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The theory of rational points on a plane unicursal curve 

f(x, y, z) = 0 (A) 

and their determination through a parametric representation is essentially complete 
due to the work of Poincar6, the special case of the conic having been considered 
earlier by  Gauss in the Disquisitiones Arithmeticae. This theory, however, does not 
answer fully the problem of determining all integer solutions of (A) through an 
algebraic parametric representation, since, as Cantor [1] remarked in respect of 
the conic, the transition from a rational solution to a corresponding integral solution 
may lead to the latter being affected by  a common factor that  is not directly ex- 
pressible algebraically. Having in a previous paper [2] discussed Cantor's remark 
and obtained in the case of the conic a parametric representation for the integer 
solutions of (A) in terms of triplets of quadratic forms with invariants related to 
f, we turn in the present communication to the corresponding problem for the 
unicursal cubic curve. By a method more geometrical in nature than that  used 
in [2] but  applicable ia principle to unicursal curves of any degree we shew that  
for the unicursal cubic curve there is also a complete parametric representation 
of the integer solutions of (A) by  a set of triplets of binary forms, these being now 
of degree 3. 

The theory is analogous to that  for the conic in that  firstly the invariants of 
the representing triplets are related to the coefficients of f and in that  secondly 
each primitive solution, except that  corresponding to the double point, is obtained 
precisely once. Moreover, again, triplets with given invariants belong to a finite 
number of classes. On the other hand the theory of the class number contains 
features that  are not presented in the quadratic case or indeed in most situations 
relating to homogeneous forms, there being for example the fact tha t  for any given 
(possible) invariant system there exists a proportional invariant system for which 

1) Supported in par t  by  Air Force Office of Scientific Research grant  AF-AFOSl~-69-1712. 
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the class number of triplets is 1. In consequence the properties of the class number 
have been discussed in rather more detail than is needed for the proof of the principal 
result on the Diophantine equation. 

We note finally tha t  the method provides an alternative proof for the main 
theorem in [2] since it is straightforward to reformulate this theorem in terms of 
an invariant system of the type used here. 

As a btginnirg it is necessary to make some remarks on triplets of cubic forms 
al~d on the invariants and covariants of the ternary cubic forms with which it will 
be seen tha t  these triplets are associated. 

Let us write, for i = 1, 2, 3, ui(r, s) = alr 3 + blr~s ~- cirs s -~- dls ~, UI(R, S) = 
A iR  ~ -~ BiR2S @ CiRS 2 -9 D~S a. Then, if the binary cubic forms ul(r, s), u2(r, s), 
ua(r, s) transform simultaneously into the forms UI(R, S), U2(R, S), U3(R, S) 
through a real substitution 

r = ~R + fiS, s = ~R § ~S 

of non-vanishing modulus, then we shall say tha t  the triplet ul, u2, u 3 is equivalent 
under a real substitution to the triplet U1, U2, U3. If, however, as in the cases of 
most interest to us here, the substitution have integral coefficients and be of modulus 

1, we shall merely use the term equivalent, it being of importance to obse~-ce 
that  it is appropriate here to distinguish between proper and improper equivalence 
in contrast r the correspondil~g theory for quadratic forms. In the theory to follow 
all triplets will be assumed to be such that  their constituent cubic forms neither 
have a common non-constant factor ~lor are linearly dependent. 

A triplet Ul, u s, % gives rise through the formation of the eliminator of 

X 1 = u l ( r  , 8), X 2 = u2(r , 8), x 3 = u3( r  , 8) ( l )  

to a ternary cubic equation 

kj k 2 /% 
r (Xl, X2, X3) = ~ s = O,  

which is in fact the equation of the unicursal curve given parametrically by (1). 
This procedure is immediately seen to yield a set of simultaneous invariants of 
the triplet u~, u s, u a since the eliminant r is evidently unaltered apart possibly 
from a constant factor if ul, u~, u a be replaced by an equivalent triplet Ux, U s, U a. 
The coefficients Ak~, k,,k,, the mode of fbrmation of which will be considered more 
fully presently, will be merely termed the invariants of u 1, u2, %, since as will 
be apparent later they form a fundamental system in the sense tha t  all other in- 
variants are essentially determined by them. 

