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The Stone-Weierstrass theorem in Lipschitz algebras

By Lars IncE HEDBERG

1. Introduction

A normed function algebra is said to have the Stone-Weierstrass property if every
subalgebra which separates points and contains constant functions is dense in the
algebra. The purpose of this paper is to investigate this property in certain algebras
of real-valued functions with norm greater than the sup norm.

Let X be a compact metric space, connected or not, with metric d{r,y). Let
Lip (X,d*), 0<a <1, be the Banach algebra of all real-valued functions f on X such
that

I =Max{§gg|f(z)l,z’szgg{ | f(@) = fy) /A, y)} < oo

and let lip (X,d) be the subset of all f in Lip (X,d*) with the property that
sup {|f() —fy)| [d(x,y)*; z,y€X,d(z,y) <6}>0 as 5—0.

If 0<a<1, lip (X,d*) always contains plenty of functions, and it is a point-separating
closed proper subalgebra of Lip (X,d%). See [3] where these algebras are studied in
detail.

It is natural to ask if lip (X,d*) has the Stone-Weierstrass property (which, obvi-
ously, Lip (X,d*) does not have). However, in [3], p. 249, reference is made to an
unpublished example by Katznelson of a point-separating subalgebra of lip (X,d®)
which is not dense in lip (X,d%). In the first part of this paper we give a necessary
and sufficient condition, in terms of local properties of the functions, for a point-
separating subalgebra of lip (X,d=) to be dense (Theorem 1, Corollaries 1 and 2).

In the second part we consider algebras of periodic functions on the real line. For
0<a<1 we denote by A, the algebra of all continuous real-valued functions with
period 27 such that

11 =M {sup o). supi [

-7

If(x+t)—f(x)ldx}< o
and by 4, the closed subalgebra of functions such that

lim¢™* - =0,

lim ¢ Llfwt) f@)|de=0

For 0<ax<2 we denote by B, the algebra of all continuous real-valued functions
with period 27 such that
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L. 1. HEDBERG, Stone-Weierstrass theorem in Lipschitz algebras

n 3
111 -tox fsup ] [T [ (e fovas) | < oo

or equivalently
» 3
111 =dtax{supl o, (3 fnk 1)} < .

where f, are the Fourier coefficients of f.
We show that 4, and B, have the Stone-Weierstrass property for 0 <« <1 (Theorem
2). On the other hand, B, does not have this property for a>1 {gee [1]).

2. Subalgebras of lip (X, d*), 0<a<1
We use the following notation:
8,(0) = {z€X; d(x,a) =6},
B,(8)= {#€X; d(z,a)<é}.

The closure of a set E is denoted by E.
We shall prove the following theorem.

Theorem 1. Let X be a compact space with metric d, and let A be a point-separating
subalgebra of lip (X,d=), 0<a <1, which contains constant functions. Then A is dense
i lip (X, d) if and only if for every a € X there are numbers M, >0 and §, >0 such that
for every x€8,(d), 6 <4y, there is an f€ A with f(a)=1, f(z)=0, and

lf) = 1),
s“p{ Ay, 2*

The condition is clearly necessary, since for all ¢ and a<f <1 the function g(x)=
1—d(z,a)?/6# belongs to lip (X,d*) and satisfies g(a)=1, g(x) =0 for x€S,(), and
|9(y) —9(2)| /d(y,2)= <6~= for y,2 € By(9).

To prove the sufficiency we need the following lemmas.

y,2€ Ba(é)} < %

Lemma 1. Let f,,...,/,€4, and let ¢ be a real-valued function which is defined and
Lipschitz continuous with respect to the Euclidean metric in a neighborhood of the set
I'={(fi(x),....fa(®)); z€X} in R™. Then ¢(fy,...,f,) €4.

Proof. If ¢ is continuously differentiable the assertion follows from the Weierstrass
approximation theorem (Whitney [4], p. 74). Now suppose that ