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The theory of rational points on a plane unicursal curve

f@,y,2) =0 (A)

and their determination through a parametric representation is essentially complete
due to the work of Poincaré, the special case of the conic having been considered
earlier by Gauss in the Disquisitiones Arithmeticae. This theory, however, does not
answer fully the problem of determining all integer solutions of (A) through an
algebraic parametric representation, since, as Cantor [1] remarked in respect of
the conic, the transition from a rational solution to a corresponding integral solution
may lead to the latter being affected by a common factor that is not directly ex-
pressible algebraically, Having in a previous paper [2] discussed Cantor’s remark
and obtained in the case of the conic a parametric representation for the integer
solutions of (A) in terms of triplets of quadratic forms with invariants related to
Jf, we turn in the present communication to the corresponding problem for the
unicursal cubic curve. By a method more geometrical in nature than that used
in [2] but applicable in principle to unicursal curves of any degree we shew that
for the unicursal cubic curve there is also a complete parametric representation
of the integer solutions of (A) by a set of triplets of binary forms, these being now
of degree 3.

The theory is analogous to that for the conic in that firstly the invariants of
the representing triplets are related to the coefficients of f and in that secondly
each primitive solution, except that corresponding to the double point, is obtained
precisely once. Moreover, again, triplets with given invariants belong to a finite
number of classes. On the other hand the theory of the class number contains
features that are not presented in the quadratic case or indeed in most situations
relating to homogeneous forms, there being for example the fact that for any given
(possible) invariant system there exists a proportional invariant system for which

1) Supported in part by Air Force Office of Scientific Research grant AF-AFOSR-69-1712.
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the class number of triplets is 1. In consequence the properties of the class number
have been discussed in rather more detail than is needed for the proof of the principal
result on the Diophantine equation.

We note finally that the method provides an alternative proof for the main
theorem in [2] since it is straightforward to reformulate this theorem in terms of
an invariant system of the type used here.

As a beginning it is necessary to make some remarks on triplets of cubic forms
and on the invariants and covariants of the ternary cubic forms with which it will
be seen that these triplets are associated.

Let us write, for =1, 2,3, wr,s) = a® + bir®s + cirs? - dis®, Uy(R, 8S) =
A;R? 4 B;R%*S 4 C;RS? + DyS3. Then, if the binary cubic forms w,(r, s), wuy(r, s),
Uug(r, s) transform simultaneously into the forms U (R, 8), UyR,S), Ug(R,S)
through a real substitution

r=aR + pS, s=yR -+ 68

of non-vanishing modulus, then we shall say that the triplet wu,, u,, 5 is equivalent
under a real substitution to the triplet U, U,, U;. If, however, as in the cases of
most interest to us here, the substitution have integral coefficients and be of modulus
-+ 1, we shall merely use the term equivalent, it being of importance to observe
that it is appropriate here fo distinguish between proper and improper equivalence
in contrast to the corresponding theory for quadratic forms. In the theory to follow
all triplets will be assumed to be such that their constituent cubic forms neither
have a common non-constant factor nor are linearly dependent.
A ftriplet w,, 4y, 45 gives rise through the formation of the eliminant of

2y = wy(r, 8), @y = uy(r, 5), @y = uy(r, s) (1)
to a ternary cubic equation

¢ (21, %5, 73) = z Vi PR k=0,
Fy -+l Fy=3
which is in fact the equation of the unicursal curve given parametrically by (1).
This procedure is immediately seen to yield a set of simultaneous invariants of
the triplet wy, uy, ug since the eliminant ¢ is evidently unaltered apart possibly
from a constant factor if w, u,, 45 be replaced by an equivalent triplet U, U,, Us.
The coefficients 4, ; ; , the mode of formation of which will be considered more
fully presently, will be merely termed the invariants of w, u,, u;, since as will
be apparent later they form a fundamental system in the sense that all other in-
variants are essentially determined by them.
The invariants S and 7T of a general ternary cubic form

Ky o, K
J(@y, @, 3) = z Dy, x5, T1T575
Ey -l k=3
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will also be required. These are defined precisely as in Salmon’s Higher Plane
Curves but do not when regarded as polynomials in D, , ; have integral coeffi-
cients, since the coefficients of f have not here been affected by multinomial
coefficients. When f = 0 is a singular curve!) the discriminant of the form vanishes
and the consequent equation

T2 46482 = 0
implies that we may write
T=Q@QM)3 §=— M. (2)

