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Introduetion

In this paper every Banach algebra is commutative and semi-simple with a
unit element. If B is a Banach algebra then My denotes its maximal ideal space
and 95 its Shilov boundary. Since B is semi-simple the Gelfand transform identifies
B with a subalgebra of C(Myg). If B then becomes a uniformly closed subalgebra
of C(Mp) we say that B is a uniform algebra. Notice that B is a uniform algebra
precisely when it is complete in its spectral radius norm.

If B is a uniform algebra and if A4 is a closed point-separating subalgebra of
C(Mpz) such that 4 c B, then we simply say that A is a subalgebra of B. In
Section 1 and 2 we analyze this situation. Here follow two results which are typical
applications of this material.

TrEOREM 1.1. Let X be a reduced analytic space and let A be a point-separating
subalgebra of @©(X). Suppose that K is a compact @(X)-convex set in X such that
the set K, = {z € X : |f(x)] < |flx forall f in A} is compact in X. Then K = K,
and M yx, = K, where A(K) is the uniform algebra on K generated by the restriction
algebra A K.

In Theorem 2.1. the following notations are used. D is the closed unit dise
in C' and A(D) is the usual disc-algebra on D. An element f € A(D) is smooth
if the restriction of f to T is continuously differentiable. Here T' is the unit
circle.

THEOREM 2.1. Let A be a subalgebra of A(D) such that A contains a dense
subalgebra of smooth functions. Then M, = D.

Let us remark here that the results above also apply to Banach algebras. For
if B is a Banach algebra and if B, is the uniform closure of B in C(Mjg), then
it is well known that My = Mp. If A is a closed subalgebra of B which separates

points in My, then A4, is a subalgebra of B..
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Using a famous principle due to Shilov (See [8, p. 214]), it follows that when M,
is identified with a subset of M ,, then ¢, ¢ My. This implies that M, can be
identified with M ,. In particular we have the basic principle below.

SHILOV’S PRINCIPLE. Let B be a Banach algebra and let A be a closed subalgebra
of B which separates points in Myg. Then M, = My if and only if M, = Mg

In Section 3 we prove a result about Banach algebras generated by analytic
functions.

TurorEM 3.1. Let X be a compact subset of a reduced analytic space Y. Let B
be a Banach algebra on. X such that X = My Suppose also that there exists an open
neighborhood U of X in Y and a point separating subalgebra A of OU) such
that Ay = {f € C(X) :f=f|X Jor some fGA}, is a dense subalgebra of B. If
now J is a closed ideal of B such that AxNJ is a dense subset of J, while
Hull (J) = {x € X : j(x) = 0 for all j in J} is a compact subset of the interior of X,
then J has a finite codimension in B.

In Section 4 we study compact holomorphically convex sets in C". If K is a
compact set in € we let @(K) be the algebra of germs of analytic functions on
K, and H(K) is the uniform closure of @(K) in C(K). We say that K is a
holomorphic set if K = My, It is well known that if K is an intersection of open
domains of holomorphy, then K is a holomorphic set. We give an example which
shows that the converse is false.

Finally Section 5 contains some material about integral extensions of Banach
algebras, based on results from Section 1.

Very often we employ the Local Maximum Principle (abbreviated LMP) in
the proofs. The LMP states that if B is a uniform algebra while V is a subset
of Mp\ 0z then V c Hullg(dV), where bV is the topological boundary of V
in Mg

We refer to [5] for basic facts about uniform algebras.

1. Convexity and analytic structures in uniform algebras

Let X be a compact Hausdorff space and let B be a uniform algebra on X.
When X is identified with a closed subset of My we have 9, c X. If K is a
closed subset of Mz we put Hullz(K) = {y € My : |f(y)] < |flx for all f in B}
If § is a closed subset of My we let B(S) be the uniform algebra on § which
is generated by the restriction algebra B|S. Flnally 2y denotes the Choquet
boundary of B. Here Xy is dense in o5

If the set Mz\ X is non empty, then we put 4 = M\ X and let b4 be its
topological boundary in My Then the LMP shows that A c Hullz(4) and if
B, = B(Hullg (b4)), then My = Hullp (b4) while 85 c bA. In the results which
follow we show that 9 is contained in a smaller set than b4 under certain
assumptions.
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Definition 1.1. Let B be a uniform algebra on X. We say that B has an
analytic structure at a point x € X if there is an open neighborhood W of z in X
and a homeomorphism @ from W onto an analytic subset V' of the open polydisc
D" in €", such that the functions fo¢~! are holomorphic on V for all f in B.

Notice that in Definition 1.1 the analytic set ¥ may be 0-dimensional at ¢(x).
This happens precisely when z is an isolated point in X. In the non trivial case
when dim (V) > 0 at ¢(x), the maximum principle for holomorphic functions on
V implies that = cannot belong to 5.

TuroreM 1.2. Let B be a uniform algebra on X and let W be an open subset
of X suchthat B has an analytic structure at each point in. W. If now the set
A = Mg\0y is non emply and if we put B, = B(Hully(bA)), then dp, C (DANW).

