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Introduction 

In this paper every Banach algebra is commutative and semi-simple with a 
unit element. I f  B is a Banach algebra then M B denotes its maximal ideal space 
and 0B its Shilov boundary.  Since B is semLsimple the Gelfand transform identifies 
B with a subalgebra of C(MB). I f  B then becomes a uniformly closed subalgebra 
of C(MB) we say tha t  B is a uniform algebra. Notice that  B is a uniform algebra 
precisely when it  is complete in its spectral radius norm. 

I f  B is a uniform algebra and if A is a closed point-separating subalgebra of 
C(MB) such tha t  A C B, then we simply say tha t  A is a subalgebra of B. In  
Section 1 and 2 we analyze this situation. Here follow two results which are typical 
applications of this material. 

TI~EOREM 1.1. Let X be a reduced analytic space and let A be a point-separating 
subalgebra of ~(X) .  Suppose that K is a compact ~(X)-convex set in X such that 

the set ]~A = {x E X : If(x)] < JflK for all f in A} is compact in X.  Then K = KA 
and ~I A(~) = K, where A(K) is the uniform algebra on K generated by the restriction 
algebra A IK. 

In  Theorem 2.1. the following notations are us3d. D is the closed unit  disc 
in C 1 and A(D) is the usual disc-algebra on D. An element f C A(D) is smooth 
if the restriction of f to T is continuously differentiable. I{ere T is the unit 
circle. 

TI~EORE~ 2.1. Let A be a subalgebra of A(D) such that A contains a dense 
subalgebra of smooth functions. Then M A ~ D. 

Let us remark here tha t  the results above also apply to Banach algebras. For 
if B is a Banach algebra and if B c is the uniform closure of B in C(MB), then 
it is well known tha t  MB ---- MBc. I f  ~A is a closed subalgebra of B which separates 

points in MB, then Ao is a subalgebra of B e. 
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Using a famous principle due to  Shilov (See [8, p. 214]), it  follows t h a t  when MB 
is ident if ied with a subset of  M A, t hen  aA C MB. This implies t h a t  MA can be 
identif ied with MA. In  par t icu la r  we have the  basic principle below. 

SI~ILOV'S PI~INCn~LE. Let B be a Banach algebra and let A be a closed subalgebra 
of B which separates points in M B. Then MA ---- MB if  and only i f  MA~ = M B. 

In  Section 3 we p rove  a resul t  abou t  Banach  algebras genera ted  b y  analyt ic  
functions.  

TI~Ol~E~ 3.1. Let X be a compact subset of a reduced analytic space Y. Let B 
be a Banach algebra on X such that X ~ .M m Suppose also that there exists an open 
neighborhood U of X in Y and a point separating subalgebra A of ~(r such 

that A x =  { f e C ( X ) : f - ~ ] [ X  for some f e A } ,  is a dense subalgebra of B. I f  
now J is a closed ideal of B such that A X A J is a dense subset of J, while 
Hull  (J) --~ {x C X : j(x) -~ 0 for all j in J}  is a compact subset of the interior of X ,  
then J has a finite codimension in B. 

In  Section 4 we s tudy  compact  holomorphica l ly  convex sets in C ~. I f  K is a 
compact  set in C ~ we let  ~ ( K )  be the  algebra of  germs of analyt ic  funct ions on 
K,  and  H(K) is the  un i form closure of @(K) in C(K). We say t h a t  K is a 
holomorphic set i f  K ---- MB(K). I t  is well known t h a t  if  K is an intersect ion of  open 
domains of  holomorphy,  then  K is a holomorphic  set. We give an example  which 
shows t h a t  the converse is false. 

Final ly  Section 5 contains some mater ia l  about  integral  extensions of  B a n a c h  
algebras, based on results f rom Section 1. 

Very  of ten we employ  the  Local  Max imum Principle  (abbrevia ted  LMP) in 
the  proofs.  The  LMP states t h a t  if B is a un i form algebra while V is a subset  
of MB~08,  t hen  V c HullB(bV), where b V is the  topological  b o u n d a r y  of  V 
in M B. 

We refer  to [5] for basic facts about  uni form algebras. 

1. Convexity and analytic structures in uniform algebras 

Let  X be a compact  Hausdo r f f  space and  let  B be a uni form algebra on X.  
Whe n  X is ident i f ied with a closed subset  of  M B we have  a s c X .  I f  K is a 
closed subset  of M B we pu t  ttUllB(K ) ~- {y C M B : ]f(Y) l <-- lf[~: for  all f in B}. 
I f  S is a closed subset of JIB we let B(S) be the  uni form algebra on S which 
is genera ted  by  the  restr ic t ion algebra BIS. Final ly  X B denotes  the  Choquet  
bounda r y  of B. Here  XB is dense in 0 B. 

I f  the set M B ~ X  is non  empty ,  t hen  we p u t  A = M B ~ X  and let  bzl be its 
topological  b o u n d a r y  in M B. Then  the  L MP  shows t h a t  z] C HullB(bA) and  if 
B 1 ~ B(Hul l  B (bA)), t hen  MB, ---- Hull  B (hA) while 0B1 C hA. In  the  results which 
follow we show t h a t  ~BI is conta ined in a smaller set t h an  bA under  cer ta in  
assumptions.  
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Definition 1.1. Le t  B be a uni form algebra on X. We say t h a t  B has an 
analytic structure at  a point  x E X if  there  is an open ne ighborhood W of  x in X 
and a homeomorph ism q~ f rom W onto  an analyt ic  subset V of  the  open polydise 
D n in C", such t h a t  the  funct ions f o r are holomorphic  on V for all f in B. 

Notice t ha t  in Defini t ion 1.1 the  analyt ic  set V m a y  be 0-dimensional a t  r 
This happens  preeisely when x is an isolated poin t  in X.  In  the  non tr ivial  case 
when dim (V) > 0 at  r the  m a x i m u m  principle for  holomorphic  funct ions  on 
V implies t h a t  x cannot  belong to a B. 

T~EOREM 1.2. Let B be a uniform algebra on X and let W be an open subset 
of X such that B has an analytic structure at each point in W. I f  now the set 
A = MB~O B is non empty and if  we put B1 = B(KullB(bA)), then OB, C (bA~W) .  

Next  we in t roduce some concepts  f rom [10]. I f  W is a locally closed subset  of  
MB, t h e n  we p u t  / / ~ ( W ) = { f E C ( W ) :  to  each x E  W there  is an open neigh- 

borhood  U / o f  x in MB and  a sequence (bn) in B such t h a t  l im If -- b, lwn v I = 0}. 

