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1. Introduction

In [5], p. 116, L. Hérmander proves the linear Cauchy-Kovalevsky theorem
by a method of successive approximations. The main lemma used by Hoérmander
in that proof is also found in M. Nagumo [6]. Nagumo uses the lemma and Schauder’s
fixed point theorem to prove the Cauchy-Kovalevsky theorem. L. V. Ovsjannikov
[7] has used the ideas in the lemma to prove a theorem that could be called an
abstract Cauchy-Kovalevsky theorem. We shall call it the Ovsjannikov theorem.
The theorem treats a Cauchy problem for an ordinary differential equation for
functions with values in certain Banach spaces that form a scale of Banach spaces.
See also F. Treves [22] and [23]. The Ovsjannikov theorem can be used to prove
the linear Cauchy-Kovalevsky theorem as is domne in [7], [22], and [23].

In [23], p. 24, Treves proves the dual Ovsjannikov theorem taking as scale of
Banach spaces the duals of the spaces in the original scale. Then on pp. 53—58
[23] Treves takes the dual of the scale used by Ovsjannikov to prove the linear
Cauchy-Kovalevsky theorem and applies the dual Ovsjannikov theorem. This
gives the dual Cauchy-Kovalevsky theorem. Here the coefficients are analytic
functions just as in the ordinary theorem but the solution is a function of the time
variable with values in the space of analytic functionals on the space of analytic
functions of the space variables.

The purpose of this paper is the following. We shall give another proof of the
dual Cauchy-Kovalevsky theorem, Theorem 1. We shall also prove a global
version of that theorem, Theorem 2, together with a global version of the ordinary
Cauchy-Kovalevsky theorem, Theorem 3. In the proofs of the dual theorems
we shall use the Fourier-Borel transformation of analytic functionals. Then the
dual theorems are transformed into theorems for partial differential equations of
infinite order in the space variables. The solutions of the transformed problems
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are holomorphic functions that are entire functions of exponential order one in
the space variables. The coefficients are polynomials in the space variables. We
have treated problems of this kind for equations of finite order in [11] and [14].
See also S. Steinberg and F. Treves [19]. In [14] we use a higher order version of
the Ovsjannikov theorem which was proved in [13]. The methods in [14] are applied
directly in the proof of the dual Cauchy-Kovalevsky theorem here called Theorem 1.

Looking at Hormander’s proof in [5], p. 116, one notes that the radius of con-
vergence of the solution is proportional to the sum of the absolute values of the
coefficients. This is very disturbing when one wants to prove global theorems for
equations with variable coefficients. We have earlier used other methods to over-
come this difficulty, see [8], [9], and [10]. In the proofs of Theorem 2 and Theorem
3 we shall modify the Ovsjannikov technique in such a way that the radius of
convergence of the solution has a lower bound that is proportional to the sum of
the absolute values of the coefficients in the principal part.

A comparison with the results in [8], [9], and [10] specialized to the situation
in Theorem 3 and this theorem shows that Theorem 3 is more general. But it should
be stressed that the Ovsjannikov theorem is not applicable to general Goursat
problems in its present form.

We use the higher order version of the Ovsjannikov theorem [13] in the present
paper. This is simple. But some information is lost. For technical reasons the dual
theorems Theorem 1 and Theorem 2 are given as the Fourier-Borel transformation
of the dual problem. The original dual problem can be rewritten as a problem for
a first order system. Then the original first order Ovsjannikov theorem can be
applied to the Fourier Borel transform of the system. In this way one proves that
in Theorem 1 %(f) and 4(¢) belong to HG(0,s, (s’ — s)/2a,0) and not only
to HG(0, s, ((s’" — s)/2a)", 0). We have used this fact in [15] to prove local
and global uniqueness theorems of Holmgren type.

It would also be interesting to study other dual problems suggested by the
results in [11] and [14]. S. Steinberg and F. Treves have already studied a special
case in [19].