Next we introduce some concepts from [10]. If W is a locally closed subset of
My, then we put Hy(W) = {f€CO(W): to each x € W there is an open neigh-
borhood U; of .x in M5 and a sequence (b,) in B such that lim |f — b,|pq v = 03}.

Definition 1.2. Let W be a locally closed set in My and let ¥ be a locally
closed subset of W. Then V is called a By -analytic variety if to each point z € V,
there is an open neighborhood U of z in W and a family {f};e; in C(U) such
that the following holds. Firstly UNV ={x € U : f(x)=0 for all ¢}, and
secondly each f;]U\V belongs to Hy(U\V). The functions in C(U) satisfying
this condition are denoted by Hg(U ,UnN V).

Suppose next that U is an open subset of M, while V is a locally closed
subset of bU. Then we say that V isa U-analytic variety at bU if V isa Byyyp-
analytic variety. It is easily seen that a finite union of U-analytic varieties at bU
is a U-analytic variety at bU.

TEEOREM 1.3. Let B be a uniform algebra on a compact space X and suppose
that the set MpN\X = A 1is non empty. Let V be a relatively open subset of bA,
such that V is a A-analytic variety. Then A C Hullg(bAN V).

TaroreM 1.4. Let B be a uniform algebra on X and let W be an open subset
of X. Let K be a compact subset of W such that Hullg(K)N W = K. If now
the set M\ X = A is non empty, while bANW is a A-analytic variety, then
K = Hullg(K) and K = Mgy,

Notice here that if A is empty in Theorem 1.4 then K = Hullg(K) follows
because each closed component of Hullz(K) intersects K.

Suppose next that 4 is a uniform algebra and let B be a uniform algebra on
M, such that 4 € B. Then we say that 4 is holomorphically dense in B if the
following holds. There exists a finite decreasing sequence of closed sets M, =
Uy2U0,2....5U0,2U,.,=0, such that U, is a By-analytic variety
foreach ¢ = 0,...,n — 1, and each restriction algebra B|(U\ U,,,) is contained
in HA(Ui\Ui+1)'

TreorEM 1.5. Let A be a uniform algebra and let B be a uniform algebra on
M, such that AcC B. If A is holomorphically dense in B, then M, = My ond
94 = 0p.



42 ARKIV FOR MATEMATIK., Vol. 9 No. 1

Finally we show that Theorem 1.3 and 1.4 can be used to study analytic
structures.

TuroREM 1.6. Let B be a uniform algebra on X and let W be an open subset
of X such that B has an analytic structure at each point in W. If now the sel
A= Mz\X 1is non empty, then bANW s a A-analytic variety.

Notice here that Theorem 1.6 and 1.3 together imply Theorem 1.2. In a series
of subsections we prove the results above.

l.a. Proof of Theorem 1.1.

We explain here why Theorem 1.1 is a consequence of Theorems 1.4 through 1.6.
For consider the situation in Theorem 1.1 and choose a compact neighborhood
K, of the set K, in X. If A, = A(K,) it is obvious that 4, has an analytic
structure in the interior of K;. Hence Hull A,(K ) = K, and then an application
of Theorems 1.6 and 1.4 implies that K, = M AR )

It remains to prove that K — K, Let B be the uniform algebra on
R, generated by @(X)|K, Since K is @(X)-convex we see that if the set
W = R, \K is non empty, then 9,0 W = . On the other hand oy C K,

g0 if we can prove that A(K,) is holomorphically dense in B, then Theorem 1.5
implies that 0, , = 0, which proves that W must be empty. This fact will be

proved in Section 1.b.
We also remark that Theorem 1.1 essentially is contained in the work by H.
Rossi in [13]. We will employ results from [13] in the proof of Theorem 3.1.

1.b. Remarks about analytic spaces

Let X be a reduced analytic space and let 4 be a point-separating subalgebra
of ®(X). The following assertions are well-known. See [6] or [9].

Let Reg (X) denote the open set of all regular points in X and let Sing (X)
be the singular set. Then Sing (X) is a nowhere dense analytic subset of X. If
x € Reg (X) there is a unique integer s > 0 such that there is some open neigh-
borhood of « in X which is biholomorphic with the open polydise in C°. The
number s is denoted by dim (z), and the case dim (x) = 0 occurs when z is an
isolated point in X.

If z € Reg (X) and if s = dim (), then we say that x € Reg (4) if A gives
local coordinates at x. The condition that z € Reg (4) is tested by looking at the
Jacobians Jp(x) = det (of,/oux)), where u,,...,u, determine local coordinates
at x, while ¥ = (f,...f) runs over s-tuples from 4. Then xz € Reg(4) if
and only if Jg{«) £ 0 for some F.
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The definition of Reg (A) implies that all isolated points in X belong to
Reg (4) while Sing (X)N Reg (4) is empty. The discussion above shows that
the set Sing (4) = X\ Reg (4) is an analytic subset of X. Since A separates
points in X it is an easy exercise to verify that Sing (4) is nowhere dense in X.

If we put 8; = Sing (4), then 8, is a reduced analytic space while A4|8; is
a subalgebra of €(S,). Then we can define the set Reg (4|S;) and put 8, =
S\ Reg (4]8;). Here 8, is an analytic subset of X and S, is nowhere dense
in §,.