The invariants S and T of a general ternary cubic form 

k~ k~ ka f (xl ,  x2, x8) = ~ Dk~, k2, k. Xl X2 X3 
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will also be required. These are defined precisely as in Salmon's Higher Plane 
Curves but do not when regarded as polynomials in Dkl, k~. ~. have integral coeffi- 
cients, since the coefficients of f have not here been affected by multinomial 
coefficients. When f ~ 0 is a singular curve 1) the discriminant of the form vanishes 
and the consequent equation 

implies tha t  we may write 

T s -[- 6 4 S  a = 0 

T---~ (2M) 3, S--~ - -  M s. (2) 

I t  will be necessary also to introduce in connection with cubic forms corresponding 
to unicursal curves a certain arithmetical invariant, which is analogous in some 
respects to the determinant or discriminant of a ternary quadratic (the discriminant 
of a general ternary cubic being analogous in other respects to the determinant or 
discriminant of a ternary quadratic) and which we name the determinant of the 
form. To form this invariant we use the contravariant 

TQ -t- 96S2P, 

the vanishing of whose coefficients is seen by comparison with Salmon, art  240, 
to be the condition tha t  the form either have a cusp or break up into a line and 
a conic. Using (2) we are  led to introduce the associated contravariant 

F(o~, as, ~3) = 2~ (Q + 12MP) , 

the coefficients of which will be seen later to be integers, not all zero, when f is 
a form with integer coefficients tha t  corresponds to a unicursal curve. For forms 
f of the latter type the determinant A is then defined to be the positive highest 
common factor of the coefficients of F,  the invariance of A with respect to integral 
unimodu]ar substitutions for the indeterminates of f being a consequence of the 
contravariance of F.  

Having introduced the invariants tha t  will be needed, we must discuss briefly 
the genesis of the fundamental system A~,, k,, ~, and its r61e as a resultant system 
for ul, us, u 3. To find the eliminant r xs, xa) of 

x l • u l ( r , s ) ,  x s : u 2 ( r  ,s), x a=ua(r ,s )  (3) 

we consider two distinct lines (using homogeneous coordinates) 

~lXl -~ ~2X2 -~ ~3X3 : O, ~lXl --~ /.s "JC ~3X3 : 0 

~nd observe tha t  the condition that  they intersect on the curve given by (3) is the 
vanishing of the resultant 

1) A singular cubic being any cubic with zero discriminant. By a unieursal curve is 
meant here a non-degenerate singular cubic. 
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R(~lu 1 -~ ~2n2 ~ ~3u3, /~lUl -~- /~2u2 -~- /~3u3) ,  (4 )  

the coefficients of which when regarded as a form in the  indeterminates  ~1, ~2, 2~, 
/~,/~2,/~3 form the  resul tant  system of ul, u 2, u 3 in accordance with Kronecker ' s  
theory  and  which do no t  all vanish  in vir tue of the  restrictions placed on u~, u 2, u 3. 
The fundamenta l  sys tem is thus  jus t  an  equivalent  resul tant  system, since by  
Bezout 's  method  it is evident  t h a t  (4) is a polynomial  in ~2#3 --  ~3#~, 23/~1 --  ~u3, 
2Lu3-  2~/~ and  t h a t  hence r x2, x3) is obtained by  replacing ~2/~3- ~3/~2, 
~3#1- ~1/~3, 2~u2-  ~2/~ in this polynomial  by  x 1, x 2, x 3, respectively. Fur ther -  
more it is easy to see t ha t  when th,/~2,/~3 have integral coefficients the  h.c.f, of  
the  initial resul tant  system is equal to the h.c.f, of  the fundamenta l  system. Formed  
in this manner  r is immediate ly  seen to have a covariant  p roper ty  wi th  respect 

! t ? 
to linear subst i tut ions t ha t  replace ul, u2, u3 by  linear combinations Ul, u2, u3, 
i t  being clear from (4) tha t ,  if  ul, u 2, u3; xl, x2, x 3 t ransform cogrediently by  means 

t e t e t t ~ !  
of a unimodular  subst i tut ion into ul, u2, u3; x~, x2, x 3 and  be defined in terms 

P ! 
of u'l, u2, u3 as r was in terms of ul, u2, u3, then  r 1, x 2, x3) = ~'(Xl,' X2,' X3).' 
I t  is impor tan t  too to note here t h a t  when ul, u2, u 3 is t ransformed into U 1, U2, U 3 
by  a subst i tut ion of  modulus K the  fundamenta l  system of  U 1, U S, U 3 is obta ined 
by  mult iplying t h a t  of u~, u~, u3 by  K ~. We note also t h a t  th rough sett ing 
2 1 = # 1 = 0  we have A3.0. o = R ( u 2 , u 3 ) .  