Below we use various ideas from papers by F. Treves, S. Steinberg and F. Treves,
L. V. Ovsjannikov, and by ourselves. See the reference list. As to the content we
give the preliminaries in Section 2. In Section 8 we prove our theorems on the
Fourier-Borel side of the problem. Section 4 contains a discussion on the dual
Cauchy-Kovalevsky theorem. The ordinary global theorem is treated in Section 5.

2. Preliminaries
By 2= (2,...,%,) we denote a point in € and by = (¥1,-..,¥,)

we denote a point in the dual of C". The scalar product is denoted by zy =
Y + ...+ 2,y,. We use standard multi-index notation. So o = (0t ,...,%,)
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is a multi-index with nonnegative integers as components. We write |x| =
e+ ool =0l et =251, a2, If o < B 1 <j<mn, then we
denote this by o« <p. We also write D,=9d/ot, D,= (D,,...,D,) =
(0/0xy ,...,0/0x,) and DS = Dfl...D%. Differentiation may denote real or
complex differentiation or differentiation in the natural way in formal power series.
A formal power series « is also written as

u = > D¥u(0)(a!)a* .
Let s>0. If
llull,» = sup [DFu(0)[s™ < o0, (2.1)

then « is said to belong to the space G(0,s). See [14]. If » is in G(0,s) and
if we look at u as a holomorphic function then

w@) = 3 DXu(0)(x!) ",

is an entire function of exponential type such that for some C > 0

lu(@)] < Cexp (s(lay] + ... |z.D), z€C". 2.2)
This follows directly from (2.1). If (2.2) is true then it follows from the Cauchy
formula that « € G(0,s") for every ", 0 < ¢ <s.

Let H Dbe the space of entire functions in ¢ with the topology of convergence
on compact sets in C". Let H’ be the topological dual of H. If « € H' and
h € H we define differentiation on H’' by

(Du)(h) = u(— D;h) .
The Fourier-Borel transformation of # is defined by
U(y) = u(e?) .
It is well known that
H3u—4 €l Go,s),

s>0

is a bijection, see [20], p. 474, and the argument above. As usual we have

N

Daly) = — yily), and auly) = D).

The following lemma is crucial. Its proof is contained in a careful reading of
the proof of Lemma 4.1 in [14].

Levmma 1. Let 0 <<a<<s<<s <<2a and let u € G(0,s"). Let further B and
y be multi-indices. Then y*Diu belongs to G(0, s) and there exisis @ constant C’ > 0
independent of a, s, s, w, B, and v such that

ly" Dyulo, , < C"(181/€) P51 ((s" — 8)/2a) " [y, - (2.3)
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The function g(f) is a function of the complex variable ¢ with values in G(0, s).
If for some ¢ > 0 and for some complex number # it is holomorphic in some
neighbourhood of [t — '] < p then we say that §(f) belongs to the function class
HG(0, s, o, t'). See also [14].

3. The Fourier-Borel transiormation of the Cauchy problem

We start by formulating the local version of the Fourier-Borel transform of the
dual Cauchy-Kovalevsky theorem. Here local means local in the time direction.

TeEOREM 1. Let aylt, x) Z a0 18] < j, 1 <j <m, be complex valued

functions that are analytic in some neighbourhood of the origin in C"*'. Here m is
a fixed integer and f and vy are multi-indices. There exist further numbers a, &,
0<a<<s <2a p>0, and a function §(t) € HG(0,s', 0,0). There also exists
a constant C > 0 such that

> Dlag e <0, 1<j<m, [t|<o. (3.1)

1Bl=<j »

The operator D7 denotes iterated integration j times radially from the origin in
the complex plane. It follows that there exists an &, 0 << & < o such that o every s
in a<<s<<s there exists a unique function v(t) in HG(0,s, e((s’ — )/2a)™, 0)
that satisfies

By =3 5 o3 ap DD+ 0. (3.2)

S,
I
-
E

Let
4(t) = D;7™o(t) .