Definition 1.2. Le t  W be a locally closed set in M B and let  V be a locally 
closed subset  of W. Then  V is ealled a Bw-analytic variety if to each point  x E V, 
there  is an open ne ighborhood U of  x in W and  a family  {fi}iei in C(U) such 
t h a t  the  following holds. F i r s t ly  UI'I V = {x E U :fi(x) = 0 for all i}, and 
secondly each f i I U ~ V  belongs to HB(U~V) .  The  funct ions in C(U) satisfying 
this condit ion are denoted  b y  t tB(U,  U fl V). 

Suppose ne x t  t ha t  U is an open subset  of  MB while V is a locally closed 
subset  of bU. Then  we s a y t h a t  V is a U-analytic variety at bU if  V is a Bvu  v- 
analyt ic  var ie ty .  I t  is easily seen t ha t  a f ini te  union of U-analyt ic  variet ies at  b U 
is a U-analyt ic  va r i e ty  a t  b U. 

T~tEOR~t 1.3. Let B be a uniform algebra on a compact space X and suppose 
that the set M B ~ X  = A is non empty. Let V be a relatively open subset of bA, 
such that V is a A-analytic variety. Then A ~ Hull~(bA~ V). 

T ~ g o R ~ t  1.4. Let B be a uniform algebra on X and let W be an open subset 
of X .  Let K be a compact subset of W such that KullB(K )V1 W - ~  K. I f  now 
the set M B ~ X  = A is non empty, while bAf l  W is a A-analytic variety, then 
K = HullB(K ) and K = MB(tc). 

Notice here t h a t  if A is e m p t y  in Theorem 1.4 then  K = HullB(K ) follows 
because each closed componen t  of HullB(K ) intersects  K.  

Suppose ne x t  t ha t  A is a uniform algebra and let B be a uni form algebra on 
M A such t h a t  A c B. Then  we say t h a t  A is holomorphically dense in B i f  the  
following holds. There  exists a f ini te  decreasing sequence of  closed sets M A = 
U 0 ~ U1 D . . . .  D U, ~ Un+l = O, such t h a t  U~+ 1 is a Bu -an a ly t i e  va r i e ty  

for each i = 0 , . . . ,  n - -  l, and each restr ic t ion algebra B[(U~U~+~) is contained 
in HA(U,~U~+I). 

T~EORE~ 1.5. Let A be a uniform algebra and let .B be a uniform algebra on 
M A such that A c B. I f  A is holomorphically dense in B, then M A = MB and 
OA : OB. 
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Finally we show tha t  Theorem 1.3 and 1.4 can be used to study analytic 
structures. 

T~EOREM 1.6. Let B be a uniform algebra on X and let W be an open subset 
of X such that B has an analytic structure at each point in W. I f  now the set 
A ~ M B ~ X  is non empty, then bAf l  W is a A-analytic variety. 

:Notice here that  Theorem 1.6 and 1.3 together imply Theorem 1.2. In a series 
of subsections we prove the results above. 

1.a. Proof of Theorem 1.1. 

We explain here why Theorem 1.1 is a consequence of Theorems 1.4 through 1.6. 
For consider the situation in Theorem 1.1 and choose a compact neighborhood 
K1 of the set /~A in X. I f  A1 ---- A(K1) it is obvious that  A1 has an analytic 
structure in the interior of KI. Hence HullA~(KA) = ~A and then an application 
of Theorems 1.6 and 1.4 implies tha t  J~A --~ M~(~A). 

I t  remains to prove tha t  K--~/~A. Let B be the uniform algebra on 
KA generated by ~(X)[I~ A. Since K is @(X)-convex we see tha t  if the set 
W~-- /~A~K is non empty, then a Bfl W e  O. On the other hand 0 ~ ( ~ ) c K ,  

so if we can prove that  A(/~A) is holomorphically dense in B, then Theorem 1.5 
implies that  aA(~A ) --~ 0B, which proves tha t  W must be empty. This fact will be 

proved in Section 1.b. 
We also remark tha t  Theorem 1.1 essentially is contained in the work by H. 

l~ossi in [13]. We will employ results from [13] in the proof of Theorem 3.1. 

1.b. Remarks about analytic spaces 

Let X be a reduced analytic space and let A be a point-separating subalgebra 
of ~(X). The following assertions are well-known. See [6] or [9]. 

Let l%eg (X) denote the open set of all regular points in X and let Sing (X) 
be the singular set. Then Sing (X) is a nowhere dense analytic subset of X. I f  
x E t~eg (X) there is a unique integer s > 0 such tha t  there is some open neigh- 
borhood of x in X which is biholomorphic with the open polydisc in C s. The 
number s is denoted by dim (x), and the case dim (x) ~- 0 occurs when x is an 
isolated point in X. 

I f  x E l ~ e g ( X )  and if s = d i m ( x ) ,  then we say that  xEl%eg(A) if A gives 
local coordinates at x. The condition that  x E ]~eg (A) is tested by looking at the 
Jacobians JF(x)----det (Of,/aui(x)), where u l , . . . ,  u8 determine local coordinates 
at x, while F = ( f l . . . f s )  runs over s-tuples from A. Then x C geg (A) if 
and only if Jr(x) r 0 for some F. 
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The definition of l~eg (A) implies tha t  all isolated points in X belong to 
t~eg (A) while Sing (X) i'l l~eg (A) is empty. The discussion above shows:that  
the set Sing (A) = XN`l~eg (A) is an analytic subset of X. Since A separates 
points in X it is an easy exercise to verify that  Sing (A) is nowhere dense in X. 

I f  we put S 1 = Sing (A), then S 1 is a reduced analytic space while A IS 1 is 
a subalgebra of ~($1). Then we can define the set l~eg (A IS1) and put S 2 ~- 
Sl~l~eg (A [$1). Here S 2 is an analytic subset of X and S 2 is nowhere dense 
in 

Inductively we get a sequence S 1 ~ S~ ~ . . .  such that  Si+ 1 ~ SiN`lteg (A IS/). 
I f  x E X and if n = dim (x), then it follows tha t  S~+~ does not contain x. More 
generally, if K is a compact subset of X,  then there is an integer v such tha t  
S , ~ K  is empty. 

Clearly the assertions above imply tha t  if K is a compact set in X such tha t  
K ~ MA(~), then A(K)  is holomorphicMly dense in the uniform algebra on K 
generated by @(X)[K. 

1.c. Convexity and analytic phenomena 

Here we collect essentially well-known facts from the theory of functions locally 
approximable in a uniform algebra. The theory is developed in [10] and we also 
refer to [2]. 

The following result appears in [2, Theorem 5]. 
PROPOSITION 1.1.c. Let A be a uniform algebra and let B be a uniform algebra 

on M A such that A c B. Let .F be a closed A-convex subset of M A such that 
BI (M AN`F ) contains a uniformly dense subalgebra contained in H A(M A ~ F ) .  Then 
the (possibly empty) set A ~ MBN`M A is contained in Hul l s (F  ) . Here 
Hulls(F)  f l M A = F  and b A ~ F .  