Al though the t e rna ry  form f(xl,  x 2, x3) has been interpreted through the corre- 
sponding unicursal curve in two dimensional projective space, solutions of the  
equation f(xl ,  x2, x3) = 0 are to regarded as being distinct unless their  corresponding 
components be all equal, rat ional  and integral solutions being those in which x 1, x 2, x 3 
are, respectively, rat ionals and  integers. I t  follows f rom the theory  o f  unieursal  
curves tha t ,  if  xl = ui(r, s) be a parametr ic  representat ion of  f ( x  D x 2, x3) = 0, 
then  each solution of f ---- 0 apar t  from t h a t  corresponding to the  double point  is 
obtained from a unique pair of  values r, s; also, proport ional  solutions, t h a t  is 
those t h a t  appertain to the same point  on the  curve, correspond to proport ional  
pairs r, s. 

We are now in a position to prepare for the proofs of our final results by proving 
a number of simple lemmata. Triplets throughout will have integral coefficients 
although the indeterminates in them may on occasion take non-integral values. 

L]~MMA 1. Triplets of binary cubic forms with p~oportional invariants are equivalent 
under real substitutions the coefficients of which are of the form rio , r20 , r30 , r~O, 
where rl, r2, r3, r~ are rational and 0 is the real cube root of an integer. 

We require the principle tha t ,  if  x~ = w~(t) be a parametr izat ion of  a unicursaI 
cubic, where w~(t) has integral coefficients, then,  excluding from consideration the  
double point and its parameters,  any  point  which can be represented by  rat ional  
co-ordinates corresponds to a rat ional  value of t and  conversely. 
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Let ul(r , s), us(r, s), ua(r, s) and UI(R, S), Us(R, S), Ua(R, S) have pro- 
portional invariants. Then, since the functions v~(t) = ui(t, 1) and VI(T) = Ui(T, 1) 
furnish two parametric representations of the same unicursal curve, the equations 

V l ( t )  v (t) v (t) 
- -  _ - -  ( 5 )  

VI(T) V2(T) Va(T) 

give rise to an algebraic correspondence between t and T that  is one-one save 
for the exceptional values of t and T that  relate to the double point, rational 
values of t being in correspondence with rational values of T. Therefore (5) is 
equivalent to an homography 

t - -  
y T +  b 

with rational values of cr fi, y, ~, and we have the identity 

Ul(Or -}- fl, TT + ~) uu(~T + fl, yT  + 5) ua(~T + fi, y T  -r 5) 
U~(T, 1) Uz(T, 1) Ua(T , 1) 

in which the common value of the terms is a rational constant )t since the 
denominators have no common factors. This constant can be taken to be 1 by  
dividing ~, fi, y, (~ by  ~/~- and the lemma then follows on substituting 
T = R / s .  

We note in passing that  this lemma justifies our previous statement that  the 
system Ak~.k,,k, of  invariants may be regarded as a fundamental one. 

LEMMA 2. Let f = 0 be a unicursal curve, where 

kt k2 ks f(xl, x2, x8) = ~ Dk,,k,,ka Xl X2 X3 
kx+k~+ka=3 

is a primitive ternary cubic form of determinant A. Then there exists a triplet ul, u2, ua 
with invariants ADkl. k~.k8 �9 

The proposition being eovariant with respect to integral unimodular substitutions 
for x 1, x 2, x 3, it is enough to consider any form f*  to which f is equivalent. I f  
(v 1, v~, v3) be the coordinates of the double point expressed in terms of relatively 
prime integers, there exists an integral unimodular substitution 