Inductively we get a sequence S; D8, D ... suchthat S, ; = S;\Reg (418)).
If x€X andif » = dim (), then it follows that S,,, does not contain x. More
generally, if K is a compact subset of X, then there is an integer » such that
S, \K is empty.

Clearly the assertions above imply that if K is a compact set in X such that
K = M ,x), then A(K) is holomorphically dense in the uniform algebra on K
generated by 9(X)|K.

l.c. Convexity and analytic phenomena

Here we collect essentially well-known facts from the theory of functions locally
approximable in a uniform algebra. The theory is developed in [10] and we also
refer to [2].

The following result appears in [2, Theorem 5].

Prorosition 1.1.c. Let A be a uniform algebra and let B be a uniform algebra
on M, such that A < B. Let F be a closed A-convex subset of M, such that
B{(M [ \F) contains a uniformly dense subalgebra contained in H (M \F). Then
the (possibly empty) set A = Mzg\M, is contained in Hully (F). Here
Hull, FYNMy=F and dbAC F.

We explain here why Proposition 1.1.¢ follows from Theorem 5 in [2]. Firstly
Theorem 5 is stated in the case when B is generated over 4 by a single function
f€CO(M,) for which f{(M ,\F) € H (M \F). But the proof easily extends to the
general case. The conclusion in Theorem 5 is that if y € A, then there is a point
7(y) € F such that a(y) = a(n(y)) for all a € A. Here xn is the induced map
from My into M, given by the inclusion of A4 into B.

Since = is continuous while #(4) C F it follows that b4 ¢ F. Now the LMP
implies that A4 € Hullg (). Since F is A-convex it follows trivially that F =
Hull, (F)N M4, and then bAc F follows.

ProrosrtioN 1.2.c. Let A be a uniform algebra and let U be an open subsel
of M, \0, Let x€bU and suppose there exists an open neighborhood W of =z
wm bU  such that W is an Ayyw-analytic variety. Then it follows that
U c Hull, (6UN\W).

Proof. Put A, = A(UUbU). Then the LMP shows that o, CbU and
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because 9, is the closure of X, we conclude that if X, N W is empty, then
24, C (GUNT).

To prove that X, N W is empty we consider a point x € W. Now we can
choose a closed neighborhood £ of 2 in M, such that QN bU C W and where
OQNW={ye2nU:f(y)=0 for all €I} Here F = {f;};c; is a family in
HonU,2nw).

Next we consider the uniform algebra B on £ N U which is generated by ¥ and
A|(2 N T). Using the LMP and we see that 2N U c Hull, (62N T U (2N W)).
So if y €Q°N U, then there is a so called Jensen measure m carried on
@GN T)U (2N W) satisfying log [b(y)] < flog |blJdm for all b€ B. Since
this holds for all f; we conclude that m carries no mass on the set 2 N W. This
implies that y € Hully (62 N U).

Since  belongs to the closure of 2° N U we conclude that » € Hullz (32 N U) c
Hull, (62N U). Since » € X 4, it follows that = €2 N U, but this contradicts
the fact that £ is a neighborhood of =z in M,

We have now proved that 9, c (bUN\W) and then U c Hull, bUN\W) =
Hull ,(6UN\ W) follows.

ProrosiTioN 1.3.c. Let A be a uniform algebra and let Z be o closed A-analytic
variety in M . If F is a closed set in M4, then Hull, (F U Z) = Hull, (F)U Z.

Proof. Let us put D = Hull, (F U Z)\ (Hull, (¥) U Z), and suppose that D
is non empty. If 4, = A4 (Hull, (F U Z)), then D is an open subset of M\,
while Z is an Ag-analytic variety.

The LMP shows that D c Hull, (bD), where bD is the topological boundary
of D in M,. Clearly W = (bD\Hull, (F))C Z, and hence it is obvious that
W is an (4,)pyp-analytic variety. It follows from Proposition 1.2.c that
D c Hull, (6UN\W)C Hull, (F), a contradiction.

ProOPOSITION 1.4.c. Let A be a uniform algebra and let B be a uniform algebra
on M, such that A c B. Suppose that V is a closed By -analytic variety in M 4

and that B|(M,\V) contains a uniformly dense subalgebra of functions from
H (M \V). Then V = Hull, (V).

Proof. Consider a point « € V. We can find a closed A4-convex neighborhood
Q of x in M, and a family F = {f;} in Hy(2,Q2N7V) for which 2NV =
{y €2 :fily) =0 for all ¢}.

The hypothesis on B implies that every function in B is A-holomorphic of
the second kind in M, \ V. As a consequence the elements in ¥ are A-holomorphic
of the third kind in 2\ V. See [11] for a general concept of A-holomorphic functions.

Next we consider A4; = A (Hull, (V)) and put U = Hull  (V)\V. Then
bUcC V holds and the discussion above shows that the hypothesis of Proposition
1.2.c is satisfied for each pointin bU, except that we now deal with A-holomorphic
functions of the third kind on 2\ V. But using Rickart’s general theory in [11] it
follows that Proposition 1.2.c remains true. Hence U < Hull (U\V) = Hull, (9),
which implies that U is empty.
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1.d. Proof of Theorems 1.3—1.6.