We explain here why Proposition 1.1.c follows from Theorem 5 in [2]. Firstly 
Theorem 5 is stated in the case when B is generated over A by a single function 
f E C(MA) for which f I(MAN.F) E HA(MAN`F). But the proof easily extends to the 
general case. The conclusion in Theorem 5 is that  if y ~ A, then there is a point 
~(y) E F  such tha t  a ( y ) =  a(:z(y)) for all a E A. Here ~ is the induced map 
from M s into M A given by the inclusion of A into B. 

Since :~ is continuous while :z(A) ~ F it follows tha t  bA c F. Now the LMP 
implies tha t  A c I-Iul] s (F). Since F is A-convex it follows trivially tha t  F = 
Hull ,  (F) rl MA, and then bA C F follows. 

PROPOSITIO~ 1.2.c. Let A be a uniform algebra and let U be an open subset 
of M A ~  ~A. Let x C b U and suppose there exists an open neighborhood W of x 
in bU such that W is an Avuw-analytic variety. Then it follows that 
U C Hull~ (bUN`W). 

Proof. Put  A I = A ( U U b U ) .  Then the LMP shows that  aA ,~bU and 
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because ~A1 is the  closure of Z~, we conclude tha t  if  ZA1 n w is empty ,  then  
0.4, c (b U ~  W). 

To prove t h a t  2:A1fl W is empty  we consider a point  x E W. Now we can 
choose a closed neighborhood /2 of x in M A such tha t  /2 N b U c W and where 
/2 N W = {y e -(20 0 :fi(y) = 0 for all i E I}. Here F = {f~},eI is a family  in 
H~(/2 n 9 ,  -(2 n w). 

Next  we consider the  uniform algebra B on -(22 O 0 which is generated by  F and  
A](/2 A ~). Using the LMP and we see t ha t  -(2 n 0 c Hull n (b/2 fl U U (-(2 O W)). 
So if  y c / 2 ~  U, then  there is a so called Jensen measure m carried on 
(b/2O 9)  U (-(21"1 W) satisfying log ]b(y)] _<flog Ibldm for all b EB.  Since 
this holds for all f~ we conclude t h a t  m carries no mass on the set -(2 O W. This 
implies t h a t  y C Hull  n (b/2 fl 9).  

Since x belongs to the closure of s A U we conclude tha t  x E Hul ls  (b/2 fl 9)  c 
HUllA1 (b/2 A 9). Since x E ZA~ it  follows t h a t  x C bD O U, but  this contradicts 
the fact  t h a t  -(2 is a neighborhood of x in MA. 

We have now proved t h a t  0A1C ( b U ~ W )  and then  U c Hul lAl(bU~W) : 
HullA(b U ~  W) follows. 

PROI'OSlTIO~ 1.3.c. Let A be a uniform algebra and let Z be a closed A-analytic 
varie 0 in M A. I f  F is a closed set in MA, then HullA (F U Z) ~ I{ullA (F) U Z. 

Proof. Let  us pu t  D ~-- Hull  A (F U Z ) ~ ( H u l l  A (F) U Z), and  suppose t ha t  D 
is non empty .  I f  A 0 --~ A (Hull A (F U Z)), then  D is an open subset of MAo~0A, 
while Z is an A0-analytic variety.  

The LMP shows t h a t  D c HullA, (bD), where bD is the topological boundary  
of D in MA.. Clearly W ~ (bD~I~ul l  A (F)) c Z, and  hence it is obvious t h a t  
W is an (A0)wuo-anMytic variety.  I t  follows from Proposit ion 1.2.c t ha t  
D c HullA. (b U ~  W) c Hull A (F), a contradiction. 

PROt'OSlTION 1.4.C. Let A be a uniform algebra and let B be a uniform algebra 
on M A such that A C B. Suppose that V is a closed BMA-analytic variety in M A 

and that B I (MA~,V  ) contains a uniformly dense subalgebra of functions from 
H A ( M A ~ V  ). Then V = Hull  A (V). 

Proof. Consider a point  x C V. We can f ind a closed A-convex neighborhood 
/2 of x in MA and a family F : ( f l }  in HB(/2,-(2O V) for which -(2n V 
{ y C / 2 : f i ( y ) : O  for all i}. 

The hypothesis  on B implies t ha t  every function in B is A-holomorphic of 
the second kind in MA~, V. As a consequence the elements in F are A-holomorphic 
of the th i rd  kind i n / 2 ~  V. See [11] for a general concept of A-holomorphic functions. 

Next  we consider A 1 ~ A (HullA (V)) and pu t  U ~-- Hull  A ( V ) ~ V .  Then 
b U c V holds and  the discussion above shows tha t  the hypothesis  of Proposit ion 
1.2.c is satisfied for each point  in bU, except t ha t  we now deal with A-holomorphic 
functions of the th i rd  kind on / 2 ~  V. Bu t  using Rickar t ' s  general theory  in [11] it  
follows tha t  Proposit ion 1.2.c remains true. Hence U c HullA,(b U ~  V) ~- HullA1 (0), 
which implies t ha t  U is empty.  
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1.d. Proof of Theorems 1.3--1.6.  

Proof of Theorem 1.3. P u t  S ---- A U bA and  in t roduce the  un i fo rm algebra  
B(S). Then  aB(S)C bA and  A is an  open  subset  of  MB(s)= Hul l s  (bA). Using 
Propos i t ion  1.2.c it  follows t h a t  A C KullB(s)(bA~V)= lqullB (bA~V). 

Proof of Theorem 1.4. I n t r o d u c e  the  un i fo rm algebra  A = B(Hul l  B (K)). Then  
M ~ = H u ] I  B(K)  while 0 A c K .  Since Hul l  B(K)  gl W = K  we see t h a t  K is 
a closed A-anMyt ic  v a r i e t y  in MA. Then  Propos i t ion  1.4.c appl ied to  the  case 

B - - ~ A ,  shows t h a t  K - - - - H u l l  A(K) .  Since a A c K  it  follows t h a t  K = M  A =  
Hull  B (K), and  as a consequence K = MB(K). 

Proof of Theorem 1.5. l~irstly Propos i t ion  1.4.c shows t h a t  U 1 is A-convex  
in M A. Then  Propos i t ion  1.1.c shows t h a t  the  set A = MB~M A is conta ined  in 

Hul]B(U1). This  means  t h a t  i f  A1 = A(U1) and  B 1 -- B(U1), t hen  A ---- M~I~MA ~ 
while U1 = MA 1. 