=  ,x'l + + ; i = 1 ,  2 ,  3 ,  

which transforms the double point into (0, 0, 1) and hence f into the equivalent 
form 

! ! ! ! ; ! v I f ( X l ,  X2,  X3)  -~-- ~ ) ( X l ,  X2)  - -  X 3 X ( X l ,  X2)  , 
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where y~(x'~, x'2) : CoX'~ 3 + clx'~ex; + c2x'lx'2 ~ + c3x'2 ~ 

! t 

a n d  Z(xl ,  x2) = doX'l 2 ~-  dlX'lX' 2 -~ d2x'22 , 

Reverting now to xl, x2, x 3 to indicate the indeterminates in f* i~ is seen by a 
familiar method tha t  

x 1 = ul(r,  s) = rz ( r ,  s), x e : u2(r, s) -~ s z ( r ,  s), x 3 : u~(r, s) : yJ(r, s) 

is a parametrization of the curve. Since the eliminant r 1, x~, x3) of the above 
system is proportional to f * ,  it  remains to discover the coefficient of proportionality 
and to substantiate an earlier assertion tha t  made it possible for A to be defined. 

Let the coefficients c~, dj of f*  be regarded for the present as indeterminates. 
Then the contravariant F*(~I, ~z, aa) of f* is rational and integral in these in- 
determinates, since 

. ,  
36] ~ 

Also, as is shewn in art 135 of Salmon's Modern Higher Algebra, the coefficients 
of F* are zero except for the coefficient C, say, of a~. Now, comparing the 
coefficients of x~ in f* and r we have 

r l~(sz(r, s), ~(r, s)) •(s, ~(r, s))R(z(r, ~), ~(r, s)) 
= : R ( z ( r  , s), yJ(r, s)). 

f *  C O CO 

But  the vanishing of /~(Z, ~) implies tha t  of C, since f* factorizes if ~ and Z 
have a common factor. Therefore, as /~(Z, ~) is irreducible and is of the same 
degree as C, 

~(Z, ~) = c~(C 

for some constant ~ .  Specialising f* to be CoX ~ - -  d2x~x a, for which it may be 
c0d2, we deduce tha t  ~----1 .  We conclude verified tha t  R(Z, to) and C are both 2 3 

from its contravariance tha t  _~ not only always has integer coefficients but tha t  
also the determinant A is the measure of the absolute ratio of r to f*. Since 
the sign of the ratio can be changed if requisite by substituting --u~(r, s) for 
ui(r, s), the proof of the lemma is complete. 

Before enunciating the next lemma we define a p r i m i t i v e  representation of 
integers ml, me, m s by a triplet ux, u e, u a to mean the simultaneous expression 
of m~ by ui(r, s) with common relatively prime integers r, s for i = 1, 2, 3. 

L ~ M ~ A  3. Given integers ~h,  me, ma are represented p r i m i t i v e l y  by at most  k 
classes o f  triplets w i th  given invar ian ts ,  where k = h.e.f. (m 1, me, ma). 

We recall the familiar principle that,  if m ---- f(~, y) be a primitive representation 
of m by a binary form f ( r ,  s), then there is a substitution depending only on ~, 7 
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tha t  t ransforms f(r, s) into an equivalent  form having leading coefficient m. 
Thus, if ul, u2, ua and U 1, U2, Ua with the  same invariants  bo th  represent  
pr imit ively ml, m2, ma, then  they  are equivalent ,  respectively,  to v 1, v2, v a and 
V1, Vs, Va in both  of  which triplets the  leading eoafficients are m l, m2, m 3. B y  
L e m m a  I we have 

vi(r, s) = Vi(R, S), 

where r -~ o~R ~- fiS, s = y R  -+- ~S, the  subs t i tu t ion  being of  modulus  un i ty  as 
the  invariants  are equal. Since r =  1, s = 0  and / ~  1, S = 0  give the same 
solution, we infer (viz. in t roductory  remarks)  tha t  ~----1, fl rational,  y = 0, 
(~ = 1 and therefore tha t  

V,(R, S) = v,(R + fiS, S). 