It will be necessary also to introduce in connection with cubic forms corresponding
to unicursal curves a certain arithmetical invariant, which is analogous in some
respects to the determinant or diseriminant of a ternary quadratic (the discriminant
of a general ternary cubic being analogous in other respects to the determinant or
discriminant of a ternary quadratic) and which we name the deferminant of the
form. To form this invariant we use the contravariant

TQ + 9682P,

the vanishing of whose coefficients is seen by comparison with Salmon, art 240,
to be the condition that the form either have a cusp or break up into a line and
a conic. Using (2) we are led to introduce the associated contravariant

F(oy, X9, 06g) = 24_7(Q + 12MP),

the coefficients of which will be seen later to be integers, not all zero, when f is
a form with integer coefficients that corresponds to a unicursal curve. For forms
f of the latter type the determinant A is then defined to be the positive highest
common factor of the coefficients of F, the invariance of A with respect to integral
unimodular substitutions for the indeterminates of f being a consequence of the
contravariance of #.

Having introduced the invariants that will be needed, we must discuss briefly
the genesis of the fundamental system A, , , and its réle as a resultant system
for u,, uy, u;. To find the eliminant ¢(ay, z,, 25) of

@y = uy(r, 8), Xy = Up(r, 8), Xz = us(r, s) (3)
we consider two distinet lines (using homogeneous coordinates)
2@yt Aty + Mgty = 0, gty + pop + pis = 0

and observe that the condition that they intersect on the curve given by (3) is the
vanishing of the resultant

1) A singular cubic being any cubic with zero discriminant. By a unicursal curve is
meant here a non-degenerate singular cubic.
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R(Muy + Ay ~+ Aguiz, gty + patty + pgus), (4)

the coefficients of which when regarded as a form in the indeterminates A;, 4,, 45,
s g, 4y form the resultant system of w,, u,, #; in accordance with Kronecker’s
theory and which do not all vanish in virtue of the restrictions placed on u,, u,, us.
The fundamental system is thus just an equivalent resultant system, since by
Bezout’s method it is evident that (4) is a polynomial in Ayus — Agpe, Agpyy — Ayits,
Jqpis — Aop, and that hence ¢(xy, 25, 23) is obtained by replacing Ayuy — Asuy,
Aspy — Mypts,  Aqpta — Aopiy In this polynomial by wxy, #,, @5, respectively. Further-
more it is easy to see that when py, y,, u; have integral coefficients the h.c.f. of
the initial resultant system is equal to the h.c.f. of the fundamental system. Formed
in this manner ¢ is immediately seen to have a covariant property with respect
to linear substitutions that replace wu,, u,, 43 by linear combinations wuy, g, Us,
it being clear from (4) that, if w,, u,, %s; %, @5, 25 transform cogrediently by means
of a unimodular substitution into wy, uy, us; ;, 25, ; and ¢’ be defined in terms
of uj,uy, u; as ¢ was in terms of wy, u, us, then ¢(x,, 2, x3) = ¢'(2], T3, T3).
It is important too to note here that when w,, u,, %5 is transformed into U, U,, U,
by a substitution of modulus K the fundamental system of U, U,, U; is obtained
by multiplying that of w,, u,, u; by K°. We note also that through setting
M =pm =0 we have A, = R(u,, us).

Although the ternary form f(x,, z,, ;) has been interpreted through the corre-
sponding unicursal curve in two dimensional projective space, solutions of the
equation f(xy, %,, ¥3) = 0 are to regarded as being distinct unless their corresponding
components be all equal, rational and integral solutions being those in which x;, 2,, 23
are, respectively, rationals and integers. It follows from the theory of unicursal
curves that, if ;= wi(r,s) be a parametric representation of f(x, z,, z5) = 0,
then each solution of f= 0 apart from that corresponding to the double point is
obtained from a unique pair of values r,s; also, proportional solutions, that is
those that appertain to the same point on the curve, correspond to proportional
pairs 7, s.

We are now in a position to prepare for the proofs of our final results by proving
a number of simple lemmata. Triplets throughout will have integral coefficients
although the indeterminates in them may on occasion take non-integral values.

Lemma 1. Triplets of binary cubic forms with proportional invariants are equivalent
under real substitutions the coefficients of which are of the form 0, r0, rs0, 70,
where 1y, 1y, 15, 14 are rational and 0 is the real cube root of an integer.