N e x t  we not ice t h a t  BI[(UI~U2) contains  a dense suba lgebra  of  funct ions  in 
H~I(UI~U2). A new appl ica t ion  of Propos i t ion  1.4.c p roves  t h a t  U 2 is Al-Convex 
in M B and  t h a t  M~,~MA1 C HUI1B~ (U2). This  means  t h a t  MB~M4 C HullB (U~), 
and  b y  induct ion  we see t h a t  MB~MA c Hull~ (U~) for all v ~ 1. F ina l ly  
v = n ~ -  1 gives M B = M ~ .  

I t  remains  to  p rove  t h a t  0B ---- OA. So let us p u t  F = Hul l  B (OA) and  suppose 
t h a t  the  set MB~F is non  e m p t y .  Since BI(Mx~U1 ) c HA(MA~U1) i t  follows 
f rom Corollary 2.4. in [10], t h a t  OB canno t  in tersect  MA~(F U U~). 

Hence  O B c ( F ( 3  U1) and  i f  yCMA~F,  t hen  y E g u l l ~ ( F ( 3  U~) while y 
does no t  belong to  Hul l  B (F). Since U 1 is a closed B-ana ly t i c  v a r i e t y  in M B i t  
follows f rom Propos i t ion  1.3.c t h a t  y E U~. Hence  MA'~F ~ U~ holds. 

Since MA~F is an open subset  of  M B which is con ta ined  in U1, the  condi t ion 
t h a t  BI(U~U.~)cH4(UI~U2) again implies  t h a t  0 B canno t  in tersect  
MA~(F t_] U2). Then  the  same a r g u m e n t  as above  proves  t h a t  MA~F c U2. 
I n d u c t i v e l y  we see t h a t  M A ~ F c  U~ for all v > 1, so when  v = n +  1 we 
conclude t h a t  F = M  A. B u t  this means  t h a t  0 B =  0 A. 

Proof of Theorem 1.6. We  m a y  consider W as a reduced  ana ly t ic  space while 
B[W is a po in t  separa t ing  suba lgebra  of  @(W). Suppose now t h a t  x e bA n W 
is such t h a t  x also belongs to  I~eg (B[W). Le t  s = d im (x). 

I f  s = 0  t h e n  x is an  isolated po in t  in W and  hence also in bA. Then  {x} 
is a A-analy t ic  va r ie ty .  I f  s > 0 we choose f~ , . . . ,  f~ in B which m a p  an  open 
ne ighborhood  U of  x in W homeomorph ica l ly  onto  the  open polydise D ~ in C ~. 
I f  g E B we p u t  g(zl . . . . .  z~) = g(~(z)), where  ~(z) is the  unique point  in U for 
which zl = f i (5 (z ) )  for i = 1 . . . . .  s. Then  ~ e~(D ") holds. 

Le t  us choose 0 ~ r  ~ 1 and  pu t  K = { y s  U :  ]f~(y)[ _<r  for i =  1 . . . . .  s}. 
N e x t  we let /2 be an open ne ighborhood  of  x in 3I~ such t h a t  If~la < r for  all i. 
We  claim t h a t  /2 f~ U is a Bg-ana ly t ic  var ie ty .  

Fo r  let y s  be given. We  can choose z ~  U such t h a t  f i ( y ) = f ~ ( z )  for 
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all i. Then  we take  some g 6 B such t ha t  g(y) =- 1 and  g(z) ---- 0. Since g 6 ~ ( D  ") 
we can f ind a sequence of  polynomials  P~ 6 C[Z 1 . . . . .  Z,] such t h a t  lira 
] P ~ -  glD(0 ---- 0, where D(r) is the  closed polydisc of  radius r in C ~. 

I t  follows t ha t  l im P~(f~ . . . .  ,f,) exists un i formly  in Y2 and  the limit funct ion  h 
belongs to HB(Y2 ). Here  h-= g holds on Y2Cl U while h(y)----limP~(fl(y) . . . . .  f ,(y)) 
=- lim P~(fl(z) . . . .  , f,(z)) -~ g(z) ---- O. Hence  h 1 =- g - -  h belongs to HB(Y2 ) and  
hi----0 on f2N U while hi(y)----1. This proves t h a t  Y2 N U is a BQ-analytie 
var ie ty .  

We have  now proved  t ha t  the  set Reg (BIW) = S O is a A-analytic va r i e ty  a t  
bY2. Now we consider the  general case. Using the  no ta t ion  of Section 1.b we have  
a decreasing sequence S 1 D S  2 D . . . ,  where S~+I--~Si~]%eg(B]S3.  I f  x 6  W 
we choose a re la t ively compact  open neighborhood V of x in W. Then  S ,  N V 
is e m p t y  for some n > 1. Using the same a rgument  as above we can prove  t h a t  
the sets U~ = (S~S, :+I)  f] V are A-anMytie varieties a t  bA. B u t  then  V--~ 
(S o N V) U U~ O . . . U U,~_ 1 also becomes a A-analytic va r i e ty  a t  bA. Since this 
holds for all points in W, we conclude t ha t  W is a A-analytic va r i e ty  at  bA. 

2. Proof  of  T h e o r e m  2.1.  

Firs t ly  we need some facts  f rom the so called ~)arc-theory~) dealing with uni form 
algebras presented  on smooth  J o r d a n  arcs in C". We refer  to [3, 15, 18] for details. 
The  following result  is conta ined in [15, L e m m a  5--8] .  

L~M~A 2.1. Let A be a uniform algebra on a compact space X .  Let f C A be 
such that there is an open set W in X which f maps homeomorphicaUy onto an 
open Jordan arc J in C, 1. Suppose also that W ~- {x C X : f (x)  E J}  and that J 
is a relatively open subset of f ( X ) ,  which borders the outer component A~o of the set 
C l e f ( X ) .  I f  we now identify X with a closed subset of M A then the following condition 
holds for each point  z C J :  There exists an open disc A(z) such that f maps the open 
set U-=  {y E M A : f ( y ) E A ( z ) }  homeomorphicaUy onto a subset of A(z), and here 
f (U)  N A | is empty. 

Le t  us now consider the  uni form algebra A in Theorem 2.1. Clearly ~A C T 
holds. I f  D A ~ T we can choose a closed in terval  I of  T such t h a t  0A C I .  Then  
A ] I  = A ( I )  becomes a p roper  subMgebra of  C(I) which is genera ted  b y  con- 
t inuously  differentiable functions.  B u t  this contradicts  [15, An Application,  p. 186]. 
We conclude t h a t  0~ = T holds. 