Examina t ion  of  the  coefficient v~(fi, 1) of  S a in v~(R +/38,  S) 
denominator  of  /3 expressed as a fraction in lowest terms divides 
k. Since triplets V1, Vs, Va corresponding to values of  /3 tha t  differ b y  an integer 
are equivalent ,  (6) gives rise to at  most  k inequivalent  tr iplets  }71, V2, V a and 
the lemma follows. 

We  are now in a posit ion to prove  our four theorems concerning class numbers  
and the representa t ion of  integer points  on cubic curves. 

(6) 

shews tha t  the  
ml and hence 

THEOREM 1. Triplets with assigned invariants Ak~,k,,k, are distributed into a 
f inite number of  clazses. 

Let  ($1, ~s, ~a) be the  co-ordinates expressed through relat ively prime integers 
of  some rational point,  o ther  than  the  double  point,  on the corresponding cubic 
curve. Then for an y  triplet  ul(r, s), us(r, s), ua(r, s) with the given invariants  
there  is a unique posit ive integer ~t for which the tr iplet  can represent  pr imit ively 
2~1, 25s, 25a (see the  remarks  before L e m m a  1 and at  the  beginning of  the  proof  of  
tha t  lemma). Since the s imultaneous congruence ul(r, s) ~-- u2(r, s) =-- ua(r, s), 
mod 2, is soluble for (r, s) --~ 1, the  members  of  the  fundamenta l  resul tant  sys tem 
for u 1, us, u a are all divisible b y  ~ and hence ~10, where O ~ h.e.f. Ak, k~,k.. 
The number  of  possible values of  t being l imited b y  this and the number  of  classes 
which can pr imi t ive ly  represent  t~1, ~s ,  2~a being limited b y  L e m m a  3, the  class- 
number  of  tr iplets with given invariants  is finite (in fact  no t  greater  than  a(O), 
the  sum of the  posit ive divisors of  0).  1 ) 

As an analogue of Theorem 1 in [2] we now consider 

THEOI~EM 2. Let f ( x  1, x2, x3) = 0 be a unicursal cubic curve, where 

k I k 2 ks 
f ( ~ l '  X2, X3) = ~ Dkl, k 2,k a Xl X2 X3 

k ~ + k z + k a = 3  

~) A sharper estimate earl b8 derived through an easily ob~ain~cl improvena3n~ irl L3rna~ 3. 



218 A~KIV FS~ ~ATE~ATIK. u 9. ~qO. 2 

is a primit ive ternary cubic form of determinant A. Then there is a f ini te set of triplets 
ulJ) , Ul j), U(3 j) w i t h  i n v a r i a n t s  of the form 3 A~D~I,~ ,~ . ,  where ~i]A and ~j > O, 
with the property that the general primitive solution of 

is given by 

f (x l ,  xp, Xa) = 0 

x 1 = u(i)(r, 8), x e = u~i)(r, s), x 3 = u(J)(r, s), 

where, for each j ,  the integers r, s run through all values for which 
h.c.f .(u~ j), u~ j), u~ i)) : 1. Each primitive solution with the exception of that relating 
to the double point  is obtained thus precisely once. 

The general solution in integers of the equation is 

x 1 = ~u(i)(r,  S), X 2 = ~(~u~J)(r, s),  X 3 : ~(u(J)ir,3 , s) ,  

where r, s run through all integer values and ~ through all cube-free values. Each 
solution apart f rom that relating to the double point  is obtained (but possibly more than 
once) .  

I t  is enough to consider the first part  of the theorem as all solutions can be 
derived from primitive ones by  using cube-free multipliers ~ and by  allowing 
r and s to have common factors greater than 1. 

Let u 1, us, ua, which as will be clear may be regarded as u(~ 1), u (1), u(~), be 
a triplet with invariants ADkl,k~,k. in accordance with Lemma 2. Then, for any 
primitive solution ~1, ~2, ~a of f = 0, there is one positive divisor 2 of A for 
which there is a primitive representation of 2~1, 2~, ~a  by  Ul, us, u 3. Letting 
a, ~ be the values of the variables in this representation, choose integers fl, 
so that  cr --  fly = 1 and transform the forms us(r, s) into the equivalent forms 

