remark (5.1) when x € By we can define the maximal operator of the
family {K,,}.
M(f)lx) = sup |K,,,(HE)} .

(s )
The next theorem shows that “/H has the same boundedness properties as the
kernel K, ..

TreorEM (5.1) (The maximal operator). If k(z) is a singular kernel satisfying
condition (4.1.1) of Theorem (4.1), the operator N is of weak type L' and bounded
i LP(R™) for 1 << p < co.

Proof. For f€S,, set K,(f)(zx)=1lim K, (i) If Q. x)=ax— U, then

y->0

K (D) < [Ko(N)) — K(Hley) + Klggmf)@)| +
+ K (f)(@)] + [K(xma)| = f[k(x —y) — klx, — y)Ify)dy | +

(x—Uy)

+ 1K (@) + 1K (2gymf)@)] -
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Assume, for simplicity, that m(U,N U,) = 0. Then the above inequality is
well-defined for almost every x;. The average of the inequality over z, €x — Upg
with @D(8) = « and the supremum of all such f’s yield

(KN < By(f)@) + S(f)) ,

where

1
B(w = | [ { [t = — ke — ) lf(y)ldy} |

(x=Up) (== U,y

and

1 ’ 1 ]
S0 = sup | s [ KU+ s | s [ VR o))

x—Uﬂ x—Uﬁ

In virtue of condition (4.1.1) of Theorem (4.1) it follows that ||B,(f)ll. < Ollfle-
On the other hand from Holder’s inequality and the continuity of K in LP(R™),
1 <p<<oo,

U) fIK (Xoyf)@r)| ( /fK (%)) (@) [del)llpg

h ( flf de)

Therefore if M(f) denotes as in section 2 the maximal function of f,

S(f)(x) < 24{M(E(f)(@) + [D(|f1P))]"} .

With, such an estimate, it is easy to see that S is an operator of weak type L?
and bounded in L#(R™) for p << q << .
If the argument used for K, is repeated for K, , it shows that

K, ()] < f k(e — y) — k(, — )| 1)y +

(-Uy) A x-T,)
+ [ e — ) — ke — DIy -+ K+ Kz 0]
(=~ Uy

The averaging argument now yields |K, (f)(z)] < B(f)(x) + 25(f)(x), where R is
the sum of R; and the supremum over § of the average of the two integrals above.

Hence [IB(f)llo < Cllfll-
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To extend the estimate to every function of LP(R™) N L*(R™), observe that S
is a bounded operator in LP(R™); therefore if f € LP(R™) N L*(R™), choose f. €S,
such that ||fo —fllb—0 as n— o and ||filo = llflle- Then in virtue of the
dominated convergence theorem, K, (fa)(z) converges to K, (f)(x) everywhere.
Choose an adequate subsequence such that S(f.) — S(f) a.e. Then

Ky, (N@)] < Clifle + 28(f)(®)

except for a set of measure zero which does not depend on («, 7). Hence

M) < Clflle, + 28(f)=) ae.,

and the first condition of Theorem (3.3) is satisfied.

Let h=>%,h, be defined as in the second condition of Theorem (3.3). The
support of h, is contained in z, + Up, and its mean value is zero. We will divide
the >, h,(x) into three functions according to fixed values of z, & and y. Let
Do) = «, DPy) =1y, set I(x,x,7)={n; where either « <f, <<y and
z€x,+ U, o f,<« and z€(,+ U,)N(z,+ U:p(a))}, Lz, «, y) =
{m;x>p, and =z, €(x+ U;l) N (x, + Ugey)} Is(@, 5, 9) = {n; where either
x<p,<y and z€(@,+ U,)N (@, + Ugyy), or B, <« and z € (v, + Uyyy) N
@+ Ugp) N (o + Uy)3 Let hY) =D ecrantaly), 1 <i <3, and set
F = U2, @ + Upopy)- Then when z ¢ F, K, (h)(x) = >i_, K, (A)(x). Now
we set

C”/{l(k)(x) = sup IKoc,y(h)(i)(x)l) 1=1,2,3.

Observe from Theorem (3.2) that
m({z, M) () > C}) < m({x, M(h)(x) > t} N F) +
+ m({z, M(h)() < C}N F') < C’f |f()lde + Zlm({x, Mih)(x) > C[3}N F').

Hence it suffices to prove that

mife, W) > O} F) < ¢ [ 1f@)d
Rm
where C is a fixed constant depending only on the bounds of the kernel % given

in definition 4.1 and the bound given by condition (4.1.1).
When « ¢ E, (see Remark (5.1))

1Ko, (B0 ()] <

n€ly(x, a y)

f k(@ — y)h(y)dy ( -
(xa+ U )
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=3 | [ o)~ ke — ) iy
nel, et Uy
<3 [l — 1) = b — 5l By

(xat+ Uﬂ )

Therefore if B, = {z, ‘W, (f)(x) > 1} N F' N E,,

) < i{ f k(@ — ) — k(z — 2,)] |R(y) l} dy < Ol < 20)fl;

(xn+ Uﬁn)
in virtue of condition (4.1.1).

To study M,(k)(x), set E(x,x) = (x + U,)’ and let V, denote the support
of by, V,N V=10 for n#m and V,cz,+ Us;. Set

n(x (X V )fxE(x cc)h(y

Clearly |[c,(x, «)] < 2. Then for x € E,

Ky, (R®) ()] < 3 f k(@ — Y) 1, cc)h(y)dy[ <

n€l,(x, o)

[ #w — )t ahl0) — e,y

-"—el 2(%, @)
v,

+ > Ic (x, oc)l k(@ — y)ldy <

n€l,(x, x)

<2

f{k & —y) — k@ — 2, ApEahY) — @ )]d!/l +2 f lk(x — y)ldy

x—y€U gy )N Up(q)

< zf k(e — 9) — k(z — ) |(1h()] + 2dy + C .
Y,
Therefore
(e, My(f)@) > C -+ 1IN F N E)) < f [z f lh( — ) — k(e — 2,) | ()] + 2)0;4 da
> f (1h)| + 2y < C (il +2 3 m(V.) < Ol

The operator ¥, is handled with a similar argument, and the theorem is proved.