I f  f is ~ smooth  funct ion in A we say  t h a t  a point  a 6 T is a regular pea]c point  
of f i f  the  following condit ion holds: F i r s t ly  f ' (a)  --/: 0, where f '  6 C(T) is the  
cont inuous der iva t ive  de te rmined  by  f i T .  Secondly {a} = {x 6 T : f (x)  =-f (a)}  
and  f(a) belongs to  the  b o u n d a r y  of  the  outer  component  of the set C l e f ( T ) .  

W i th  the  nota t ions  above we have  the  following result.  



H O L O M O R P H I C  C O N V E X I T Y  A N D  A N A L Y T I C  S T R U O T U I : t E S  I N  B A N A C K  A L G E B R A S  47 

LEMMA 2.2. Let f be a smooth function in A and let a E T be a regular peak 
point of f. Then there exists an open disc z]l(a ) such that the set D • ~l(a) is an 
open subset of M A. 

Proof. Clearly there  exists an open are W in T such t h a t  a E W while f 
maps  W homeomorphica l ly  onto an open J o r d a n  arc J in C 1. In  addi t ion J 
is a re la t ively  open subset of  f(T), and  W ---- {x E T : f (x)  E J}, while J borders  
the  outer  componen t  A~ of  the set Cle f (X) .  

Since f is analyt ic  and non  constant  in D ~ T ,  we see t h a t  f ( D ~ T )  is conta ined 
in the  interior  of  f(D). I t  follows t ha t  J is a re la t ively  open subset of the  topological 
b o u n d a r y  of  f(D). Since f ( D ~ T )  f'l A+ is empty ,  we see t h a t  J also borders  a 
bounded  componen t  V of  the  set Clef(T) .  Because f'(a) --~ 0 it  follows easily 
t ha t  there  is an open disc A(f(a)) and  an open disc A(a) such t h a t  f(A(a) n D) 
contains A(f(a)) r (F U J). 

Now we apply  L e m m a  2.1 to  the uni form algebra AIT and  the  point  f(a) E J. 
For  then  we can choose an open disc Ao(f(a)), where Ao(f(a))c A(f(a)), such 
tha t  f maps the  set U 0 = {y E M A : f (y)EAo(f (a ) )}  homeomorphica l ly  onto a 
subset of Ao(f(a)). Since f(Uo)fl A~ is empty ,  we see t h a t  f(Uo)cf(A(a)f ' l  D). 
This means  t ha t  U 0 C A(a) A D, and  since a E U 0 we easily get the desired disc 
~l(a). 

LEMMA 2.3. Let A be as in Theorem 2.1. Then there exists a smooth function f 
in A which determines a regular peak point. 

Proof. Le t  f be a non  constant  smooth  funct ion in A. Le t  us p u t  E - ~  
{a E T :f(a)  beloI~gs to  the  outer  component  A~ of C l e f ( T ) } .  Since f(D) F1 Ao~ 
is empty ,  i t  follows t ha t  f(E)F] f ( D ~ T )  is empty .  Hence  f ( D ~ T )  is conta ined 
in the  polynomial ly  convex hull of the  set f(E). This implies t h a t  f(E) is no t  
s imply connected.  I f  f '  z 0 on E,  t hen  it is easily verif ied t h a t  f(E) is to ta l ly  
disconnected and simply connected.  

We conclude t h a t  f'(a) :/: 0 for some a E E.  N ex t  we consider the set F -~ 
{x E T : f (x)  = f ( a ) } .  Since F sa T we know al ready t h a t  A(F)  = C(F). Since 
a is an isolated point  in F we can choose g C A such t h a t  g(a) = 1 while lgI < 1/2 
on F~{a}  and  g is smooth.  

I~ow it is easily ver i f ied t h a t  we can choose some e > 0 and a suitable >>direction~> 
e ~, such t h a t  if  we p u t  h -~ f - t -  e%g, t h en  a is a regular  peak  point  of h. 

Proof of Theorem 2.1. Trivial ly  A has an analyt ic  s t ruc ture  in D ~ T .  I f  
A-~ M 4 ~ D  is non  empty ,  t hen  Theorem 1.2 shows t h a t  A C Hull~ (hA f'l T) 
holds. Now L e m m a  2.2 shows t ha t  bA f'l T does no t  conta in  an y  regular  peak  poin t  
de te rmined  b y  a smooth  funct ion in A. Hence  L e m m a  2.3 implies t h a t  bAD T :/= T. 
B u t  then  we know tha t  A(bA N T) = C(bAN T), and  then  bAfl T is A-convex  
in MA, a contradict ion.  
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3. Proof  of  T h e o r e m  3.1 .  

I f  B c is the  uni form closure of  B in C(X), then  it  is obvious t h a t  Bc = A(X) .  
Since X = M s  it  follows t h a t  X = MA(x), and  because A separates  points  in Y 
we conclude t ha t  X is A-convex  in Y. Le t  us p u t  Jo --~ { f C A  : f i x  C J}. Since 
Hull  (J) does no t  intersect  bX we can f ind an open ne ighborhood W of  X in Y 
such t h a t  Hull  (J0) does no t  in tersect  (W ' ~ X ) .  

B y  a s t andard  a rgument  we can f ind an analyt ic  po lyhedron  /~ ~-{z E W:  

]fi(z)I < 1, i = 1 , . . .  ,s}, where f l , . . . , L e A  and X c  F while ~ c c  W. I t  
follows t ha t  if A 0 --~ A iN, then  each compact  subset of  ]7 has a compact  Ao-convex 
hull in ]7. Ne x t  follows an impor t an t  step in the  proof.  

L]~M~A 3.1. Let ~t be the closure of A in the Frdchet space ~(I ' ) .  Then ~4IX 

is contained in B, and i f  T is the map which sends f C ~4 into f I X  E B, then T 

is a continuous map from the Frdchet algebra ~1 into B. 
Proof. Using Theorem 6.8 in [13] applied to the  analyt ic  space / ' ,  i t  follows 

t ha t  there  exists a homeomorph i sm 4 f rom r onto  a Stein space M such t h a t  if 

H = { g e C ( M ) : g = f o 4  -1 for some f e A } ,  t hen  H = @ ( M ) .  
Now 4 (X)  is a compact  ~@(M)-convex subset  of M. Since H o : 

{g E C(M) : g : f o r -1 for some f C A}, is a dense subalgebra of  ~ (M) ,  we can 
f ind an O k a -  Weft domain  A in M such t h a t  4 ( X ) c  A, while A is def ined 
by  funct ions f rom H 0. See [6, p. 211]. More precisely there  are elements g l , . . . ,  gN 
in H 0 such t h a t  the  map  G : y ---> (gl(Y), �9 �9 �9 gN(Y)), is a biholomorphic  map  f rom 
A onto  a closed analyt ic  subset  [2 of the  open polydise D ~ in C N. 