Proof of Theorem 1.3. Put S = AUbA and introduce the uniform algebra
B(S). Then 0pgc bA and A is an open subset of Mps = Hullg (b4). Using
Proposition 1.2.¢ it follows that A c HullB(S)(bA\V) = Hullg A\ V).

Proof of Theorem 1.4. Introduce the uniform algebra A = B(Hullg (K)). Then
M, = Hullz (K) while 9, K. Since Hully (K)N W = K we see that K is
a closed A-analytic variety in M,. Then Proposition 1.4.c applied to the case
B = A, shows that K = Hull, (K). Since 8, c K it follows that K = M, =
Hullg (K), and as a consequence K = Mpy,.

Proof of Theorem 1.5. Firstly Proposition 1.4.c shows that U, is A-convex
in M ,. Then Proposition 1.1.c shows that the set 4 = Mz\ M, is contained in
Hully(U,). This means that if 4; = A(U,) and B, = B(U,), then A = Mp\ M4
while U, =M.

Next we notice that B;|(U;\U,) contains a dense subalgebra of functions in
H, (U, \U,). A new application of Proposition 1.4.c proves that U, is A4,-convex
in M, and that Mp\ M, C Hullg (U,). This means that M 3 \M , c Hull, (U,),
and by induction we see that Mz\M, c Hullp (U,) for all » > 1. Finally
y=mn+1 gives Myz= M,

It remains to prove that 95 = 9,. So let us put F = Hull, (9,) and suppose
that the set Mz \F is non empty. Since B{(M ,\U,)c H (M \U,) it follows
from Corollary 2.4. in [10], that 25 cannot intersect M\ (F U U)).

Hence dzc (FUU,) and if y € M,\F, then y € Hully (# U U,) while y
does not belong to Hullg (F). Since U, is a closed B-analytic variety in Mp it
follows from Proposition 1.3.c that y € U;. Hence M \F c U; holds.

Since M N\ F is an open subset of My which is contained in U, the condition
that B{(UN\U,) ¢ Hy U\ U, again implies that 85 cannot intersect
M N(FUU,). Then the same argument as above proves that M \F c U,.
Inductively we see that M, N\Fc U, for all ¥y > 1, so when v =n -+ 1 we
conclude that ¥ = M, But this means that 9z = 0d,.

Proof of Theorem 1.6. We may consider W as a reduced analytic space while
B|W is a point separating subalgebra of @(W). Suppose now that x €b4 N W
is such that z also belongs to Reg (B|W). Let s = dim (z).

If s =0 then z is an isolated point in W and hence also in b4. Then {z}
is a A-analytic variety. If s > 0 we choose f,,...,f, in B which map an open
neighborhood U of z in W homeomorphically onto the open polydise D° in €.
If geB weput gz,...,2)=g(dz), where d(z) is the unique pointin U for
which z; = fi(d(z)) for ¢ =1,...,s. Then g€ YD) holds.

Let us choose 0 <7 << 1 andput K ={y €U : |fiy)| <r for i=1,...,s}
Next we let 2 be an open neighborhood of # in My such that |f,|, << for all ..
We claim that QN U is a Bp-analytic variety.

For let y € @\ U be given. We can choose z € U such that fi(y) = f(z) for



46 ARKIV FOR MATEMATIK. Vol. 9 No. 1

all 4. Then we take some g € B such that g(y) = 1 and g(z) = 0. Since g € €(D)
we can find a sequence of polynomials P, € C[Z,,...,Z] such that lim
P, — g Ipry = 0, where D(r) is the closed polydisc of radius r in C

It follows that lim P(f,...,f.) exists uniformly in £ and the limit function A
belongs to Hp(Q). Here h=g¢g holds on 2N U while Aly)=lm P, (fi(y),....[(y))
= lim P,(fi(z), ..., [.(?)) = g(r) = 0. Hence h, =g — h belongs to Hp({2) and
hi=0 on £2NU while k(y) =1. This proves that 2N U is a B,-analytic
variety.

We have now proved that the set Reg (B|W) = 8, is a A-analytic variety at
bQ2. Now we consider the general case. Using the notation of Section 1.b we have
a decreasing sequence §; D S8,D ..., where 8, ;=8 \Reg(B|S). If €W
we choose a relatively compact open neighborhood ¥V of 2 in W. Then S, NV
is empty for some 7 > 1. Using the same argument as above we can prove that
the sets U, = (S\.S;.,) NV are A-analytic varicties at bA. But then V =
(S, N VYU U, U...UU,_, also becomes a A-analytic variety at b4. Since this
holds for all points in W, we conclude that W is a A-analytic variety at bA.

2. Proof of Theorem 2.1.

Firstly we need some facts from the so called yarc-theory» dealing with uniform
algebras presented on smooth Jordan arcs in €*. We refer to [3, 15, 18] for details.
The following result is contained in [15, Lemma 5—8].