The pointwise convergence of the singular integrals is an easy consequence of
Theorem (5.1).
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THEOREM (5.2). Let f€ LP(R™), 1 <p < co. Then
lim Ka,y(f)(x) = K(f)(x) a.e.

a—>0
y—>m0

Proof. For f € LP(R™), 1 <p < oo, set N(f)(@) = lim |K, (f)@) — K(f)(@)].
M is well-defined almost everywhere, and >

P>

M () < DVUH@) + [KE(f)@)] ae.

Consider a sequence {f,}, f, €3S, such that |f, — fllp—0. Let g, =f — f..
Since M'(f,)(x) = 0 a.e.

m({w ; M (f)x) > t}) = m{w; M (f — f,) >t} <
< m({z ; Mg, ) (=) > t/2}) + m({z; [K(g)(@)] > ¢/2}) <

20,\?
s(—;) [ @) — s
Rm

Since n and ¢ are arbitrary, NU(f)(x) = 0 a.e. and the theorem follows.

6. Singular integrals on locally compact groups

It is plain from the proofs of most of the theorems of Sections 2 through 5 that
the results remain valid if R™ is replaced by a locally compact group G and the
functions take values in a Hilbert space. In this section we outline briefly the
modifications necessary to extend the results.

The Lebesgue measure R™, must be replaced by a Haar measure of the group G,
and the absolute values by the appropriate norms. The definition of regular Vitali
families does not imply that either @(x) > « or U, U, = G for a general group G.
Hence these conditions must be added. With such modifications Theorems (3.1),
(3.2), (3.3), Remark (3.1) and Theorems (4.1), (5.1), (5.2) remain valid over any
locally compact Abelian group @, for functions taking values in a Hilbert space.
The proofs are identical.

The definition of singular kernel is

Definition (6.1). For each x € G, let k(x) be a bounded linear operator from the
Hilbert space H; into the Hilbert space H, k(x) is a singular kernel for the
regular Vitali family {U,, @} when

1) For every £ compact, Qc GN{e}, k€ LY(LD). Moreover the integral,
/ - k(x)dx, is an operator, uniformly bounded in » and 9, and its limit exists

4
for every fixed y as « tends to zero.
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2) If h€H, with |h|g <1, the integral f - |k(z)[R]|gdx is uniformly
bounded in « and 4. Yas(0)

Set  M(f)(x) = sup,,, |K,,,())@)a,

We reannounce Theorem (5.1), since the conclusions are slightly different.

TaEOREM (6.1). Let G be a locally compact Abelian group. k: G — %£(H,, H,),
a singular kernel for the regular Vitali family {U,, ®}. Assume

fmw—w—mmmmm (6.1.1)
Ug(p)

s uniformly bounded in B and h whenever y € Uy and |kl < 1.
Then

nmmﬂmmwmzmsofwmm%
G
2) for 1<p<2; [Mf)ereny < ColfltPc,m) -

THEOREM (6.2). When k(x) and k*(x) (the adjoint operator) are singular kernels
for the family {U,, @}, and both satisfy condition (6.1.1); then conclusion (2) of
Theorem (6.1} is valid for all p, 1 << p < co.

Theorem (5.2) should also be reannounced accordingly.

To prove the L2boundedness of the kernels it suffices to change, in Theorem
(4.1), exp (2midx, y») by o(y) (the characters of the group). Observe that Parseval’s
identity remains valid on L*G, H), the space of square summable functions from
the Abelian group & to the Hilbert space H.

Actually with the exception of the L*boundedness of the singular integrals
the rest of the theory developed in Sections 2, 3, 4 and 5 is valid whether the group
@ is Abelian or not. Therefore, if the boundedness in I? is assumed, all the other
theorems follow for the non-Abelian case as well (see also [17]).

In the non-Abelian case sometimes it is impossible to construct a regular Vitali
family for all values of «. In those cases where the construction is possible for
o« < oy, and provided that the L>-boundedness holds, the results of the previous
sections remain valid for the local truncations £k, .

7. Homogeneous kernels
Let n:Ry—<£(R™ R™) be a continuous mapping with the properties
(1) m(Ap) == 7(2) . w(u), x(l) =1, the identity-matrix.

1 See also A. Knapp and E. Stein, Intertwining operators for semisimple groups. Ann. of
Math., 93 (1971), 489—578.
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(2) For 0 <1<1, |ln(A)]] <4, (.| denotes the norm in S£(R™, R™)).
For simplicity, we let =(1) = T,.

THEOREM (7.1). Set F(x, r) = |T,—(x)||. There exists a unique solution r = r(x)
for x £ 0, such that F(x,r(x)) =1, and moreover the solution has the following
properties:

(i) rix 4+ y) <r@) +rly) and r®)=0 if and only if x=0. (In other
words r(.) s a metric.)

(i) r(Ty(x)) = Ar(x)

(i) If ol < 1, @) =l IF Joll > 1, r@@) < |

Proof. The existence of a unique solution r = r(x), such that F(r, z) = 1, is
a consequence of the following properties of the function F, for fixed « € R™ N {0},
((0) = 0).

(1) F(x,r)—0, as r— oo,

(2) F(x,r)— o0, as r—0,

(3) F(x,r) is a continuous decreasing function of r.

If »r<1, F(x,r)=|T—@)| <||T—lllz] < r Y, and (1) follows.

On the other hand if » <1 and = T.y), then |« <|T. vl < rF(x,r).
Hence F(x,r)— o, as r—0.

Finally if 7, < 1y, F(z,7) = T, @) = |7, oL, @)l < 1y B, ry) < Flz, 7).
The continuity of the function F(z,.) is clear.

It is easy to see that r(x) =0 if and only if z = 0.