Then 4(t) € HG(0, s, &((s' — s)/2a)™, 0). From (3.2) it follows that 4 is the unique
solution of this kind of the Cauchy problem

\Y%E!

Dri(t) =

j

>, Y 2 a, DIDP4 4 §(t), Dia(0) = 0,0 <j<m. (3.3)

118l=j

Proof. Let u € G(0,8"), a < s < 8" << s < 2a. It follows from Lemma 1 and
from (3.1) that for some new C > 0 depending on @, C’, j and the old C
N 2 Y 2, a0 Djully, . < O(jle) (8" —8/2(1)" Z > laga,(8) o™ Ml o <

Bi<j v BI<j v

< C((s" — )/2a) “ull, »» -

With this estimate we apply Theorem 1’ in [14]. The proof is completed.
We now prove a global version of Theorem 1. Here we use the modified
Ovsjannikov technique mentioned in the introduction.



ON THE LOCAL AND GLOBAL NON-CHARACTERISTIC CAUCHY PROBLEM 175

THEOREM 2. Let au(t, x) = Z 07, 1Bl <j, 1 <j <m, be entire functions

in €Y. They are restricted by
1Bl =7 = alt, ) = !IZ U, (D)7 (3.4)
rI=j

The real valued function s"(r) is decreasing for r >0 and 0 <s'(r) <l. The
function §(t) belongs to HG(0, s"(r), r,0) for all r > 0. The operator D7 denotes
iterated integration § times radially from the origin in the complex plane. It follows
that there exist a decreasing function s(r), 0 < s{r) < s"(r), r >0, and o unique
Sunction v(t) € HG(0, s(r), r,0), r> 0, that sotisfies (3.2). Let

4ty = D7™5(t) .
Then 4(t) € HG(0, s(r),r,0), r> 0, and 4(t) satisfies (3.3) for all t in C.
Proof. We take an arbitrary r > 0. We want to show that a solution of (3.2)

exists for |f{ < and that it belongs to HG(0, s'(r), r, 0) for some number s'(r).
We note that there exists a constant C such that

Z S Slag® <0, [ <r+1. (3.5)

Ligl=i v
Lemma 1 then says that for » € G(0,s"), 0 <a <s<<s < 2a <1,

I Z 2, Y, () Dyully,, < CC'(jleY (s — 9)/2a) 7l [t] <7, 1 <j<m. (3.6)

Bl=j v
We also have that for some C(a), 0 < a << 271,
> 2 lagBla™" < Ca), It <7, 1<j<m. (3.7)
Bl<j v

From Lemma 1 it follows that

H Z Z Y, () Dyully, . < C@)C(jle)((s" — s)/2a) Tully, o, [E] <7, 1<j<m. (3.8)
We now define 2,(f) = 0 and 9,(), £ > 1, by

Do salt) gm S P(S s ODIDTR0) + 4, k=0,1,2,...  (3.9)

Iﬁ|<1 y

We shall show that there exist constants M and K such that for 2¢ < s"(r) and
o <s<s <2a with

d = (s’ — 8)/2a
10p41(8) — 0u()llo,» < M(K[t])d™™, |} <1, £=0,1,2,.... (3.10)
For k ==0 there exists an M since we may choose ‘
M = sup [§(0)lo, 20 1] <7
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‘We now assume that (3.10) is true for all £ < k’. We choose s" = s + 2ad/(k’ + 1).
Then we have (5" — s)/2a =d/(k’ + 1) and (s" — §")/2a = k'd[(k' 4+ 1). From
(3.6)—(3.10) we get with s’ replaced by s" in (3.6) and (3.8)

A = B yo(t) — DryaDllo,s <

S_é ME¥(@r'|(k' 4 1)) (@](&" + 1) (D7 t[)C"(fle)(C + Cla)d/(k" + 1)) .