We require the principle that, if 2; == w;(f) be a parametrization of a unicursal
cubic, where w;(t) has integral coefficients, then, excluding from consideration the
double point and its parameters, any point which can be represented by rational
co-ordinates corresponds to a rational value of ¢ and conversely.
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Let wy(r, s), uy(r,s), ug(r,s) and UyR,S), UyR,S), UyR,S) have pro-
portional invariants. Then, since the functions v(f) = wui(t, 1) and V«(T) = U«(T, 1)
furnish two parametric representations of the same unicursal curve, the equations

(8 _ (1) - v5(?)
ViT) — Vo(T)  Vu(T)

()

give rise to an algebraic correspondence between f and 7T that is one-one save
for the exceptional values of ¢ and 7T that relate to the double point, rational
values of ¢ being in correspondence with rational values of 7'. Therefore (5) is
equivalent to an homography

T + B
B

with rational values of «,f8,y,d, and we have the identity

ol f, 9T +8) (ol + B, 9T + 8)  ugloT + B, 9T + 9)

o(r,y U7, ) Uy(T, 1)
in which the common value of the terms is a rational constant A since the
denominators have no common factors. This constant can be taken to be 1 by
dividing «,8,7,0 by +/2 and the lemma then follows on substituting
T = R/S.
We note in passing that this lemma justifies our previous statement that the
system A, , , of invariants may be regarded as a fundamental one.

Lemma 2. Let f= 0 be a unicursal curve, where

k
Sy, 9, 73) = Z Dy, ik whahay
byt kpt-kg=3

is a primitive ternary cubic form of determinant A. Then there exists a triplet wuy, u,, Uy
with invariants AD, . . -

The proposition being covariant with respect to integral unimodular substitutions
for =y, x,, 23, it is enough to consider any form f* to which f is equivalent. If
(v1, ¥9, v3) be the coordinates of the double point expressed in terms of relatively
prime integers, there exists an integral unimodular substitution

@ = Jax) + pawy + vy 1=1,2,83,

which transforms the double point into (0, 0, 1) and hence f into the equivalent
form

I4 ’
f*(x;> L, 96‘3) = w(xi? .’L‘;) - x;X(m;: 95;) s
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where Y(@l, @) = oy + e + cpr1ay® + g
I4 ! ! r ’
and 1(21s ) = doxi® + dyi %y + dows? .

Reverting now to =z, x,, #; to indicate the indeterminates in f* it is seen by a
familiar method that

& = ul(r: 8) = TX(7'7 8), Ty = u2(7': 8) = 8%(7: 8)9 Xy = u3(7': 8) = ?P(f”; 6‘)

is a parametrization of the curve. Since the eliminant ¢*(x;, 2y, z5) of the above
system is proportional to f*, it remains to discover the coefficient of proportionality
and to substantiate an earlier assertion that made it possible for A to be defined.

Let the coefficients c¢;, d; of f* be regarded for the present as indeterminates.
Then the contravariant F*(x;, oy, o3) of f* 1is rational and integral in these in-

determinates, since
. (2d0d2 d; )3.

9 36
Also, as is shewn in art 135 of Salmon’s Modern Higher Algebra, the coefficients
of F* are zero except for the coefficient O, say, of &f. Now, comparing the
coefficients of a1 in f* and ¢* we have

¢* _ Blsy(r, 8), y(r, ) _ Bls, w(r, ))B(y(r, 9), y(r, 5))

f—* - o Co
But the vanishing of R(y,v) implies that of C, since f* factorizes if v and yx
have a common factor. Therefore, as R(y,y) is irreducible and is of the same
degree as C,

= R(y(r, s), y(r, 8)).

R(y, y) = KO

for some constant K. Specialising f* to be ¢y — dyix,, for which it may be
verified that R(y, ) and C are both cid;, we deduce that X = 1. We conclude
from its contravariance that F not only always has integer coefficients but that
also the determinant A is the measure of the absolute ratio of ¢* to f*. Since
the sign of the ratio can be changed if requisite by substituting — u(r, s) for
ui(r, s), the proof of the lemma is complete.

Before enunciating the next lemma we define a primitive representation of
integers my, my, my by a triplet wu, u,, u; to mean the simultaneous expression
of m; by wr,s) with common relatively prime integers r»,s for :=1,2,3.

LeMMA 3. Given integers my, m,, my are represented primitively by at most k
classes of triplets with given invariants, where k = h.cf. (my, my, ms).