Set A, = r(x), A, =r(y). To prove that r(x + y) < r(x) + r(y), it is enough
to show that [T .,3— ( + »)Il < 1. But

“T(Zl—]—ﬂ,g)_l(x + 9yl < ”T(Xl—)—l,)—%l(Tix-l(x))|[ -+
F+ 1Ty T o < (A + )T, ()] -
+ A + )T - < 1.

It is immediate from the definition that #(7,(x)) = Ar(x). If |lz|] > 1, then
1T =@ <l Y2l] < 1, in other words r(x) <|jz. The reciprocal inequality
follows similarly.

Consider the following change of variables induced by the metric r(x), *— (', r),
where 2’ € 8" 1 (81 = {x, |zl = 1}) and T.(zx') ==z If z’ is expressed in a
coordinate system of S™!

x; = cos (D) . . . cos (D,_;)

x,, = sin (D) .
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The change of variables is expressed by, x> (r, @,..., @,_;). To compute
the Jacobian of the transformation, we observe that T, = exp (P In A), where
P is a mXm real matrix (the infinitesimal generator of the group).

Hence
% APT) = rTAP@)), and — — T (m) :
5= Ax') = r T (P(x’)), an 30, = ,adji',lgzgm—l.

Then J(x;r, D@y, ..., Pun,) = det (r 1T.(P(x')),

ox’' ox’
- ()1
(T’<a¢1)’ ""T'(a@m_l))“" H(D),

where tr (P) denotes the trace of P and
oz’ oz’ )
oD, D, /)"

H(®) = (P(x’)

It is not hard to see that if do denotes the classical measure over S8™1, then
H(®)ID = (P(x’), 2’ )do; where the identity is understood as measures over S™1.

Set U, = {x;rx) <a«} and ®(x) = 2x. Then U, — U, c U,,, and m(Uy,) =
2P =lm(U,). To prove the last identity it suffices to integrate the characteristic
function of U,, and to change variables into the polar-like coordinates discussed
above.

Definition (7.1). A function k(x) is a homogeneous kernel with respect to the
group {7} when

(1) k(x) is defined in R™N {0}, k € L(S™1), and

fk(x’)H(@)d@ = f k(' )(P(z'), ')do = 0.
sm—1

sm—1
(2) (T,(x)) = A "®(x), for x 0.

It is clear, in virtue of the properties observed above, that a homogenous kernel
is a singular kernel for the regular Vitali family {{z, r(#) < «}, 20}. Now set

b @) { k(x) when ¢ <r(x) <R
xXT) =
R 0 otherwise

and K, g(f)(#) = (k. r *f)@) for fELPR™), 1 <p < oo.

THEOREM (7.1). Let k(z) be a homogenous kernel for the group {1}, satisfying

f k(x — y) — k(x)|de < C. (7.1.1)

(@ r(x) 2 2r(y)}
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Then, if M(f)(x) = sup, g | K, =(f)@)], M is of weak type L' and bounded
m LP(R™) for 1 <p << . Moreover
lim K, g(f)(®x) = K(f)(x) a.e., for every f€ LP(R™), 1 <p < .

20
R->w

Theorem (7.1) is a consequence of Theorems (5.1), (6.1) and (6.2).

Condition (7.1.1) is easily implied by a Dini condition of the kernel over the
unit sphere. More precisely, set w(t) = sup  {|k(x — k) — k(z)|}.

aesm=; ||a]] <s

TaEOREM (7.2). If f @)dt < C, condition (7.1.1) is satisfied.
Proof. Let ',y € 8"t

[ e — ) — @z = [ { [ e’ — Tt — k(x')IH(¢)d¢} ar <
r(x)=2r(y) 2r(y) sm—1
12
< C’f (| Ty ) )r2dr < C’f o(r(y)ryrdr < C’f o(ryrdr < C'.
2r(y) 2r(y)

When P =1, T,(z) = Az, r(x) = ||, and H(®)dP = ds. In such case the
corresponding homogeneous kernels are the elliptic kernels studied by A. P. Calderén
and A. Zygmund in [6]. For those kernels the pointwise convergence was studied by
Calder6n, M. Weiss and Zygmund in [5]; however theorems (5.1), (5.2) and (7.1)
yield a better result even in this case.

If P is a diagonal matrix, the kernels obtained are the parabolic and the semi-
elliptic kernels or kernels of mixed homogeneities studied by F. Jones in [15] and
E. B. Fabes and N. M. Riviére in [9].

The general treatment over a group {7',} was first considered by M. de Guzman
in [7], where he proves the continuity of the kernels in L*R™).

Chapter 11

1. Vector valued multipliers

In this section we study some vector valued applications of results obtained
in section 6, Chapter I, when the group @ is R™

Let 7 = %y denote the Fourier transform in the space L*(R™, H). For
a € L*(R™, £(H,, Hy)), f€LXR" Hy), set T,(f) =75/ (a7u(f)). More explicitly
T, is defined by the composition
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N

Lz(Rm3 Hl) > L2(Rma Hl)

Te o
Y Y
Z7—1

4
LAR™ Hy) <M IXR™ Hy) .

Since the Fourier transform is an isometry in L*(R™, H) it follows that

H7.(f Wrsm, my < “a’”L"O(Rm, L(H,, ) fllzagm, H) +

The operator 7', so defined is called a multiplier. Our aim is to study multiplier
operators that are bounded in the spaces LP.

In [12] L. Hérmander showed that theorems of the type of Theorem (3.3) of
Chapter I could be used to prove the boundedness in L? of multiplier operators.
Basically the idea is to require enough smoothness on the Fourier transform of the
kernel (i.e. the multiplier) so that the kernel will satisty the integrability condition
imposed in Theorem (4.1), Chapter I.

We will prove a vector valued multiplier theorem when the regularity conditions
of the multiplier are imposed over a regular Vitali family of convex symmetric sets.
First we have to set up the adequate notation to state the multiplier theorem.

Lemma (1.1). Let C be a bounded convex, symmetric, open set in E™ There
exists o linear invertible operator from R™ into R™ such that

8 = (o, || <1} € THC) € S = {2, 2] < m}.