Leuma 2.1. Let 4 be a uniform algebra on a compact space X. Let f€ A4 be
such that there is an open set W in X which [ maps homeomorphically onlo an
open Jordan arc J in C.. Suppose also that W = {z € X : f(x) €J} and that J
s a relatively open subset of f(X), which borders the outer component A, of the sel
CNf(X). If we now identify X with a closed subset of M , then the following condition
holds for each point z € J: There exists an open disc A(z) such that [ maps the open
set U={y €M, fly) €A®R)} homeomorphically onto a subset of A(z), and here
fOYN A, is empty.

Let us now consider the uniform algebra A4 in Theorem 2.1. Clearly o, c T
holds. If 84 ## T we can choose a closed interval I of 7' such that ¢, ¢ I. Then
A\l = A(I) becomes a proper subalgebra of C(I) which is generated by con-
tinuously differentiable functions. But this contradicts [15, An Application, p. 186].
We conclude that 0, =7 holds.

If f is a smooth functionin 4 we say that a point a € T' is a regular peak point
of f if the following condition holds: Firstly f'(a) # 0, where f’ € C(T) is the
continuous derivative determined by f|7'. Secondly {a} = {x €T :f(x) = f(a)}
and f(a) belongs to the boundary of the outer component of the set C'\ f(T).

With the notations above we have the following result.
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Lemma 2.2, Let f be a smooth function in A and let o €T be a regular peak
point of f. Then there exists an open disc A(a) such that the set D N Aj(a) is an
open subset of M ,.

Proof. Clearly there exists an open arc W in 7 such that ¢ € W while f
maps W homeomorphically onto an open Jordan arc J in €. In addition J
is a relatively open subset of f(T'), and W = {x € T': f(x) € J}, while J borders
the outer component A, of the set C™\ f(X).

Since f is analytic and non constant in D\7, we see that f(D\ 7' is contained
in the interior of f(D). It follows that J is a relatively open subset of the topological
boundary of f(D). Since f(DN\T)N A, is empty, we see that J also borders a
bounded component V of the set CU\ f(T). Because f'(a) # 0 it follows easily
that there is an open disc A(f(a)) and an open disc A(a) such that f(A(a) N D)
contains A(f(a)) N (V U J).

Now we apply Lemma 2.1 to the uniform algebra A4|T and the point f(a) € J.
For then we can choose an open disc A,(f(a)), where A, (f(a)) c A(f(e)), such
that f maps the set Uy ={y € M, : f(y) € Ay(f(a))} homeomorphically onto a
subset of Ay (f(a)). Since f(Uy) N A, is empty, we see that f(U,) < f(A(a) N D).
This means that U, c A(e) N D, and since a € U, we easily get the desired disc
Ay(a).

Levma 2.3, Let A be as in Theorem 2.1. Then there exists a smooth function f
in A which determines a regular peak point.

Proof. Let f be a non constant smooth function in A. Let us put F =
{a €T : f(a) belongs to the outer component A, of CU\f(T)}. Since f(D)N A4,
is empty, it follows that f(E) N f(D\T) is empty. Hence f(D\T) is contained
in the polynomially convex hull of the set f(#). This implies that f(£) is not
simply connected. If f'= 0 on K, then it is easily verified that f(£) is totally
disconnected and simply connected.

We conclude that f'(a) = 0 for some @ € E. Next we consider the set F =
{x €T : f(x) = f(a)}. Since F =T we know already that A(F) = C(F). Since
@ is an isolated point in F we can choose ¢ € A4 such that g(a) = 1 while |g]| < 1/2
on F\{a} and g is smooth.

Now it is easily verified that we can choose some ¢ > 0 and a suitable »directiony
e“, such that if we put h = f -} e*eg, then @ is a regular peak point of .

Proof of Theorem 2.1. Trivially A has an analytic structure in D\ 7. If
A= M,\D is non empty, then Theorem 1.2 shows that A c Hull, (b4 N T)
holds. Now Lemma 2.2 shows that 64 N 1" does not contain any regular peak point
determined by a smooth function in 4. Hence Lemma 2.3 implies that bAN T £ 7.
But then we know that A(bA N T) = CBAN T), and then bAN T is A-convex
in M, a contradiction.
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3. Proof of Theorem 3.1.

If B, is the uniform closure of B in C(X), then it is obvious that B, = 4(X).
Since X = My it follows that X = M 4x), and because 4 separates points in ¥
we conclude that X is A-convexin Y. Let us put J,={f€ 4 :f|X €J}. Since
Hull (/) does not intersect b6X we can find an open neighborhood W of X in Y
such that Hull (J,) does not intersect (W \ X).

By a standard argument we can find an analytic polyhedron I'={z€ W:

Ifie)l <1, i=1,...,s}, where f,,...,f.,€A4 and Xc I' while I'cc W. Tt
follows that if 4, = A|I', then each compact subset of I" has a compact 4,-convex
hull in I'. Next follows an important step in the proof.

Lemma 3.1, Let A be the closure of A in the Fréchet space @(I'). Then ;HX
is contained in B, and of 1 is the map which sends f€ A into fIX € B, then T

is a continuous map from the Fréchet algebra A into B.