I f  K ~-- G(4(X)) ,  t hen  K is the  joint  spec t rum de te rmined  b y  the  elements  
bl . . . . .  bN, where bl = gl o 4 -1IX. Then  an  applicat ion of  the  Symbolic Calculus 
shows t h a t  if  g E ~ (M) ,  t hen  g o 4 -1 [X determines  an e lement  of  B. I t  follows 

t ha t  A I X c B .  
To prove  the  cont inu i ty  of  T we use a result  in [14, p. 161], which asserts t h a t  

if  {g.} is a sequence in @(D) for which lira g~ ~ 0 holds un i formly  on compact  
subsets of  ~ ,  t hen  there  exists a f ixed open ne ighborhood U of K in C N and  
elements  G ~ e ~ ( U )  such t h a t  G~]K=g~IK while lim [G~lu~-O. Then  the  
cont inu i ty  principle for  the  Symbolic  Calculus implies t h a t  if  u~----g~ o 4-11X = 
Gn o 4 -1, we have  lim []u.[[ = 0. 

The ne x t  resul t  follows f rom the  con t inu i ty  of  T in L e m m a  3.1. 

L~M~A 3.2. Let us put J ~- { f  e A : f i X  e J}. Then J is a closed ideal in 

the Frdchet space A. 
Proof of Theorem 3.1. The set S ~ Hull  (J) is a compact  analyt ic  subset of 

Y, and  hence it  is finite. Since Hull  (Jo)13 ( / ~ X  ~ is e m p t y  while J o [ / ' C  J ,  

we can easily f ind elements  gx . . . . .  gN in J such t h a t  the  set Z ~ {y E /~  : gx(Y) 
�9 .----gx(Y) ~ 0}, is the f inite set S. 
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Next we consider the closed ideal I which g~ . . . . .  gN generate in A. Since 

has been identified with q@(M), where M is the Stein space from Lemma 3.1, 
we can apply standard sheaf theory. For g~ . . . .  , gs determine a coherent sheaf, 

called I ,  of .4-ideals. The sections of this sheaf are the elements of I .  See [6, 
p. 244] and [15]. 

Since the cohomology groups vanish for all coherent sheaves of el-modules, 

we conclude tha t  the factor space A / I  is isomorphic with the sections of the quotient 

sheaf R = A/I .  Here R has a non trivial stalk in the finite set S only. At each 
point s E S the complex vector space R~ is finite dimensional, because {s} is 

an isolated point in the analytic set determined by I .  

I t  follows tha t  I has ~ finite eodimension in .4, and a fortiori J has a finite 

codimension in A. Then we can write A = 5 d- Cf~ -t- . . .  + Cf,,,, where 

f l  . . . .  ,f,~ E~I. Let  bl = f i I X  be the corresponding elements in B. 
Since J is a closed ideal in B it  follows that  J -~ Cb 1 d- �9 �9 �9 -4- Cb,, is a closed 

subspgce of B. This subspace contains the dense subset Ax, and hence J has a 
finite codimension in B. 

Finally we remark tha t  the work in [16] contains material related with Theorem 
3.1. 

4. Holomorphic  sets in C ~ 

Let A be a uniform algebra. I f  W is an open subset of MA we denote by 
@A(W) the algebra of all functions on W which are locally approximable in W 
by functions from A. I f  K is a compact subset of M A we put q~A(K) = 
{rE C(K) : K an open neighborhood W of K in MA and some g CHA(W ) such 
that glK = f } .  Finally HA(K) is the uniform closure of HA(K ) in C(K). We 
say that  K is a holomorphic set if K = MxA(~ ). 

Since each element of A determines an element in HA(K ) via its restriction 
to K, we get induced map ~ from MuA(K) into MA satisfying f (y ) -~ f (n(y) )  
for all yEMHA(K I and all f in A. 

The result below is essentially well-known and a proof when K is a compact 
set in (P occurs in [17]. 

PROPOSITIOn; 4.1. Let K be a compact set in M.4 and put K I = ~(MHAK)), 

I f  now f C It~(K) is such that there is some g E HA(K1) satisfying g[K = f,  then 
f(y) = g(~(y)) for all y E MuAK ). So in particular g is determined by f. 

Pro@ Suppose firstly tha t  g E~@A(K~) and define ~ ( y ) =  g(n(y)) for all 
y E MHAK). The continuity of ~ shows tha t  ~ is locally approximable by functions 

from A on MuA~ 3. So if B is the uniform algebra on MuA(~) generated by 

H.4(K) and ~, then 0B = 0nA(~)c K holds. See [10, Corollary 2.4]. 
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W he n  g~ ~ glK is considered as an e lement  
on K.  Since a B c K  it follows t ha t  ~ = g l  on 
when g E ~A(K1). 

The general  case follows if we let  (g~) be a 

of  HA(K ) we see t h a t  ~ = g l  
M~AK). This proves  the  resul t  

sequence in @A(K1) such t h a t  

l im [gn - -  gig, ~ O. For  then  fn ---- gn]K belong to H a ( K  ) while lim lfn - - f I K  -~ 0. 
This implies t h a t  f(y) = l imfn(y ) = lim gn(a(y)) ~ g(z~(y)) for all y E MH~(K). 

We notice t h a t  Proposi t ion  4.1 immedia te ly  implies t h a t  if  K 1 -~ K,  then  K 
is a holomol~hie  set. This  was a l ready p roved  in [2, Theorem 10]. In  general  K 1 
is conta ined in the  unique smallest holomorphic  se~ B(K) which contains K.  
Here  B(K) is called the  barrier of K. See [2]. 

Suppose ne x t  t h a t  K is a holomorphic  set in MA. I f  T is a closed subset  of  
K we define the  algebra @K(T) ---- {f E C(T) : IK some open ne ighborhood U of  
T in K and some g E@Ha(K)(U ) satisfying g l T = f } .  Final ly  HK(T ) is the  

uni form closure of  ~ ( T )  )in" C(T). With  these nota t ions  we say t h a t  T is a 
K-holomorphic set if  M~:( T = T holds. 

The result  below is a direct  consequence of C. E.  Rickar t ' s  theory .  
PROPOSITION 4.2. Let T be a compact subset of the holomorphic set K. I f  now 

T is a holomorphic set, then T is K-holomorphic. 
We do no t  know if the  converse is t rue,  i.e. i f  the  condit ion t h a t  T is K-holo-  

morphic  implies t h a t  T is a holomorphie  set. Bu t  the  following result  shows t h a t  
the  converse is sometimes t rue.  

P~OPOS[TION 4.3. Let K be a compact holomorphic set in C ~ and let W be a 
relatively open subset of K. Let S be a closed subset of W which is ~K(W)-convex. 
Then S is a K-holomorphic set and i f  g E H(S),  then g can be uniformly approxi- 
mated on S by functions from @K(W). I f  finally B(S) is a compact subset of W, 
then S is a holomorphic set. 