For a fixed @ it is obvious that there exists a k" such that

C+ Cla)yd|(k + 1) <20, ¥ =K.
So we let
14

M = sup l§(t)lo, 20 | | (1 (C(k + 1))

[ <r k=1
and
K = 2C'm™+'Ce™ .
Then we have for rIr:' >k

4 < 2 ME¥G me™) K |t e (k' + 1K + 1) ... (F + )<
< M(K[¢|)¥+1g—m¢+D

For k¥ < k" in the definition of M we replace k&’ by k' and call this new number
M. Then it is obvious from above that for 0 <k < %" (3.10) is true with M
replaced by M,. Since M, < M we have now shown that (3.10) is true for all k.
The method of proof is the modified Osvjannikov technique mentioned in the
introduction.

We now note that the successive approximations converge in HG(0, a, K72, 0).
We also note that K only depends on C and is independent of a. If we now let
D' denote integration radially from a fixed arbitrary ¢’ in the complex plane,
'] <r, in (3.9) we get a solution of (3.2) with this D;". The solution is in
HG0,a', K-1,¢') for some a’ < 1. We note that K~ is independent of a’
and .

We now assume that we have a solution of (3.3) in HG(0, s(+"), 7", 0) for
" <1’ <r, ie. there exists a function s(r"), 7" <#' such that this is true. If
now 7’ is chosen maximal and if ¢ << # then take a ¢, |t'| =+'. Letb

m—1

Uy = 3 (t— ¢V (i) Dlat')

j=0
and look at the equation
Diu(t) = 2 > Y Z 5, () Dy DF 7 (ult) + uo(®) + (1), Diu(t’) =0, (3.11)

=118l <j
0<j<m.
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We realize that u = 4 — u, solves this equation in {¢; [t] <+, |t —¢| < K}
We now choose 2a’ = s(r') and we find that «(f) exists and is in HG(0, o', K1, ¢').
But ¢ is arbitrary so we can choose s(r") = 27s(+'), ' <" < + KL
Therefore # is not maximal and we have a contradiction. Note that
u(t) € HG(0, s(r"), r, 0). Theorem 2 is proved.

Remark 1. It is obvious from Theorem 1 in [14] that we can give a »continuousy
version of each of the »holomorphic» theorems above. The proofs are even simpler.

Remark 2. There is also an sintegrable» version of the theorems above. A look
at (3.2) shows that integrability of (f) in ¢ is the weakest and also most natural
condition we can put on o(f). This is a general fact for all Cauchy problems in the
(3.2) form. But we have not worked out the details here so the precise formulation
is open. See [13] and [14].

4, The dual Cauchy-Kovalevsky theorem

We assume now that the hypothesis of Theorem 1 is satisfied. Then we apply
the inverse Fourier-Borel transformation to the equation in (3.3). We get

Drut) =3 > (— 1)P\Diay(t, ) u(t)) + g(t), Diu(0) =0, 0 <j <m. (4.1)
i=1181=j

Here ¢(#) and w(f) are functions of the complex variable ¢ with values in H'.

The regularity in ¢ of these functions is given via the Fourier-Borel transform

and Theorem 1. We note that u(f) is carriedin { ; max [z;| < s~} if 4(t) € G(0, s).

See Section 2 and [21], p. 474. See also the introdujct,ion where it is pointed out
that the conclusion of Theorem 1 can be given in a stronger form. Note that if
(3.1) is true for a certain @ then we can choose the same & in Theorem 1 for all
bigger . This fact is also used in [15].

In some way the results here are more special than those given by F. Treves
in [23], pp. 53—58. But the computing character of our result is very attractive
for some applications. See [15].

We now use the inverse Fourier-Borel transformation on (3.3) under the hypo-
thesis of Theorem 2. Then wu(t) is carried in max [z;] < (s(]t]))™* for all ¢ This

i
is the global dual Cauchy-Kovalevsky theorem.