U/(_R, S) = 2~iR 3 + BiRPS + CIRS 2 + D-,S 3 (7) 

by  the substitution 

r = ~R + flS, s = y R  -~ ~S 

of modulus unity. Then the forms 

1 
U*(R, S) = Us(R, kS) (S) 

have integral coefficients, the triplet U*, U*, U* b y  considerations of weight 
has invariants A23Dk,,k~,k., and U*, U*, U* primitively represents ~1, ~,  ~3- 
Conversely all relatively prime triplets of numbers represented (primitively) by  
U*, U*, U* are primitive solutions of f = 0. Since ~]A the forms U*, U*, U* 
thus obtained for each primitive solution of f = 0 belong to a finite number of 
classes by  Theorem 1 and by  choosing one representative triplet in each of these 
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classes we form a sys tem of tr iplets (u(~ j), u(2 y), u~ J)) t ha t  yield all primitive solutions 
of  the  equat ion and only primit ive solutions of the  equation. I) I t  remains to shew 
t h a t  each primit ive solution is given b u t  once. A primit ive representat ion of  a 
primitive solution Vl, */2, Va b y  a t r iplet  u~ ~), u~ j), u (j) equivalent  to the  tr iplet  
given b y  (8) corresponds to a primit ive representat ion of  4,/1, ~72, ~73 b y  (ul, u2, u3), 
since (R, 2) ---- 1 f rom (7) and (8) as otherwise 71, V2, */3 would all be divisible b y  
a divisor of  2 exceeding 1. Therefore ~1, V2, Va cannot  be pr imit ively represented 
b y  two triplets appertaining to different  values of  2. Suppose then  *h, 72, ~a be 
pr imi t ive ly  represented b y  two  tr iplets  of  the  sys tem appertaining to the  same 
value of  2. These tr iplets  being equivalent ,  respectively,  to triplets of  the  form 
U*, U*, U*; V*, V*2, V*, we have b y  the above me thod  again 

~, = U @ o ,  ~o) = V,(Ro, ~So), 

where (~0, Xa0) = (R0, ~tS0) = 1 and where, as U1, U2, Ua; V1, V2, V3 are bo th  
equivalent  to u~, u2, %, 

Ui(al + tim, 71 + Om) = Vi(1, m) 

for some integers o~,fl, 7, d such tha t  6 d -  fly = 1. Hence  

eo = aRo + fl~So, 2a o = 7Ro -4- ~ S  o 

and so ;t]7. Therefore the  unimodular  integral subst i tu t ion 

t ransforms U*(~, a) ~ U~(O, ~a)/~ into V*(R, S) -= V~(R, 2S)/2 for i = 1, 2, 3. 
I-Ience U*, U*, U* and V*, V*, V* are equivalent  and so the two triplets of  the 
sys tem are the  same. Since a given tr iplet  cannot  represent  a solution more than  
once the  proof  of  the  theorem is complete. 

T~EOR~M 3. Let f(x~, x2, x 3 ) =  0 be a unicursal cubic curve, where 

kt k2 k3 f(x�94 x2, x3) = ~, D&, k~, k~ Xl  X2 X3 " 
kl+k2+ka=3 

is primitive. Then  there exists ~ such that there is only one class of triplets with 
invariants 2Dk,, k,, k~. 

We confine our a t tent ion  to the  case where (A, 6) = 1 in order not  to prolong 
the proof. 

Choose the  minimal posit ive value of  2 such tha t  (4, 6) = 1 and such tha t  
there  is a t r iplet  with  invariants  2D~,, ~,, ~,, it  being obvious tha t  1 < 2 < A, 

~) If  the main end in view were merely a system of forms with this property, then the 
finiteness of the system could be more easily deduced from the fact that a general integral 
substitution of modulus 2 can be obtained by compounding a unimodular substitution with 
one of a finite number of substitutions of modulus ~t. 
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and  suppose t ha t  the class number  of triplets wi th  these invariants  exceeds 1. 
Le t  ul, us, us; vl, vs, v a be inequivalent triplets wi th  these invariants.  Then for 
any  prime divisor p of 2 at  least one form, usa(r, s), say, f rom the tr iplet  
ui, u2, u a is not  identically zero, rood p,  since otherwise p would divide all the  
coefficients of all the forms in the triplet  and  there would be a triplet  (ui/p, u2/p,ua/p) 
with integral invariants  (~/p6)Dki,k,,k. contrary  to hypothesis.  The congruence 

ui~(r, 1) ---- 0, m o d p ,  

being of  degree at  most  3 in r, has at  most  3 roots, mod p, and  so there exists 
an  integer r e such t h a t  

us~(re, 1) ~ 0, m o d p .  