The proof of the lemma may be found in [14]. We will briefly outline a very
simple argument showing the existence of such mapping if we allow 7-YC) c S,
where 7 depends on m only. In any case such a result will suffice for our appli-
cations.

Let E be the symmetric ellipsoid of maximal measure with £ c C. Let Ty
be any invertible linear operator over R™ such that Tg(#) = 8;. It suffices to
prove -that T5(C) c {z, |} < 7} for some fixed number 7 independent of C.
We argue by contradiction. If it is not true, there exist points {z, — 2} € Tx(0)
very far away. But then the convex symmetric set generated by §; and {», — x}
would contain a symmetric ellipsoid E’ such that m(S;) < m(E’). On the other
hand, since B’ c Tx(C), it follows that Tz (E)c C and m(T3'(E')) > m(E)
contradieting our assumption that the measure of £ is maximal.

Throughout this chapter the sets U, of a regular Vitali family will be assumed
symmetric and convex. We will say that {U,,n € Z} is a lacunary sequence of

the family {U,, @} when «,,, = @(x,). Lemma (1.1) allows us to choose a sequence
of invertible operators, T, € %4(R™, R™) such that

8, cT7M(U,) cS8,. (1.1.1)
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We will fix the family {7T,,n € Z} and we will consider, from now on, the pair
(U, T,). It is useful to point out that

or equivalently 277 U 22U, (1.1.2)

o‘n—i—r

for r>0, 270U, cU,

Let a be a measurable function defined from R™ into <%£(H,, H;). We say

that
a €S"(R™, L(H,, Hy)) if {a(@)[h], hy) €S'(R™),

the class of temperate distributions, for each &, € H,, h,€ H,, When a€
S'(R™, <£(H,, H,)) we define D@ (D* denotes the «-partial derivative with
respect to z) by the identity

{Da(x)[b], by = D*({a(@)[hq], hop) -

The following is one of our main multiplier theorems.

TarorEM (L.1). Let §;, 1 <j < m, be positive integers such that > I, 1/f; <2,
{(Uy,T.), n€Z} be a lacunary sequence of the family {U,, @}, and let
a € L*(R™, <£(H,, H,)). Set an(x) = a(T.(x)) and assume that

ap [ DY) e < Gyl (1.1.3)
" 14 < 2] < 2¢

Then the multiplier operator Ta(f) = T2aZ(f)) satisfies:
0) miGe, (TNl = 1) <€ [ if@)lude
(i) when 1 <p <2, HTa(f)”LP(R'",HZ) < OPHfHLP(R"‘,Hl)

where C and Cp depend only on C,, the family {U,, @} and the L* norm of a.
(Cp, of course, depends also on p.)

Proof. To simplify our notation we set U, = V.. Let y € C*(E™) be a non-
negative function equal to one in 1/2 < |¢| <t and having its support in
1/4 < |z < 27. Set (&) = >'2 _, »(T'; (). From properties (1.1.1) and (1.1.2) it
follows that when x €V, NV, _,

(@) T7'(x) €{y,1/2 < ly| < 7} and
(b) for r >0, [Ty (x)| <277 and |T;} () > 2.

ntr
Hence 1 < g(®@) = Juy-1<r<¥(Tii (), and ¢ is a bounded, infinitely dif-
ferentiable function. Set b(z) = a(x)/p®), ba(x) = b(Ta(x)) and ao"(z) =
b(x)p(T; }(x)). Observe that >, a"™ = a.
We will sketch the main steps in the proof.
We show that F(a™) € LMR™, 4(H,, Hy)) and that the kernels ky—=
N _n#a™) satisfy condition (4.1.1) of Chapter I, uniformly in N, for another
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family {U,, @'} related to the original family {U,, ®}. Theorem (3.3) of Chapter
I then completes the proof.
When y; < f;

1D (@) (@)[R] | do < 0{ f D3 (@) @)[R]frd 4 sup |an(@)(R] 3, -

14< [x] <20 14< (x| <27

Therefore, D;;(a,.) also verifies property (1.1.3). It then follows that

wp [ DY e < O, (1.1.4)
neZ ijﬁj 1/4 < |%] < 2¢

Since a™(Tx) = ba(x)p(x), from (1.1.4) it follows that

n€Z, yj_<. ;

sp [ DY TNBde < OB -
ﬂ]
R

If we Fourier transform the left side we see that

f |y F @) (T )R], (det T)~2des —

Rm

~ [T )@, @t T < Ol

where T} denotes the adjoint f; operator of 7 and det (7,) the determinant
of T, Hence if P(x)=>"T, |o|i + 1,

f |P(T%2)7 (@) (2)[k] % de < C det (T,) Rk, . (1.1.5)
o

Without loss of generality we may assume that 8, <f, <... <fm Set
S, = (A’mi;) and let r(z) be the metric associated to the group {8,, 2 € Ry}
(see section 7, Chapter I). Then P(x) > O(1 + r(x))’m.

If V, denotes the polar set of V,, ie. V° = {z; &, 9> <1, forevery y € V,},
set W,=7V2, and U, = W, when « € (2", 2"]. We will show that {U, 2x}
is a regular Vitali family.

We point out that

(I) Ac B iff BOc A°
and

(II) if T is an invertible operator, T € £(R™ R™), (T(A4))® = (T*)"1(A4°).
To show that (U, 2«) is a regular Vitali family it suffices to show that
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W, — W, =2W,cW,,,,

n

but since 2V_,_; c V_, the property is an immediate consequence of (II).
We also point out that S, ; c THW_,) c S, and therefore

if k=mn-+7r r>0, then W_,, D 2W_, and hence T}(W;) D28, — 1. (1.1.6)
If k=—n-4r, r<0, then W_,,c 2W_, andhence T7(Wi) c 2°8,. (1.1.7)

We are now ready to complete the proof. We go back to inequality (1.1.5).
Observe that

Pl EUE)
fP _de<f(1—l—r 25mdx—0f +r2ﬁm7<oo

since Z;’”:l 1/p; < 2. Using Cauchy’s inequality and (1.1.5),

f 7@ @)[F] g de < O, (1.1.8)

R™

f (@) @) ]|y dw < Oy, ( f P(x)—zdx>1/2.