There are some indications that (3.4) is essentially necessary in the hypothesis
of Theorem 2. The analytic solution of

D = yD;ﬁ,, (0, y) = e,

is it y) = > (7R ) -

Jj=0
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Here the functions @); are defined recursively by Qu(y) =e’, ;1= ny,Qj(y),
j = 0. It follows that Q(y) = (yDj)'e’. We now assert that

Q1) =e(jl), j=0,1,.... (4.2)
The following proof of (4.2) is due to N. O. Wallin, We get
Qi(y) =k20 (k") yD3)y* = . 2 I(k!)'lk(k — 12k —j+ 12k — Gyt
= =it

It follows that (4.2) is true. From this we conclude that our solution of the Cauchy
problem is divergent in (¢, z) = (2, 1). That it converges for sufficiently small ¢
follows from Theorem 3 in [14].

5. The global Cauchy-Kovalevsky theorem

We shall now prove the global Cauchy-Kovalevsky theorem for entire
functions. A formal power series u is said to belong to the class G(1,s) if

l[ully, s = sup |Du(0)|(a!)s' < o .
A careful reading of the proof of Lemma 4.1 in [14] gives the following lemma.

LeMuma 2. Let 0 <a<<s<<s <2 and let w € G(1,s'). Let further B and
y be multi-indices such that |y} < m for some fixed integer m. It follows that there
exists o constant C > 0 independent of a, s, s', u, § and y such that

[’ Diulh, , < OsVI=W(e=1]y|)((s" — s)/2a) " . .

Let u(x) be an entire function in €. If we look upon it as a formal power series

then it is obvious that « € () G(1,s) = G. It is also obvious that the converse
§>0
is true. If f(¢, z) is entire in C"*' then g¢(t) = f(t, ) is a function of ¢ with

values in @. It is easy to show from the Cauchy inequality that for every s > 0,
g(t) is holomorphic in ¢ for all ¢ with values in G(1,s). The converse is still
simpler. Now we state the theorem.

THEOREM 3. Let the functions a(t, x) = Z 02, Iyl <4, 1<j <m, and
f(t, z) be entire functions in C**'. We kowe the following restrictions.
Pl=i= a6 =3 4,0 1<j<m, (5.1)
=j

It follows that there exists a unique entire function - u(t, x) that satisfies

Dru=7> 3 a(t, 2)DD]ult, @) + ft, %), Diu(0,2) =0, 0 <j<m. (5.2)

=1 =
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Proof. We shall only sketch the proof since it is not so different from the proof
of Theorem 2. Let r > 0 be a fixed arbitrary number and let ¢/, [t'| <7, be a
complex number. For e > 1 with an obvious analogue to the notation in Section
2 we note that f(t,x) € HG(1,2a,1,¢'). If w €G(1,5") and if a <s<s < 2a
then it follows from Lemma 2 that

=l 2 Z a;,5(D)2" D]y, , < Cm™( 3 Z las,5(6)1(20) ") ((s" — )/2a) 7+ ad,

rl<j frl<i
1<j<m.
We also get
B=|3 > a2 Diul,, < Cm™(s' — s)/20)Tully,, > la,s0)],
bl=j 1BI<] 18l < [vl=j
1<j<m.

So there is a €] depending on @ and r and a C, depending on r only such that

A <O — 9)2a) ey, 05 IS,
and
B < Oy((s" — 9)/2a) ully, ., 1t} <7.

We now compare 4 and B with (3.8) and (3.6). Then we find that the radius of
convergence in ¢ for the successive approximations is independent of a. So we
find as in the proof of Theorem 2 that the solution of (5.2) exists for |¢] < r. The
solution is also entire in x. But r is arbitrary. The theorem is proved.

Since the equation Du == 22Du + f2* has no entire solution, see [12], we
conclude that (5.1) is essentially necessary.

We note that Theorem 3 is more general than Theorem 2 in [10]. In the reference
list the reader will find other aspects on global and local Cauchy problems and on
the related Goursat problems.

Added in proof: The »Ovsjannikov theorem» was proved already in 1960 by
T. Yamanaka, Comment. Math. Univ, St. Paul., 9—10 (1960—1961), 7—10.
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