Next ,  defining r to a solution of the  simultaneous congruences 

r = rl,, mod/0; :pl~t 

and  writing ~s = us(r, 1), we deduce t h a t  h.e.f. (~i, ~s, ~a) = I since 2 is the  
highest common factor of the resul tant  system for ul, u2, u a. Also there exists a 
positive number  /~ such tha t  #~1, #~s,/~3 is primitively represented b y  v i, vs, va, 
where # : ~  1 by  L e m m a  3. 

Replace the triplets by  equivalent  triplets Ui( e, a), Us(e, a), Ua(e, a) and  
Vi(R, S), Vs(R, S), Va(R, S) so t ha t  the solutions ~1, ~s, Sa and  /~i,  #~s, #~a 
are given, respectively, by  ~ =  1, a = 0  and  R - ~  1, S----0. Then, let t ing 

e = ~R + flS, a = yR  + ~S 

be the  real subst i tut ion of modulus  1 t h a t  t ransforms Ui, Us, U a into V 1, Vs, V3 
in accordance wi th  L e m m a  1, we have t h a t  a/ /~ = 1, ? = 0, where /~i = #113, 
and hence tha t  ~ ~ / ~ ,  ? = 0, d = 1//~i, since ~ - -  f7  = 1. :Furthermore, 
c~, fi, 7, 0 being in rat ional  ratio, #~ is rational; hence /~i is an  integer k > 1 
so t h a t  # = / c  a, and  fi is rational.  

We consider the  effect of  this t ransformat ion on Us(~, a), which we write as 
ale a + bseSa + csea s + d~z 3, where as ----- ~. We have 

V,(R, ,9) = U,(kR + flS, S/k) 
.RS s 

: aJoa/? a + kRsS(aasfllc q- bs) -]- -~ (3a~flslc s -{- 2b~flk + cs) 

Sa 
-}- ~-~ (as/3a/c a -}- c,flsk s q- csfllr + d,) . 

An examinat ion of the coefficient of  S3/k s for i ~ 1, 2, 3 leads first to the con- 
clusion t h a t  /3Ic is an integer on account of h.c.f. (ai, as, aa) ---- 1 and  then  to the  
conclusion tha t  the coefficient of RsS in Vs is divisible by  k. I~enc~ 

W,(R, S) = k V,(nlk,  S) 
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has integral  coefficients and  there  is a t r iplet  Wv W2, W3 with invar ian ts  
(2/kS)D~,.k~,k. Since this is no t  in accordance wi th  the  defini t ion of 2, the  class 
numbe r  associated wi th  2Dk,, k2,ks is 1. 

THEOREM 4. I n  the notation of Theorem 3 let the class numbers of  triplets with 
invariants 21Dk~,k,,k~ and those with invariants 22Dk~,k~,k~ be both 1, where 
(2122, 6) = 1. Then 21, 2 s have the same prime factors. 

Let  ul(r , s), u~(r, s), us(r , s) and  vi(R , S), v2(R, S), vs(R, S) be t r iplets  wi th  
invariants  21Dk,,k~. k, and  22Dk, ' k,,ks, respectively.  Then,  b y  the  a rgument  used 
in the  proof  of  Theorem 3, there  is a t r ip le t  of  re la t ively  pr ime numbers  ~1, ~2, ~3 
such t ha t  ul, us, u a pr imi t ive ly  represents  ~l, ~2, Sa and v v v s, v a represents  
/~2~1, #2~s,/~2~a for some posit ive divisor #e of  22. Also, b y  having chosen ul, us, u 3 
and v 1, % v a to  be appropr ia te  representa t ives  in the  classes to  which t h e y  
belong, we m a y  assume t h a t  these pr imit ive  representa t ions  are given b y  r = 1, 
s = 0  and  R =  1, S = 0 .  Fur the rmore ,  as in the  proof  of  Theorem 2, ~l,~S,~a 
is pr imi t ive ly  represented  b y  the  t r iplet  w v w2, w a th rough  values R = 1, S = 0, 
where 