(LY (TR(7)Y

From (1.1.6) it follows that when k 4 n =r > 0, TH(W;) D {z, |z] > 2’71}
On the other hand when |x| >1, |z| <r(x) and so

and

[ Fa@mings < 027 by, (1.1.9)
A%
where
e— (2= 3 1) >0
To study the case k4 n =1r < 0, we set
B(x) = [exp (2milw, y)) — 11 (@) .
Then
BT (x)) = [exp (2mile, TE(y))) — 11b,(x)p(x) .
Hence
swp [ DTN @Mde < CITI0)].

la| <M, n€Z
Rm
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Observe that T(AM)(x) = F(a™)(x — y) — F(@™)(x). Repeating the above
argument, instead of (1.1.4) we obtain

f @)@ — y) — F @) @)](k) |gde < Clhly, T3 W) - (1.1.10)
R™

When r=%k+n <0 and y € Wy, (1.1.7) shows that |T¥(y)| < 2"7. There-
fore putting (1.1.9) and (1.1.10) together, when y € W, _,

> f [F(@™)(@ — y) — T@)@)(R)de < Clhlg, - (L.1.11)
n€
Z(Wk)'
Hence if 4y(x) = Zlnlg ~ 0™(z), it follows from (1.1.8) that F(Ay) is an integr-
able kernel.
Since (1.1.11) implies

[ FUnE = 9) — HANIDlnds < Clil,
(Vg
uniformly in N whenever y € W, _,, Tan(f) = F(Ay) = f satisfies the conditions of
Remark (3.1) (remark to Theorem (3.3)), Chapter I, for the regular Vitali family
{U,, 2x}.
Hence

(s (T4 (@), = 13) < C f /@) e

where C is independent of N. To finish the proof it suffices to observe that for
a good funection f,

T4 () x) — To(f)@)|g,— 0 ae., as N — oco.

Note. The functions F(4,) are actually singular kernels for the family {U , 2«}
according to Definition (6.1) with bounds independent of N.
Let a*(x) denote the adjoint operator of a(x).

TrEOREM (1.2). Let a(x) and a*(x) satisfy condition (1.1.1), or the stronger
condition

sup / 1D (@) @)y < C
ﬁj,nGZ
2 (xj<2s
Then both T, and T.. are of weak type L' and bounded in LP for all p such
that 1 << p << oo.
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Proof. The proof follows by a simple duality argument. See Theorems (4.1) and
(6.2), Chapter 1.

Theorems (1.1) and (1.2) are an extension of the multiplier theorems presented
in [9] and [12]. The reason for choosing a sequence fy,. .., f= is to allow for multi-
pliers which are not very smooth with respect to some variable provided, they are
sufficiently smooth with respect to the others. In fact the theorems could be stated
in terms of fractional derivatives. In such cases we may allow 8, = 1/2 4 ¢ provided
the rest of the f;’s are sufficiently large.

Taeorem (1.3). Let H, = H,—= L*R*) and ¢z, &) € L°(R™"XR*). For
h € LXR*), set a(x)[h] = F74g(x, )7 (h)). Assume that

sup f Dl (g, £)) 2 < Cy,
n€Z, ﬁj,éeRk J
1/4<ix|<2¢

where T and B; are as in Theorem (1.1). For f € LP(R™, H) set Tuf) = FYaZ(f)).

Then 7', is of weak type L' and bounded in LP(R™, H) for any p,1 << p << 0.

The theorem is an immediate consequence of Theorem (1.2).

Observe that if we identify f€ LP(R™ H) with f€ XPE(R™*), then Tu(f) =
7,97, :(f)). We will present another theorem of a similar nature later in section
2 (Theorem (2.1)).

It has been pointed out in previous papers (see [2], [12] and [27]) that the
Littlewood-Paley inequalities may be regarded as expressing the continuity of
vector valued kernels. We will prove extended forms of those inequalities using
Theorem (1.2). The advantage of the multiplier theorem is the fact that the
operators are defined explicitely in terms of multiplier functions.

Let r(x) be the homogeneous metric associated to a one parameter group of
operators {L,, 2 € R} (see section 7, Chapter I). Define a(z) € %(C, H), where

<«

H— {h; iy — (f ih(t)|2§;->m < oo},

by a(x)[c] =1t -r(x)exp (— 1/4 - r(x)) - c. For f€ LP(R™ set Tu(f) = FHa?(f))
and g(f) = |Ta(f) -

THEOREM (1.4). There exists a constant C, such that

Oyl < llgHlle < Collflly  for every p, 1 <p < 0.

Proof. Choose U, = L(8,), @) = 20, To = Ly and V, = U,n. A straight-
forward calculation shows that a.(x) = a(T.x) verifies the condition of Theorem
(1.2). Hence
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| Ta(Nlepgn, my = g(Hlle < Cllfilp, 1 <p < ©

To reverse the inequality it suffices to observe that

a) when F € L»(R™ H), 1 <p < 0, |[TalF)lrogm, ¢y < COpllFllLogm, my
b) when f € LP(B™), Tu(Tu(f)) =f.

When 7(x) = |z|, g(f) is the classical g-function of a half space. With a similar
technique we will derive inequalities concerning lacunary partitions of the spectra
of LP functions.

Let (V., T.) be a lacunary sequence of a regular Vitali family and ¢ an in-
finitely differentiable function with compact support away from the origin. Let
P’(H) denote the Hilbert space of square summable sequences with values in the
Hilbert space H. Define a(x) € %£(H, }(H)) by

a(z)[h] = {p(T'x)h, n €L}, a € L™(R™, L(H, *(H))).

