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Let G be a locally compact abelian group and let @ be its dual group.

Definition 1. A compact subset F c G is called Kronecker if for every con-
tinuous function f on E of modulus identically one (|f(z)j=1, Vx €E) and

for every &> 0 there exists y € @ such that
sup |f(z) — ()] < ¢ (f. [1] ch. 5, § 1).
%€

We shall denote by M(G) the set of all bounded complex valued Radon measures
on G and by M(E) the elements of M(G) with support in a compact subset
E of G.

We shall denote by C(X) the set of all continuous complex valued functions

on K.
Definition 2. A compact subset E of G is called a Helson w«-set (H,-set) if
there exists a constant « > 0 such that
il = sup B0 = o fiul
xea
for every u € M(E), (observe that then 0 <o« <<1).

If K is a compact subset of G we shall write Gp (K) for the group generated
by K in G.
In this paper we shall prove the following theorem.

THEOREM. Let K be a totally disconnected Kronecker subset of G and D a
countable compact H -subset of G such that

Gp (K) N Gp (D) = {0}
Then KUD is an H,-set.
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Remarks. Varopoulos [3] has proved that if K is any totally disconnected
compact H;-subset of G and D is any H -subset of G then KU D is Hgy
with f(x) > 0.

The interest of our theorem lies in the fact that in this special case we have
plo) = o

However we must point out that the conclusion of our theorem fails if we replace
the condition »Kroneckers by »H;» for the set K. To see this observe that the
set {(x,0), (—=z,0), (0,—y), (0,y)}cR® (x,y€R) is not an H,-set
of R? despite the fact that it is the union of two H,-sets

E1=={($,0), (——w,O)}, E2={(0,—y), (0,?/)}

that satisfy Gp (E,) N Gp (£,) = {0}.
We shall prove first:

Lemma. Let K and D be as in the theorem with D ={x,,25,...,%} @
finite set. Then for every x € G there exists {fadnis X € G such that

2 —> 1 uniformly on K and yn(2;) — x(25)

Jordll j=1,2,...,r

Proof. Let L be the set of points £ € T" for which there exists a sequence
{x. € G}, such that gz, — 1 uniformly, and (gu(1), 2a(®) 5 - - - 5 Zn(2:)) — 1
in Tr- = n—>o0

Let us also denote by H = {y(x;), x(®) , ..., y{x.)}. We observe that both
L and H are closed subgroups of T" and that L c H. We shall prove that
L=H.

Towards that let us suppose by contradiction that L == H. There exists then
a character @ € T" of T such that

OL)=1 and OH) =+ 1. (1)

Since O €T and O(H) =1, there exist 7,,7y,...,n €Z such that

Oylmy) 5 (@) 5« -y 2@)) = x(ny@y + Moty + ... +ey) = g(y) V x €G  where
Y = mX; + Ny + .. ..+ 02 #£ 0.

Let now {z,}2_, be a sequence of characters such that the sequence of points
{(ga(®)) 5« o o s gul®@)) €T}, converges towards a point of L, (1) implies then
that we have:

Olim (zu(®y) 5« -« 5 (@) = WM O(xu(®y) 5 - - - Za(@)) = lim aly) = 1.

But this implies that if {y,. € @},",‘;1 is a sequence of characters such that
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¥n |, —1 uniformly on K then wp.(y)—1

and from that using Corollary 1 of [2] we deduce the required result that y € Gp (K).

Proof of the theorem.
Case 1. D is finite.

Let u€M(KUD);, we can write u=pu, + u, where y, € M(K) and
Yo € M(D). Then

il = llall and il 2 ] -
We first observe that there exists ¢ € R and y, z, € G such that

67fialie) 20, €)= ol — e @
Re ¢i(zy) > ljall — . @

Indeed choose ¢ € R and y, € @ such that (2) holds. Let us show that we can
find 4, € i satisfying (3).
We can choose p € C(K), |p]=1 such that

¢ [ v dm = lpull — o2

and then since K is Kronecker we can approximate u uniformly by #, € G as
close as we like. This shows that ¥, can be chosen to satisfy (3).

Now from the lemma we can find a sequence ¢, € @ such that yn —> 1 uniformly
on K and

Yo lp—=> 222 1, -
We have then
Re e jiy () — Re €7y (13)
and Re € fiy(7,9) ~ Re € ty( ) -
Therefore
il = sup |iilzpn)] = sup Re {e7ik(xpn)} 2 llall + ollpll — 26
= o(llpall 4 llall) — 26 = o] — 22 .

Since ¢ is arbitrary the conclusion of the theorem follows.
Case 2. D is countable.
Let u € M(K U D) we can write

p=p+ et p, m€MEK), p,,ups €MD)
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with the support of u, lying in a finite subset of D and |y < e (¢ > 0).
Now by case 1

A /_\
&+ o = lltn + piallo = ollis + ll = sl — &) = o] — e
Therefore
Al = olull — 2¢.

And since ¢ is arbitrary this completes the proof of the theorem.
It is my pleasure to express my gratitude to Dr. N. Th. Varopoulos for his
advice and critisisms and the Mittag-Leffler institute for its stimulating hospitality.
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