Proof. Using Theorem 6.8 in [13] applied to the analytic space I', it follows
that there exists a homeomorphism @ from I’ onto a Stein space M such that if
H={g€0M):g=Ffod for some f€A}, then H — CM).

Now @(X) is a compact @(M)-convex subset of M. Since H,=
{g€C(M):g = fo ®1 for some f€ A}, is a dense subalgebra of @(M), we can
find an Oka — Weil domain A4 in M such that &(X)C A, while A is defined
by functions from H,. See [6, p. 211]. More precisely there are elements g¢,,...,gy
in H, such that the map G:y— (¢;(%), ..., 9x(y)), is a biholomorphic map from
A onto a closed analytic subset £ of the open polydisc DV i CV.

If K = G(P(X)), then K is the joint spectrum determined by the elements
b ,...,by, where b, = g,o @1|X. Then an application of the Symbolic Calculus
shows that if g € ©(M), then go ®1|X determines an element of B. It follows
that A|X c B.

To prove the continuity of 7' we use a result in [14, p. 161], which asserts that
if {g,} is a sequence in ¥(L) for which lim g, = 0 holds uniformly on compact
subsets of £, then there exists a fixed open neighborhood U of K in €V and
elements @, € €(U) such that G,|K = g,|/K while lim |G,|y = 0. Then the
continuity principle for the Symbolic Calculus implies that if «, =g, @1X =
G, o @1, we have lim |u,[ = 0.

The next result follows from the continuity of 7' in Lemma 3.1.

Levva 3.2. Let us put J = {f€A:fIX €J}. Then J is a closed ideal in

the Fréchet space A.
Proof of Theorem 3.1. The set § = Hull (J) is a compact analytic subset of

Y, and hence it is finite. Since Hull (J5) N (f\X") is empty while Jy|I'c J,
we can easily find elements ¢,,...,gy in J such that theset Z = {y € I': g,(y) =
*.. = gply) = 0}, is the finite set .
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Next we consider the closed ideal I which ¢,,..., gy generate in A. Since
A has been identified with @(M), where M is the Stein space from Lemma 3.1,
we can apply standard sheaf theory. For g¢,, ..., gy determine a coherent sheaf,

called I, , of A-ideals. The sections of this sheaf are the elements of I. See [6,
p. 244] and [15].

Since the cohomology groups vanish for all coherent sheaves of A- modules,
we conclude that the factor space A /I is isomorphic with the sections of the quotient

sheaf R = A /I~ . Here R has a non trivial stalk in the finite set § only. At each
point s €S the complex vector space R, is finite dimensional, because {s} is

an isolated point in the analytic set determined by 1.
It follows that I bas a finite codimension i in A, and a fortiori J has a finite
codimension in A. Then we can write =J+ Cf, + ...+ Cf,, where

fiso o fn € 4. Let b, = f:1X  be the correspondlng elements in B.

Since J is a closed ideal in B it follows that J 4+ Cb;, + ...+ Ob,, is a closed
subspace of B. This subspace contains the dense subset Ay, and hence J has a
finite codimension in B.

Finally we remark that the work in [16] contains material related with Theorem
3.1.

4. Holomorphiec sets in C*

Let A be a uniform algebra. If W is an open subset of M, we denote by
@ (W) the algebra of all functions on W which are locally approximable in W
by functions from A. If K is a compact subset of M, we put €, K)=
{f€ O(K):d an open neighborhood W of K in M, and some g € @,(W) such
that g|K = f}. Finally H,(K) is the uniform closure of ¥@,(K) in C(K). We
say that K is a holomorphic set if K = Mg .

Since each element of A4 determines an element in H (K) via its restriction
to K, we get induced map = from Mg, x into M, satisfying f(y) == f(=(y))
for all y € My and all f'in 4.

The result below is essentially well-known and a proof when K is a compact
set in €" occurs in [17].

Prorositiox 4.1. Let K be a compact set in M, and put K, = a(Mg k)
If now f€ H(K) s such that there is some g € H (K,) satisfying g|K = f, then
f@) = g(=(y)) for all y € Mg k) So in particular g is determined by I

Proof. Suppose firstly that g € €,(K,) and define g(y) = g(n(y)) for all
Y € Mg x)- The continuity of = shows that g is locally approximable by functions
from 4 on My, . So if B is the uniform algebra on My generated by

HyK) and g, then 9p = 9y, C K holds. See [10, Corollary 2.4].
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When ¢, = g|K is considered as an element of H,(K) we see that g = ¢,
on K. Since 9z c K it follows that ¢ =¢, on My k- This proves the result
when g € ¥ (K,).

The general case follows if we let (g,) be a sequence in @, (K,) such that
lim |g, — glg, = 0. For then f, = g,/K belong to H,(K) while lim [f, — f|x = 0.
This implies that f(y) = lim f,(y) = lim ¢,(n(y)) = g(n(y)) for all y € My

We notice that Proposition 4.1 immediately implies that if K; = K, then K
is a holomorphic set. This was already proved in [2, Theorem 10]. In general K,
is contained in the unique smallest holomorphic set B(K) which contains K.
Here B(K) is called the barrier of K. See [2].