Proof. The assert ion t ha t  S is a K-holomorphic  set is a consequence of Theorem 
12 in [2]. Nex t  we let  B be the  uni form algebra on S genera ted  b y  ~K(W)]S. 
Because S is @K(W)-eonvex in W, while W is an open subset of  M~CK)= K,  
it follows f rom the  work in [12] t ha t  S = M s. 

I f  zl , �9 �9 �9 , z~ are the coordinate  funct ions in C ~, t h en  ziIS = b~ are e lements  
in B. Here  S is the  joint  spec t rum of b 1 , . . . , b ~ .  I t  follows t h a t  if  gE(~(S) ,  
then  glS E B. This implies t h a t  H(S) c B which proves the  second assertion. 

Suppose ne x t  t h a t  B(S) is a compact  subset  of W. I f  g E H(K) it  is obvious 
t h a t  glS EH(B(S)). I t  follows t ha t  if f E ~ K ( W ) ,  t hen  fIB(S) is locally 
approximable  on B(S) by  funct ions f rom H(B(S)). Since B(S) ~ MH(B(S) ) it  follows 

f rom [10, Corollary 2.4] t ha t  Ifls(,s) _~ ]fit for all f in ~K(W), where T ~ OH(s(S)). 
Bu t  now Theorem 11 in [2] shows t ha t  T c S. Then  the  condit ion t h a t  S is 
(OK(W)-convex implies t ha t  S = B(S). Hence  S is a holomorphic  set. 
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A n  example  

We give an example  of  a compac t  holomorphic  set in C n which is no t  a hull, 
i.e. i t  cannot  be represented  as the in tersect ion of open domains  of  holomorphy.  
This example  gives a negat ive  answer to  the  quest ion raised in [7, p. 515]. 

F i rs t ly  we discuss compact  Re inha rd t  sets in C 2. I f  K is a compact  Re inha rd t  
set in C 2 i t  can be represented  as a compact  subset  of R ~ D {(]z ] , ]w I) : (z, w) e {~2}. 

A set of  the  t ype  Z ( a l , a s , b l )  = { ( z , w )  CC 2 : a  1 <  ]z l_<as  and  I w [ = b l }  
is called a Z-segment .  In  a similar way  we get the  W-segments W(a l ,  b l ,  b~) 
and f inal ly  the  squares Q(a 1 , a  2 , b  1 , b s ) = { ( z , w ) e C  2 : a  1 <  IzI _<a s and 

bl .~< Iwl _< bs}. 
I f  K is a compact  set of  the form W ( a l ,  b 1 , bs) tJ Z ( a l ,  a s ,  bl) 13 Z ( a l ,  a2,  bs), 

where a I < a 2 and  b 1 < bs, t hen  it  is easily verif ied t h a t  ~(K) = Q(a I , a s , b 2 , bs). 

Using this fac t  it  follows t ha t  i f  K 0 = W ( a  I , 0 , bs) [.J Z (a  I , a 3 , O) [.J Z (a  1 , a 2 , b2) [J 
Z ( a 2 , a a , b )  for some 0 < b < b s ,  t hen  u ( K 0 ) = Q ( a  1 , a s , O , b 2 )  U Z ( a ~ , a a , b ) t j  
Z (a2 ,  a3 ,0 ) .  I t  follows t h a t  u(K0) = K1 is not  a holomorphic  set, while ~(K1) = 
Q(a 1 , a ~ , O , b s )  U Q ( a 2 , a a , O , b )  is the  barr ier  of  K.  

The  example .  Let  K =  W ( 0 , 0 , 1 )  t J Z ( 0 , 1 , 0 ) U T ,  ~There T - =  I , ]Tn  and 
T n = Z(2 -n-1 , 2 - " ,  1 - -  1In) for all n > 1. I f  now V is a domain  of  ho lomorphy  
containing K,  then  the  preceeding discussion easily implies t h a t  V contains all 
points  ( z , w )  for which 2 - ~ - I _ <  ]z I _<2 -~ and  [w I__< 1 - -  1In. I t  follows t h a t  
K is no t  a hull. 

B u t  using the  fact  t ha t  the  closed sets Tn are holomorphic  sets and  closed 
components  of K,  it follows easily t ha t  ~(K) = K,  and  hence K is a holomorphie  
Set. 

In  the  example  K is disconnected,  and  this is necessary because the  following 
assertion can easily be verified.  

P~OPOSITION 4.4. Let  K be a connected compact  Re inhard t  set in  C ~. T h e n  K 

is a holomorphie set i f  and  only  i f  K is  a hull. 
Final ly  we show how to const ruct  a connected  holomorphic  set which is not  a 

hull. Le t  ( z , w , t )  be the  coordinates in C 3. P u t  K l = { ( z , w , t ) : ( z , w ) C K  
and  t =  1}, where K is the  set f rom the  example  above.  To each n >  1 we let 
J~ be a closed arc in C 3 which s tar ts  f rom the  point  p ~ = ( 2  - ~ - 1 ,  1 - -  l / n , 1 )  
and  has q ~ =  (2 - ~ - 1 , I -  1/(n-~- 1 ) , 1 )  as a n e n d p o i n t .  As we pass f rom p~ to 
q~ the  t-variable winds a round  the  uni t  circle, i.e. we m a y  take  J~ = {p(x) : p(x )  = 
(2 - n - 1 , 1  + x / n ( n ~ -  1 ) , e  2~i~) as 0 > x  < 1}. 

Now the  set S = KI tJ U (J~ : n > 1), is connected.  Because K is no t  a hull 
we see t h a t  S is no t  a h u l l .  Bu t  S i s a h o l o m o r p h i e s e t .  Fo r  if  n >  1 is given, 
t hen  we can de termine  branches  of the  funct ion (2~i) -1 log (t) in such a way  t h a t  
we get an e lement  f C ~ (S)  satisfying f = 1 on the  set S~ = {(z, w ,  t) : (z ,  w) C T n 
and  t =  1}, while f = 0  on K ~ S ~ .  In  addi t ion f = 0  on Jm, when m = / : n ,  
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and f ,  maps  J~ onto  the  closed uni t  interval .  Using the  existence of  the  fami ly  
{f,} in H(S),  it  follows easily t h a t  S = MH(S). 

Final ly  we refer  to [19] for  more  results about  holomorphic  sets. 
Remark. F or  a v e r y  interes t ing theory ,  p a r t l y  based on holomorphie  sets in 

13 ~, we refer  to  1%. H a r v e y ' s  paper  ~The t h e o r y  of hyper func t ions  on to ta l ly  real  
subsets of  a complex manifold  wi th  applicat ions to extension problems~> in Amer .  
g. Math.  91 (1969), 853--873.  