We recall the familiar principle that, if m = f(x, v} be a primitive representation
of m by a binary form f(r, s), then there is a substitution depending only on «, y



ON THE LATTICE POINTS ON UNICURSAL CUBIC CURVES 217

that transforms f(r, s) into an equivalent form having leading coefficient m.
Thus, if wuy,uy, u3 and U, U,, U; with the same invariants both represent
primitively m,, my, m,, then they are equivalent, respectively, to v, v, v3 and
Vi, Vi, Vs in both of which triplets the leading cosfficients are my, m,, m;. By
Lemma 1 we have

vi(r, 8) = VIR, 8),

where r =«R + S, s = yR + 88, the substitution being of modulus unity as
the invariants are equal. Since »r =1, s=0 and R =1, S =0 give the same
solution, we infer (viz. introductory remarks) that « = 1, rational, 3 = 0,
0 =1 and therefore that

ViR, 8) = vi(R + BS, 8). (6)

Examination of the coefficient (8, 1) of 8% in (R + 58, 8) shews that the
denominator of B expressed as a fraction in lowest terms divides m; and hence
k. Since triplets V,, V,, Vg corresponding to values of 8 that differ by an integer
are equivalent, (6) gives rise to at most k inequivalent triplets V,, V,, V5 and
the lemma follows.

We are now in a position to prove our four theorems concerning class numbers
and the representation of integer points on cubic curves.

TrnoreM 1. Triplets with assigned invariants A, , , are distributed into a
Jinite number of classes.

Let (&, &, &) be the co-ordinates expressed through relatively prime integers
of some rational point, other than the double point, on the corresponding cubic
curve. Then for any triplet w,(r,s), uy(r,s), us(r,s) with the given invariants
there is a unique positive integer A for which the triplet can represent primitively
Ay, A5, AE; (see the remarks before Lomma 1 and at the beginning of the proof of
that lemma). Since the simultaneous congrusnce wuy(r, s) = uy(r, 8) = uy(r, 3),
mod 4, is soluble for (r,s) = 1, the members of the fundamental resultant system
for wy, 4y, u; are all divisible by 2 and hence 1|0, where @ =hef. 4, ; ;.-
The number of possible values of 1 being limited by this and the number of classes
which can primitively represent A&, A&,, A£; being limited by Lemma 3, the class-
number of triplets with given invariants is finite (in fact not greater than (@),
the sum of the positive divisors of @).1)

As an analogue of Theorem 1 in [2] we now consider

THEOREM 2. Let f(2,, @5, x3) = 0 be a unicursal cubic curve, where

K, ko, K
Sy, 9 23) = 2 Dy 1, 5, X755
Kyt loy k=3

1) A sharper estimate can be derived through an easily obtainad improvemant in Lismms 3.
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18 @ primative ternary cubic form of determinant A. Then there is o finite set of triplets
uf), uld), u§) with invariants of the form AMD, . ., where XA ond %>0,
with the property that the general primitive solution of

S, 5, 23) = 0
18 given by
@, = uD(r, s), @y = uP(r,s), x5 = u(r, s),

where, for each j, the integers r,s run through all wvalues for which
hef .(u?), ud), u{) = 1. Each primitive solution with the exception of that relating
to the double point is obtained thus precisely once.

The general solution in integers of the equation is

2 = Kuf(r, 5), x5 = Kuldlr, 5), @5 = Kulf)(r, 5),

where 7, s run through all integer values and K through all cube-free values. Each
solution apart from that relating to the double point is obtained (but possibly more than
once).

It is enough to consider the first part of the theorem as all solutions can be
derived from primitive ones by using cube-free multipliers X and by allowing
r and s to have common factors greater than 1.

Let @y, uy, w5, which as will be clear may be regarded as u{), ud), u(, be
a triplet with invariants 4D, , , in accordance with Lemma 2. Then, for any
primitive solution &, &,,& of f= 0, there is one positive divisor A of A for
which there is a primitive representation of 2&,, A&, A& by wuy, U, 4. Letting
®,y be the values of the variables in this representation, choose integers g, ¢
so that «d — By = 1 and transform the forms wu(r, s) into the equivalent forms