Suppose next that K is a holomorphic set in M ,. If T is a closed subset of
K we define the algebra @ (T) = {f € C(T):H some open neighborhood U of
T in K and some g €@y, g(U) satisfying ¢|7 = f}. Finally Hg(T) is the
uniform closure of @ (T) in C(T). With these notations we say that T is a
K-holomorphic set if My @’ =T holds.

The result below is a direct consequence of C. E. Rickart’s theory.

ProposITiON 4.2. Let T be a compact subset of the holomorphic set K. If now
T s a holomorphic set, then T 1s K-holomorphic.

We do not know if the converse is true, i.e. if the condition that 7' is K-holo-
morphic implies that 7' is a holomorphic set. But the following result shows that
the converse is sometimes true.

Prorosition 4.3. Let K be a compact holomorphic set in C* and let W be a
relatively open subset of K. Let S be a closed subset of W which is @i (W)-convex.
Then S is a K-holomorphic set and if g € H(S), then g can be uniformly approxi-
mated on S by functions from Q(W). If finally B(S) is a compact subset of W,
then S s a holomorphic set.

Proof. The assertion that 8 is a K-holomorphic set is a consequence of Theorem
12 in [2]. Next we let B be the uniform algebra on § generated by @ (W)|S.
Because S is @(W)-convex in W, while W is an open subset of My = K,
it follows from the work in [12] that S = M.

If z,...,2, are the coordinate functions in C", then z/|S = b, are elements
in B. Here S is the joint spectrum of b,,...,b,. It follows that if g € €(8),
then ¢|8 € B. This implies that H(8) ¢ B which proves the second assertion.

Suppose next that B(S) is a compact subset of W. If g € H(K) it is obvious
that g¢|S € H(B(S)). It follows that if f€ @ (W), then f|B(S) is locally
approximable on B(S) by functions from H(B(S)). Since B(S) = Mpgs), it follows
from [10, Corollary 2.4] that |figs) < |flr for all f in @g(W), where T = g ps)-
But now Theorem 11 in [2] shows that 7 ¢ 8. Then the condition that S is
@ (W)-convex implies that S = B(S). Hence S is a holomorphic set.
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An example

We give an example of a compact holomorphic set in €C* which is not a hull,
i.e. it cannot be represented as the intersection of open domains of holomorphy.
This example gives a negative answer to the question raised in [7, p. 515].

Tirstly we discuss compact Reinhardt sets in C*. If K is a compact Reinhardt
set in C? it can be represented as a compact subset of R* D {(|z], |w|) : (=, w) € C*}.

A set of the type Z(a,,a,,b) = {(z,w) €C*:a, < 2| <a, and |w]| = b}
is called a Z-segment. In a similar way we get the W-segments W(a,, b, , b,)
and finally the squares @Q(a;,a,b,b,) = {(z,w) €C :a; < |2] <@, and
by < lw| < by}

If K is a compact set of the form W(a,,b,,b,) U Z(a, , ay, b;) U Z(a, , a, , by),
where a;, < @, and b, << b,, then it is easily verified that 7(K) = Q(a, , a,, by, by).
Using this fact it follows that if K, = W(a,,0,b,) U Z(a,,a,,0) U Z(a, , a,, by) U
Z(ay , 05 ,b) for some 0 << b < by, then n(K;) = Qa,,ay,0,0b)VU Z(a,,as,b) U
Z(ay , a5 , 0). It follows that n(K,) = K, is not a holomorphic set, while #n(K,) =
Qa,,a5,0,0) U@Qay,a;,0,b) is the barrier of K.

The example. Let K = W(0,0,1)UZ0,1,0)UT, where T = UT, and
T,=Z2"",27",1 — 1/n) for all » > 1. If now V is a domain of holomorphy
containing K, then the preceeding discussion easily implies that V contains all
points (z,w) for which 2 "' < |z|] <27 and |w] <1 — 1/n. It follows that
K is not a hull.

But using the fact that the closed sets 7', are holomorphic sets and closed
components of K, it follows easily that n(K) = K, and hence K is a holomorphic
set.

In the example K is disconnected, and this is necessary because the following
assertion can easily be verified.

PROPOSITION 4.4, Let K be a connected compact Reinhardt set in C". Then K
is a holomorphic set if and only if K s a hull.

Finally we show how to construct a connected holomorphic set which is not a
hull. Let (z,w,t) be the coordinates in €. Put K;=1{(z,w,t):(z,w) €K
and ¢ = 1}, where K is the set from the example above. To each » > 1 we let
J, be a closed arc in €* which starts from the point p, = (277", 1 — 1/n, 1)
and has ¢, = (27""!',1 — 1/(n + 1), 1) as an endpoint. As we pass from p, to
¢, the t-variable winds around the unit circle, i.e. we may take J, = {p(z) : p(x) =
@', 1+ afnn -+ 1),e¥) as 0 >x < 1L

Now the set S = K, U U (J,:n > 1), is connected. Because K is not a hull
we see that § is not a hull. But 8 is a holomorphic set. For if » > 1 is given,
then we can determine branches of the function (2n¢)~*log (!) in such a way that
we get an element f € €(S) satisfying f = 1 ontheset S, ={(z,w,t):(z,w) €T,
and ¢ =1}, while f=0 on K\S8,. In addition f=0 on J,, when m # n,
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and f, maps J, onto the closed unit interval. Using the existence of the family
{fu} In H(S), it follows easily that § = My,

Finally we refer to [19] for more results about holomorphic sets.