5. Integral  extens ions  of Banach  algebras 

Le t  B be a Banach  algebra and  let  g E C(MB). We say t h a t  g is integral  
over  B if  g satisfies an equa t ion  f + big n-1 + . . .  + bn = 0 in MB with  bl E B. 

Le t  g be integral  over  B and  pu t  A = [ B ,  g] = the  subalgebra of C(MB) 
genera ted  b y  B and  g. I t  is t hen  possible to  in t roduce  a no rm on A which makes  
-4 into a B a na ch  algebra.  We refer  to  [20, 22] for details of this construct ion.  

W he n  B and  A are as above  we get the  induced m ap  n f rom MA into MB. 
In  general  0a # n-I(0B), and  we do no t  know if  am D ~-I(OB) is always t rue.  The  
resul t  below was also p roved  in [22] unde r  a slight addi t ional  assumption.  

T I ~ E O l ~  5.1. Let B and A be as above. I f  ~ is an open map, then 0A = ~-I(0B). 
N e x t  we in t roduce  some concepts  m o t i v a t e d  b y  integral  extensions.  
Definition 5.1. Le t  B and  A be two Banach  algebras such t h a t  B is a closed 

subalgebra of  A. Le t  z be the  induced map f rom M A into M s. We say t h a t  
admits  a f ini te  string of local charts, i f  there  is a decreasing sequence of  closed sets 
M A = Z 0 D Z1 D . . .  D Zn D Zn+ ~ = 13 such t h a t  the  following holds: I f  p C W~ = 
Z ~ Z ~ +  1, t hen  there  is a n o p e n n e i g h b o r h o o d  U of p in MA s u e h t h a t  ~I (Uf3 Wi) 

is injective.  I f  f inal ly  a E A, t hen  B contains a sequence {b,} such t h a t  limb= = g 

holds un i formly  on U 13 Wi, where g and  b~ are the  Gelfand t ransforms on MA. 
In  the  special ease when A = [ B ,  g] for some g E C(MB) satisfying Q(g) = 0, 

where Q(T) = T ~ q- b i t  ~-1 q- . . . q- b,, t h en  the  map  z f rom M A into M B 
admi ts  a f ini te  str ing of  local charts .  F o r  let  us p u t  Qk(T) = OkQ/OT ~ for  each 
k > 1, and  consider the  elements  gs = Q~(g) in A. I f  we t h en  p u t  Z~-= 
{ y E M ~ : g ~ ( y )  . . . .  =g~(y)  = 0}, t hen  i t  is no t  h a rd  to  ver i fy  t h a t  Ma  = 
Z 0 D Z 1 D . . .  D Z= D t3, gives the  requi red  string. 

Now we begin the  s t udy  of Shilov boundaries .  The  following resul t  follows f rom 
easy topological  considerat ions.  

L ] ~ A  5.1. Let B ~ A be a pair of Banach algebras such that zr admits a f ini te  
string of local charts. Then the fibers ~r-l(x) are totally disconnected for all x E M s. 

LSMMA 5.2. Let B C A be a pair of Banach algebras. Let x E X B be such that 
zt-l(x) is totally disconnected. Then s - l (x )  C Xa. 

Proof. Since x E X B we know t h a t  {x} is an intersect ion of  peak  sets in M~ 
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de t e rmined  b y  funct ions  in the  un i fo rm closure B~ of  B. I t  follows t h a t  A 0 ---- 
A~Iz-l(x)  is a u n i f o r m  algebra  on ~-l(x)  and  hence M~~ holds. Since 
z - l (x )  is t o t a l ly  d isconnected  it  follows f rom a we l l -known resul t  t h a t  A o = C(z- l (x)) .  
This  means  t h a t  ~-X(x) is a p e a k  in te rpo la t ion  set in MA~ ~--M~. Then  

z - l (x )  c ZA~ =- 2: A follows. 

L E ~  5.3. Let B ~ A be such that ~ admits  a f in i te  string of local charts. 

I f  ~ is an open map,  then O~ ~ Z~-~(OB). 
Proof. Using L e m m a  3.1 and  3.2 it  follows t h a t  z~-~(XB) ~ OA. Since OB is the  

closure of  XB in MB while ,~ is an  open and  cont inuous  m a p  it  follows t h a t  
~-1(~,) c OA- 

Now we ob ta in  a genera l iza t ion  of  T h e o r e m  5.1. 
T~IEOI~EM 5.2. Let B ~ A be such that ~r admits a f ini te  string of local charts 

J~A = Zo ~ ZI ~ . . . ~ Z= ~ O. Suppose also that ~ is an open map  and that 

Zi+~ is an A z - a n a l y t i c  variety for each i. Then OA = ~-~(~) .  

Proof. Using L e m m a  5.3 it  is suff icient  to  p rove  t h a t  0A ~ Kul l  A (~-~(0B)) = S. 
So let  us assume t h a t  M A ~ S  ~-- 
holds. Since D is open while 0A 

X A ~ D c Z 1 .  
So let y E X A f i D  be g iven 

ne ighborhood  W of  y in MA 

D is non  e m p t y .  N o w  we p rove  t h a t  ~a gl D c Z~ 
is the  closure of  2A, it  is suff icient  to p rove  t h a t  

and  p u t  ~(y) = x. Then  we can  choose a closed 
such t h a t  z m a p s  W homeomorph i ca l l y  onto  

~(W) while z (W) c MB~OB.  I n  addi t ion  we m a y  assume t h a t  each  e lement  in A 
can be  un i fo rmly  a p p r o x i m a t e d  b y  funct ions  f rom B on W. Since z is open 
we see t h a t  b(~(W)) c zc(bW). An appl ica t ion  of the  L M P  to B shows t h a t  ]b(y)[ 
lb(x)t << Ib[~(=(w))< ]b]~ W for all b in B.  Then  the  a p p r o x i m a t i o n  condi t ion shows 
t h a t  y E Hul l  A (bW), and  hence y canno t  belong to  Z~A. 

We  have  p r o v e d  t h a t  0 A f~ D C Z1 and  hence D c Hul la  (0A) C HullA (S U Z1). 
Using Propos i t ion  1.3.c we deduce t h a t  D c Z r Since D is an  open subset  of  
M A we can now use the  local char ts  in Z I ~ Z 2 ,  and  the  same a r g u m e n t s  show t h a t  

D c Z  2. I n d u c t i v e l y  we get  D c Z~ for all v > 1, so f inal ly  D c Z , + I  = 0 .  
Hence  S = M A which implies t h a t  a a = ~-I(0B). 
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