Taeorem (1.5). For f€ LP(R™ H), set Tuf) = 7Y a?(f)). Then T, is of weak
type L' and bounded in LP for 1 <<p << oo. More explicitely if

fo =T Hp(T2)(f), 1<p< o,
ITa(Pllepgm, may = 1, @) )l < Ol fllLogem, my - (L.5.1)

n€yz,

The proof is a straightforward consequence of Theorem (1.2).

Inequality (1.5.1) is an extension to R™ of a well-known inequality of Littlewood
and Paley (see also [18] and [27]).

A different m-dimensional result can be obtained from iteration of the one
dimensional form of inequality (1.5.1). {See also [18].)

Let N = (ny,..., %), nj €Z. Let ¢ be a differentiable function on the real
line with compact support away from the origin. For f€ LP(R™ H) set
In = T p@m2)p(272,) - . . @(2"mam)F(f)) -

THEOREM (1.6). For all p with 1 < p < 0,
S Hlee@m, ey < CllfliLogm, m) -

Proof. The result follows by induction over the number of variables using the
inequality (1.5.1). Assume the theorem is true in R™1. Set 9¢ = I?(H), the Hilbert
space of (m — 1) tuples of square summable sequences with values in H. Let
N=(ng..., %), then fy= (f¥)n,. If we wuse the inequality (1.5.1) on
f~5 € L?(R™, 9() the theorem follows.

We can further extend Theorem (1.6) with the use of interpolation theory.
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Let P=(py,...,pm), » = 1. XP(R™ H) will denote the Banach space of
measurable function from E™ to the Hilbert space H, such that

Pm—1/pp, Pi/p, 1p,
ufHXP(Rm,H,:(f(...<f|f(x)|’;,"'dxm> : ) ” dx1> < w.

R R

(See definition in Section I, Chapter I1.)

TueoreM (1.7). For f€ XP(R™ H), set fy as in Theorem (1.3). Then for
l<pi<<oo, 1 <j<m

||{fN}||XP(Rm, I(H)) < Gylif ”XP(R'", H)»

Proof. Let P = (p,q). For f€XP(R? H) set Tif) = {Fp(2x)F(f)}, © =
1,2. To prove the theorem, for this case, it suffices to show that 7 is a bounded
operator from XFP(R2, H) into XP(R?, I}(H)). The boundedness of T, is an im-
mediate consequence of Theorem (1.5).

For the operator T, we argue as follows. Write

TiP)es) = [ by — wflgdy, where fiy) € L3R, H)
and k(x) € L(LYR, H), LR, H)) with We(@) rwe, L9y = Ilk(x)ll,c(g, H):
Observe that Theorem (1.1) shows that

k(zr — y1) — k(@) o, it < C when |y| <«a.
Il > 20 '

Observe also that Theorem (1.5) implies the boundedness of the operator T,
when p = q. Therefore; using Remark (3.1) (remark to Theorem (3.3)) of Chapter
I, with B, = B, = LYR, H), the boundedness of T, follows for all p,1 <<p <gq.
To obtain the range ¢ < p << oo, it suffices to observe that, repeating the above
argument, 7T} is bounded from XFP(R? 12(H)) into XP(R%, H) for 1 < p <gq.
The general case follows by induction.

J. Marcinkiewicz noted in [20] that inequalities of the type of Theorems (1.5)
and (1.7) are useful in the study of multipliers that satisfy a variational condition.
We will apply this principle to obtain some multiplier theorems.

Observe that if « € £(H, H), and @ is normal, i.e. ae* = a*a, then a =
u(aa*)'? = (aa*)"®u where w is a unitary transformation (see [24]). We denote
(aa*®)"* by a*.

Definition (1.1). Let g(x) be a function from R™ into “£(H, H). The variation
of g is finite if there exist a sequence {g.(x)} and a constant M satisfying
1) gu(x) = Zf'; —w @, .o, (%), Where g, is a normal bounded operator in H
and @,,={z, 2, > 1, 4 depending on (j,n,7), 1 <j < m}
2) For h, € H,
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o0

S af by < MS

r=—Q r= -0

3) llgn(®) — 9@ s, sy — 0 as n-— oo, for almost every x € E™.

We define Vy(g) as the infimum of the constants M assumed in Definition
(1.1). Tt is clear from the definition that g € L*(R™, £(H,, H,)) and |g|l, < Vglg)-
The discussion of the variation will be left for the next section.

Lamma (1.2). If {a,} satisfies condition (2) of Defmmon (1.1), and h € H, then

Z a7 (R) [ < MhJy -

r=—ao

Proof.
3 @t = S @), B <[ S af @ )ulhly < IR (3 aF WE) Bl

and the lemma follows.
Let P be a multi-index as in Theorem (1.7)

TureorReM (1.8). Consider g € L™(R™, L(H, H)) such that Vy(g) < . Define
T:X"(R™ H)— X"(R™, H), by T(f)=79#f)). Then for 1 <p;< o0,
1<i<k, T is a bounded operator and T < CpVul(g).

The proof of the theorem makes use of the following lemma.

Lemma (1.3). If {f.) € X*(B™, MH)) and U{f}) is defined by [U{f)] =
UAf) = 7Y xqﬁ( J)), where @ is o set of the type used in Definition (1.1), then
U is a bounded operator in X"(R™, IX(H)) for 1 < p; < o, 1 <j <m. Moreover,
the norm of the operalor U depends only on P.

Proof. Assume by induction that the lemma is true in B™1. Let A, be the real
number corresponding to x; in the definition of @, Let J = {, x; > 0} and

(): be the set defined by all the remaining variables (g, ..., %w).
Observe that if ¢.(z) = eXp (— 27 % 2 4.)f(x), then
Un(f)(x) = exp (271 2,241,267 (9:)(2) -

Set 9Uf) = Fy,7(f)) and U, (f) = F Y25 7(f))- Observe that Ul = 1/2(I 4 K)
where I is the identity operator and ‘X is the vector valued Hilbert transform
in the =z, variable. More explicitely

9 . 1

K (f)(x) = lim ?f(oc1 —t, Xy ..., Xm)dt.