UyR, S) = 2&R3 + B;R*S 4 C;R82 - D,S3 (7)
by the substitution
r=aBR + S, s=9yR 4 88
of modulus unity. Then the forms
1
UXR, 8) = 5 UKR, i8) (8)

have integral coefficients, the triplet U¥, U¥, U¥ by considerations of weight
has invariants AXD, , ,, and UF, UF, UFf primitively represents &, &, &.
Conversely all relatively prime triplets of numbers represented (primitively) by
Uy, Uf, UF are primitive solutions of f= 0. Since 1|4 the forms U¥, U¥ U¥
thus obtained for each primitive solution of f = 0 belong to a finite number of
classes by Theorem 1 and by choosing one representative triplet in each of these
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classes we form a system of triplets (u{?, u{), u{?) that yield all primitive solutions
of the equation and only primitive solutions of the equation.!) It remains to shew
that each primitive solution is given but once. A primitive representation of a
primitive solution 7y, 7,7, by a triplet «{), u{), u{) equivalent to the triplet
given by (8) corresponds to a primitive representation of Any, Ay, Ang by (uy, %y, us),
since (R, 1) = 1 from (7) and (8) as otherwise ,, 75, 7, would all be divisible by
a divisor of 1 exceeding 1. Therefore 7, 75, 73 cannot be primitively represented
by two triplets appertaining to different values of A. Suppose then 7, 7,, 13 be
primitively represented by two triplets of the system appertaining to the same
value of A. These triplets being equivalent, respectively, to triplets of the form
UE, U¥, UF; V¥, VE, VE we have by the above method again

Ani = Ui(Qm };O‘O) = Vi(Ro, lSO),

where (g,, A0,) = (Ro, ASy) = 1 and where, as Uy, U,, Uy; Vi, V,, V3 are both
equivalent to u,, u,, Us,

Uil + pm, yl + om) = Vi(l, m)
for some integers «,f,y,d such that «d-— gy = 1. Hence
0o = oBy + BAS,, Aoy = yR, + 618,
and so Aly. Therefore the unimodular integral substitution
o =R+ (BNS, o= (y/AR + 88

transforms  U¥(o, 0) = Uj(p, 26)/A iInto V¥R, S) = ViR, A8)/A for i =1,2,3.
Hence U¥, UF, U¥ and V§, V¥, V¥ are equivalent and so the two triplets of the
system are the same. Since a given triplet cannot represent a solution more than
once the proof of the theorem is complete.

THEOREM 3. Let f(x,, %5, ¥3) = 0 be a unicursal cubic curve, where
— e T ke
Sy, 9, 23) = Z Dy, v, ey TY05TS"
kytkyt-ky=3

1s primitive. Then there exists A such that there is only one class of triplets with
nvariants ADy . ..

We confine our attention to the case where (4, 6) = 1 in order not to prolong
the proof. )

Choose the minimal positive value of 4 such that (4, 6) =1 and such that
there is a triplet with invariants AD, , ., it being obvious that 1 <21 <4,

1) If the main end in view were merely a system of forms with this property, then the
finiteness of the system could be more easily deduced from the fact that a general integral
substitution of modulus 1 can be obtained by compounding a unimodular substitution with
one of a finite number of substitutions of modulus 2.
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and suppose that the class number of triplets with these invariants exceeds 1.
Let wy, 4y, Ug; vy, Vg, v3 be inequivalent triplets with these invariants. Then for
any prime divisor p of 1 at least one form, w;(r,s), say, from the triplet
Uy, Uy, Uy IS not identically zero, mod p, since otherwise p would divide all the
coefficients of all the forms in the triplet and there would be a triplet (u,/p, %y/p,%3/P)
with integral invariants (i/p%)D, , . contrary to hypothesis. The congruence

%i,(r, 1) = 0, mod p,

being of degree at most 3 in 7, has at most 3 roots, mod p, and so there exists
an integer 7, such that

ui,(rp, 1) =0, mod p.
Next, defining r to a solution of the simultaneous congruences
r=r1p,modp;  pli

and writing & = wui(r,l), we deduce that h.c.f. (&, &, &) =1 since A is the
highest common factor of the resultant system for w«,, u,, us. Also there exists a
positive number u such that ué&,, u&,, u&; is primitively represented by vy, v,, v;,
where u # 1 by Lemma 3.

Replace the triplets by equivalent triplets Ui(p, ), U,(o, o), Us(o, o) and
ViR, S), Vu(R,8), V4R,8) so that the solutions &, &, & and ué, ués, ué;
are given, respectively, by ¢=1, ¢=0 and R =1, §=0. Then, letting

o=oR+pS, o =yR 4 68

be the real substitution of modulus 1 that transforms U,, U,, U; into Vi, ¥V, V,
in accordance with Lemma 1, we have that o/u, = 1, y =0, where u;, = u'?,
and hence that o=y, y =0, 6= 1/y, since «d — py = 1. Furthermore,
«, B, v, 8 being in rational ratio, u} is rational; hence g, is an integer k> 1
so that w = k% and B is rational.