1 
w~(R, S) = - -  v~(R, /~2S) 

and  w v we, w 3 has invar iants  #~22D~,.k,,k,. B y  a previous a rgumen t  

u~(ocR @ fiS, ~R + c3S) = w~(R, S), (9) 

in which ~ = 1, y = 0, 0 = (/~22/21) 1/9 because the  modulus  a5 - - /3y  of  the  
t ransforming  subs t i tu t ion  must  be (/~]2s/2~)1/9; fu r the rmore  /3 and  ~ are rat ional .  
Wri t ing u~(r, s) as alr a + bir2s + cars 2 + &s 3, we express (9) in the  form 

w~(R, S) = a.~R a -~- R2S(3a~fl -1- b~) + RS2(3a~fl 2 + 2b~fl(~ + c~ s) 

f rom the  coefficient of  S a in which we infer, in v i r tue  of  h.c.f. (a v a~, a n ) ~  1, 
t ha t  the  denomina tor  of fl expressed in lowest te rms is a divisor of  the  denomina tor  
of  ~ expressed in lowest terms.  Hence  there  exist  integers l, m such t h a t  
f l = l O + m  and  hence the  subst i tu t ion r = ~ t ~ + f l S ,  S = ~ R + ( ~ S  is com- 
pounded  of the  subst i tut ions 

r = r l - t - / s  ~ r ~ = R  1 R I = I ~ + m S  

of  which the  f irs t  and the  th i rd  are bo th  unimodular .  ~v reove r ,  since the first  
subst i tu t ion takes  r ~ 1, s = 0 into h = 1, s~ = 0, it  is cleur t h a t  we c~n ass,~me 
t h a t  the  t r iplet  u~, u~, ua was so chosen t h a t  l = 0 and  t h a t  hene~ 

u,(R l, ~S1) = a,R~ + b,OR~S~ + c,~R~S~ + g,~3S~ 
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has integral coefficients. I f  ? (  be the denominator  of ~ (in lowest terms), then  
~Ib~, ~[c~,  ~K3]d~ and  ui(r, s) is of the form 

a~r 3 + ~/~blr2s' + ~X~c~rs2 + ~3dl  3, (10) 

from which we infer t h a t  ~ = 1 in view of the fact  t ha t  any  subst i tut ion of the  
form r ~ ~, s = a -[- (V/~)~, where 0 < ~ < ~)~, t ransforms the  triplet  given 
by  (10) into an inequivalent  integral tr iplet  wi th  the same invariants.  

We thus  have t h a t  ~ is an integer and  hence ~1]#~2. Therefore all prime 
factors of ~1 divide ~ since /,2122. Similarly all prime factors of ~2 divide 21 
and  the theorem therefore is true.  

Theorems 3 and  4 m a y  be i l lustrated by  a reference to the special curve x~x a = lx~, 

where 1 = p2q2 and  p, q are dist inct  primes. Here the non-zero values of Dkl ,kS,k" 
are Do, 3,0 = 1 and D2,0,1 = --  1. Corresponding to the in var iant  systems 
2~pqDkl,k,,k, for 41--  1, 22 = p a ,  ha_~ qa there is for e a c h  2~ just  one class 
of triplets; the simplest representatives of the single classes are as follows; 

Z 1 : pqr  a, x~ = #s ,  x3 : s 3 (23 = 1) 

x l = p r  a, x 2 : r e s ,  x a : q 2 s  3 ( 2 2 : q a )  

x l : q r  a, x 2 : r 2 s ,  x 3 : p ~ s 3  ( 2 3 : / o  3 ) .  

References 

1. CAz~TOI~, G., De aequationibus Secundi gradus indeterminatis, reproduced in the Collected 
Works. 

2. tIOOlmX-, C., On the Diophantine equation ax ~ + by ~ + cz 2 + 2fyz + 2gzx + 2hxy = 0, 
Arch. Math. 19 (1968), 472--478. 

Received January 20, 1971. Christopher I-Iooley 
Department of :Pure Mathematics 
University College of South Wales and Monmouthshire 
Cardiff 
United Kingdom. 