>0
R>o0 eZ|t|<R

Hence, using Theorem (6.2) of Chapter I, ‘KX and therefore 9( are bounded

operators in LP(R™, H). The interpolation argument of Theorem (1.7) shows that
9 is also bounded in X®(R™, H). Therefore using the inductive hypothesis,
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U Dl xPgm, may = II( _Z S @) ) Plxpgmy = [P Uge) Dl am, wamy <
< Glf U ’(gr)}”XP(R’", ey < pH{gr}HXP(Rm, B(H) = C;H{f'}HXP(R’", 12(H))
Proof of Theorem (1.8). Let g.(x) be an element of the sequence approaching
g(z) as in Definition (1.1). gu(x) > @20, (@), and a,, = of a7 u, = a wa,.
In virtue of condition (2) of Definition (1.1)

[T guZ () ir = IE“ “xe,,,? (walf) |H<M2]7‘1x9n(#f))ifq-

r=—0 r=-—x

Let [Ud{fDl = 7 Xxg, ,?(f)- It follows from Lemmas (1.2) and (1.1) that

[74g.7(f Mixpgm g < M U Un({aZ (f I xP@m, may <
< CoM™i{af (f WixPam, pany < CpM||fl|xPEm, m) -
To complete the proof we observe that [[7-1((gn — ¢)7(f)llxPgm my— 0 as n— o
for good functions f. ‘
Using Theorem (1.8) we can extend the inequality of Theorem (1.7) to the case
¢ =y, Wwhere I ={x1<|v] <2} Sst Iy={z 2% < |y <29, n€LZ,
1 <j<m} and fy=77(X7(f))

TaeoreM (1.9) (Littlewood-Paley). For f€ XP(R™ H), 1 < p; < oo,
If ”XP(R"‘, m < CPH{fN}HXP(R'", pny) < O;Hf llxPgm, H) -

Proof. Let ¢ be any differentiable function with compact support away from
the origin such that ¢(x)=1 for xz€Il. For f€X"R" H), set

gy = T Up(2"y) . . . P22 F())
and T(f) = {gn}- Theorem (1.7) shows that 7T is a continuous mapping from
X*(R™, H) into XP(R™ IB(H)). Let {hy} € X"(R™ I>(H)) and set
S({hy}) = {V2X IN F(hy))} = T a7 ({hn}))
where a{zx) € L(¥H), B(H)) is defined by the identity
@){Cn}) = {XIN(x)ON} .

It is easy to verify that Viun(a) = 2™. Therefore Theorem (1.8) shows that
S is a bounded operator in X”(R™ I*(H)). Hence T oS is a continuous operator
from XP(R™, H) into XP(R™ IX(H)). But T oS(f) = S{gn}) = {fn}, that is

[i¥ N}”XP(R'", 1(H)) < Cullf ||XP(Rm, H)
On the other hand, if 7™ denotes the adjoint operator of 7', T* is a continuous

operator from XF(R™ [2(H)) into XP(R™, H) and T*{fy}) =f Therefore the
theorem follows. ’
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With the aid of Theorem (1.9) we can now improve Theorem (1.8).

TarEorEM (1.10). (The multiplier theorem.)

Let T : X"(R™, H) — X®(R™, H) be defined as T(f) = F-gZ(f)). For the multi-
index N, let Iy be defined as in Theorem (1.9). Then if 1 <p; < 0, 1 <j<m
and ||T|| denotes the norm of T as an operator in XT(R™, H); we have

17 < Cp SuPNVH(xINg) .

Proof. Define G :R™— L((H), B(H)) by G(x)({hy}) = {Z1,9(x)hy}, and for
F € XP(R™, 2(H)) set S(F)= FYG#F)). In virtue of Theorems (1.8) and (1.9),
if B = (T4, F(F))}, then
W7(f )”XP(R’”, H) < CP”(%: ]?—l(xlNg’:?(f ))11211)1/2”):1’(3'") =
= CpllS(F)||xP@m, ny < O;’Vl‘(H)(G)HF lxP@m, vy <
< OV fllxP@m, ) -

But it is easy to verify that V(@) < supy Vy(¥;,9), hence the theorem follows.

2. Multipliers in R™ and applieations

In this section we consider some applications of Theorem (1.7) when H = C
and when H = L2(R¥).

For the case H = C, the second condition of the definition of functions of finite
variation becomes Ez_wla,,,,[ << M. Therefore it coincides with the definition
of variation given in [18]. Theorem (1.10) extends Theorem (3.3) of [18] to the X*
spaces. We point out that in this case the notion of finite variation is equivalent
to the classical notion of bounded variation in R™. More precisely if g is a function

of bounded support, then V(g) = V(g) < oo if and only if
o™y
0%y . .. 0% =H

where p is a finite measure. (The identity should be understood in the sense of
distributions) also [u|(R™) = V(g). For details see [16].

When H = L*(R*), we restrict our attention to mappings g : R™ — L(L2(RF),
I2(R*%) defined by a function g¢(z, &), & € R* as follows.

For h € L(R™), g(z)(h) = FXg(z, )#(h)). 7 and F-' denote the Fourier and
the inverse Fourier transforms in L%(RF).

LemMA (2.1). Let g be defined as above (H = L*(R*)). Then
Vaulg) < sup Velg(- 8) -
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Proof. If V(g(-, &) < M, for almost every &, a uniform approximation argu-
ment shows that there exists a sequence {g.(z, &)} such that

1) e, ) = T2 a8, (0

2) 20w 10, ()] < M,

3) gu(x, &) —g(x, &) as n —> co almost everywhere in R™'F

For h € L3 R*) define A4, (k) = I Ya,  #(h)). Clearly A,, is a mnormal

operator and A7 (k) = FY(|a, ,["*F(h)). Set gu(x) = D2 _.4,. %, (x). Observe
that

I Z A7 HL’(R") = || Z @, (") )T (R (- )]ILz(Rk) <

r=—aw r=—au

<[ Z |G, () 1/2”L°°(Rk) lI( z [7 )B) IIZHLQ(R") <M z “kHLz(Rk)

r=—c0

Therefore to complete the proof of the lemma it suffices to show that
lgn(x) — 9@l oo, my — O, as m— o0, for almost every x € B™. But

[gallLoommtsy < sup Velgn(-, §)) < M,
-1

and property (3) implies that for almost each « € B™, g.(x, &) —g(z, £) a.e. in
Rk, Hence ||ga(x) — g(x)|| e, my—> 0, and the lemma follows.