We consider the effect of this transformation on Uj(p, ¢), which we write as
ai0® + bip%0 4 cipo® + dio®, where a; = &. We have

g2

= GRS + LRS(3aifl + b) + —— (3af2 + 25k + c)
S3

+ 75 @ + o + ol + d) .

An examination of the coefficient of S§%/k® for 7 =1, 2, 3 leads first to the con-
clusion that fk is an integer on account of h.cf. (#, @y, @;) = 1 and then to the
conclusion that the coefficient of R2S in V; is divisible by k. Hence

WR, S) = kVi(R/k, S)
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has integral coefficients and there is a triplet W,, W,, W, with invariants
(AE¥)Dy, v, 4,- Since this is not in accordance with the definition of 2, the class

number associated with AD, , , is 1.

THEOREM 4. In the notation of Theorem 3 let the class numbers of triplets with
wmvariants 4Dy . i, ond those with invariants Dy . . be both 1, where
(M40, 6) = 1. Then Ay, 4 have the same prime factors.

Let uy(r, s), uy(r,s), us(r,s) and o(R,8), vy(R, 8), vs(R, S) be triplets with
invariants A,.D, ;. ., and A0y 4 ., rvespectively. Then, by the argument used
in the proof of Theorem 3, there is a triplet of relatively prime numbers &, &, &
such that w,, u,, u; primitively represents &, &, & and v, vy, v3 represents
ok, tisbs, by for some positive divisor w, of 2, Also, by having chosen w;, %, u,
and v, v, v; to be appropriate representatives in the classes to which they
belong, we may assume that these primitive representations are given by r = 1,
§=0 and R =1, §=0. Furthermore, as in the proof of Theorem 2, &, &, &
is primitively represented by the triplet w,, w,, w; through values R =1, § = 0,
where

1
wi( R, 8) = — v R, p,S)
M2

and wy, wy, wy has invariants wp3i,D, . .. By a previous argument
ui(oeB + B8, yR 4 68) = wi(R, 8), (9)
in which &« =1, y=0, 0= (u3l/4)"” because the modulus &«d — By of the
transforming substitution must be (uil,/4,)"’; furthermore B and & are rational.

Writing  wui(r, s) as a;® + bir?s + crs? + dis®, we express (9) in the form

wi(R, 8) = a:R® + R28(3a;f + b:0) + RS%(3a:2 4~ 25,86 + ¢:i6?)

+ 8¥(a:f® + bif?6 - cipd? + did®),
from the coefficient of S%® in which we infer, in virtue of h.c.f. (ay, G, a3) = 1,
that the denominator of § expressed in lowest terms is a divisor of the denominator
of 0 expressed in lowest terms. Hence there exist integers [,m such that

f=10-+m and hence the substitution r=aR + BS, S =yR + 68 is com-
pounded of the substitutions

r=mr+lIs = R, B, =R+ mS
8=81 81:—681 SIZS,

of which the first and the third are both unimodular. Moreover, since the first
substitution takes # =1, s = 0 into r, = 1, s, = 0, it is clear that we can assume
that the triplet u,, u,, #, was so chosen that [ = 0 and that hencs

wiRy, 88,) = a:R + biSRIS, + c:i®R,S? L di53S?
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has integral coefficients. If X be the denominator of § (in lowest terms), then
Klbi, K2|e;, K3|d; and wui(r,s) is of the form

aird - Kbjres - Keirs? - K3d,s3, (10)

from which we infer that X = 1 in view of the fact that any substitution of the
form r =9, s=0-4 (n/K)o, where 0 <5 << K, transforms the triplet given
by (10) into an inequivalent integral triplet with the same invariants.

We thus have that & is an integer and hence 1;|uil,. Therefore all prime
factors of 1, divide 2, since u,|l,. Similarly all prime factors of 2, divide 4,
and the theorem therefore is true.

Theorems 3 and 4 may be illustrated by a reference to the special curve iz, = lx3,
where [ = p%?® and p,q are distinct primes. Here the non-zero values of D, ,
are Dy ; 0=1 and D,,,= —1. Corresponding to the invariant systems
ApgDy ..y, for 2, =1, dy=p3 1A3=¢> there is for each A; just one class
of triplets; the simplest representatives of the single classes are as follows;

= pgr3, x, =12, x5=g (AH=1)
Ty =pr3, xy=1%, 23 =g (d=¢%

= qr3,  xy=1%, x3=p% (h=7p%.
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