Remark. For a very interesting theory, partly based on holomorphic sets in
C", we refer to R. Harvey’s paper »The theory of hyperfunctions on totally real
subsets of a complex manifold with applications to extension problems» in Amer.
J. Math. 91 (1969), 853—873.

5. Integral extensions of Banach algebras

Let B be a Banach algebra and let g € C(Mp). We say that ¢ is integral
over B if g satisfies an equation ¢ + b,g" ' 4 ...+ b, =0 in M, with b; € B.
Let g be integral over B and put A4 = [B, g] = the subalgebra of C(Mp)
generated by B and g. Itisthen possible to introduce a norm on A which makes
A into a Banach algebra. We refer to [20, 22] for details of this construction.
When B and A4 are as above we get the induced map n from M, into Mp.
In general 9, # n~1(8g), and we do not know if 8, D n'(05) is always true. The
result below was also proved in [22] under a slight additional assumption.
TrEOREM 5.1. Let B and A be as above. If m is an open map, then 0,4 = n(dg).
Next we introduce some concepts motivated by integral extensions.
Definition 5.1. Let B and 4 be two Banach algebras such that B is a closed
subalgebra of 4. Let = be the induced map from M, into My We say that =
admits a finite string of local charts, if there is a decreasing sequence of closed sets
My=2,02%2,>5...02Z,D7%,,, = such that the following holds: If p € W, =
Z;\Z,,,, then there is an open neighborhood U of p in M, such that =[(U N W)
is injective. If finally @ € A, then B contains a sequence {b,} such that lim ZN)n —a

holds uniformly on U N W;, where a and l;" are the Gelfand transforms on M 4.

In the special case when A4 = [B, g] for some ¢ € C(Mp) satisfying @(g) = 0,
where Q(T)=T" 4+ b '+ ...+ b,, then the map = from M, into Mg
admits a finite string of local charts. For let us put Qu7T) = 9*Q/oT* for each
kE>1, and consider the elements ¢, = @(9) in 4. If we then put Z,=
{y€ M :q,(y) = ...=gy) = 0}, then it is not hard to verify that M, =
ZyDZ,D...07Z,0, gives the required string.

Now we begin the study of Shilov boundaries. The following result follows from
easy topological considerations.

LremmA 5.1. Let B ¢ A be a pair of Banach algebras such that m admits a finite
string of local charts. Then the fibers at(x) are totally disconnected for all x € Mp.

Lemma 5.2, Let Bc A be a pair of Banach algebras. Let x € Xp be such that
nl(x) s totally disconnected. Then nl(zx) c X,

Proof. Since x € 2z we know that {2} is an intersection of peak sets in M,
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determined by functions in the uniform closure B, of B. It follows that A4, =
4 aYx) is a uniform algebra on z'(x) and hence M, = w'(x) holds. Since
aY(x) is totally disconnected it follows from a well-known result that 4, = C(z7(x)).
This means that ='(x) is a peak interpolation set in M, = M, Then
niz) Cc X, =X, follows.

LeMmA 5.3. Let Bc A be such that = admits a finite string of local charts.
If = is an open map, then 0,2 n1(25).

Proof. Using Lemma 3.1 and 3.2 it follows that #n—%(2%) ¢ 9, Since 9y is the
closure of X, in My while # is an open and continuous map it follows that
a0g) C 04

Now we obtain a generalization of Theorem 5.1.

THEOREM 5.2. Let Bc A be such that = admits a finite string of local charts
M,=2Z,2Z,D...2Z,20. Suppose also that = s an open map oand that
Zyyy is an Ag-analytic variety for each t. Then 04 = 7(0g).

Proof. Using Lemma 5.3 it is sufficient to prove that 9, c Hull, (=(d5)) = S.
So let us assume that M, \S = D is non empty. Now we prove that 8, N DC Z,
holds. Since D is open while 8, is the closure of X, it is sufficient to prove that
2.NDcZ.

So let y €2, N D be given and put n(y) = . Then we can choose a closed
neighborhood W of y in M, such that x# maps W homeomorphically onto
7(W) while n(W) ¢ Mz\ 05 In addition we may assume that each element in A4
can be uniformly approximated by functions from B on W. Since x is open
we see that b(z(W)) € #(bW). An application of the LMP to B shows that |b(y)| =
b(x)] < [blyawy < 1blyw for all b in B. Then the approximation condition shows
that y € Hull, (W), and hence y cannot belong to 2.

We have proved that 9, N D c Z, and hence D c Hull, (9,) ¢ Hull, (S U Z,).
Using Proposition 1.3.c we deduce that D c Z,. Since D is an open subset of
M, we can now use the local charts in Z;\ Z,, and the same arguments show that
D c Z,. Inductively we get Dc Z, for all v > 1, so finally DcZ,,, = 9.
Hence 8 = M, which implies that 28, = z='(25).
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