In virtue of Lemma (2.1) we can reannounce Theorem (1.10) for this case as
follows. Let N, Iy be defined as in Theorem (1.10), = € R™, & € R*.

TuroreM (2.1). For f € XP(R™, LA(R*)) define
T(f) = TXg?(f) where gla)(h) = T (g(x, )7(R)), (b € L¥BY)).

In other words T(f)=ZF7'77Yg(., VEZ(f). Then for 1 <p; < oo, if |T|
denotes the morm of the operator T in XF(R™, LA(R*)),

1Tl < Cp . supe, v V(Z1pg(. , ) -
When m = 1, we obtain the following applications of Theorem (2.1).
THEOREM (2.2). Let S be a convex set of RXR* (x € R, & € R¥). Define T(f) =

FYLsF(f)), where the Fourier transforms are taken in both variables. Then T is
a bounded operator in XPERX R¥) for every p, such that 1 <<p < co.

Proof. In virtue of Theorem (2.1) it is enough to observe that V(g(., §)) < 2.
TeEOREM (2.3). Let P(x, £), Q(z, &) be two polynomials in the variable x (x € R,

£ € RY) with degress n, and mn, respectively. Assume that |P(z, &)/Q(x, &) < M
for every (z, ). Set T(f) = FYP|Q¥f)) (the Fourier transforms are taken in
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both wvariables). Then T is a bounded operator in XPE(RXR*) for every p such
that 1 < p << oo. Moreover T < Cp(ny + ny) M.

Proof. Assume P and @ are real valued. Then

b
« Py
V(P(., 8)/Q(., E))x[a,b]) < / l(@) (x, &)

Note that (P/@Q)" changes sign only when P'Q 4 PQ" = 0. Let x;(8) (1 <j <m;
ny — 1) be the zeros of P'Q + P@’. Then

b
(e
Y (a,
\Q
When P and @ are complex valued, taking real and imaginary parts reduces the
problem of the previous case. :

dx .

nytn,—1

de{(S)(a,E)l—l-\(g)(b 5|+2 Z

P
(2(8), ){ < 3(ny 4 np)M .

Theorems (2.2) and (2.3) are the best possible of their kind. More precisely, when
S = {(x, &) ;a2 4 | <1} and T(f) = FYAF(f)), if T is a bounded operator
in XPE"(RXR") for all p, suchthat 1 << p < oo, then ¢ = 2. (See [11].) Similarly
if Q, &) = | —x+ 1 and T(f) = FY1/QZ(f)) the same observation is valid.
(See [19].) In both cases the papers quoted prove that 7' is not a bounded operator
in LP(R*') for either p << 2(k + 1)/k; however the main estimates obtained in
{111 and [19] imply our remark.

With the use of interpolation theory, Theorems (2.2) and (2.3) can be extended
to classes of functions related to LP(R**') where p ranges over (2(k 4+ 1)/k + 2,
2(k - 1)/k). (See Theorem (2.5).)

In our use of the Riesz theory of interpolation we follow the notation introduced
in [4].

Let P be the multi-index (py, ..., pm). With XP(jk)(E™) we denote the space
of mixed norms where the j* and the k" variables with their p; and p, norms
have been permuted.

LEMMA (2.2). Assume that § <k. If 1 <p; < pw, then XFP(R™) D XP(jk)(B™)
and moreover || flixp < ||fllxPqm -

Proof. When p; = p the lemma is trivial. When px = 1 the lemma is a con-
sequence of Minkowski’s inequality. The general case follows by interpolation.

Given two Banach spaces B, and B, we denote [B;, By],, 0 <« <1, the
a-intermediate space for the Riesz interpolator of the pair (B,, B;).

Set BP(R™ = X2X:...X2(R™), and by induction

B]({;—)I(Rm) = [B,('p)(Rm) Xf+1 . an(Rm)]j/(H-l) .
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THEOREM (2.4). Define @ = (qy, - - -, qm) by
Jlae=1lp + (G — 1)/2 when 1 <k <j,and q=2 for j <k <m.
Then if
1<p=<2 Zi+1=<q=<2 for 1<Fk<))
we have X%R") D BP(R™). Moreover |flixe < ||fls. If
2Sp= 02 < <Zjfj— 1L for 1<k<j),
then, X%(B™) c BO(E™) and ||f]s(» <||flxe.

Proof. We argue inductively. The result is trivial when j = 1. If, say, 1 <p <2,
set g; = 2jp/(j + 1). In virtue of Lemma (2.2) and interpolation theory
B®\(R™) = [BPY(R™) ; X7, X1 . .. XE(B™)]j.n C
cIX?. . . XPX; ... X0B™; X]. .. X;X2 . X0(R™) ey =

= XV XX, L KB

The second part of the theorem follows with a similar argument.

To make the notation more adequate with the results of Theorem (2.4) set
B,(R™) = B®,_(R™), where 1/p = m/2 — (m - 1)/q. With such notation, Theorems
(2.2), (2.3) and (2.4) imply

TeEOREM (2.5). Let T(f) = F(g?(f)), where g(x) is the characteristic function
of a convex set (as in Theorem (2.2)) or the bounded ratio of two polynomials (as in
Theorem (2.3)). Then ;

2
(i) For m :i?' 1 <p =<2 ”T(f)”LP(Rm) < HT(f)”Bp(R'") < OP”f”BP(R’") p
2
(i) For 2 <p < =, IT(lagam < Colllaam < Colllram -

The theorem is a simple application of the theory of interpolation.
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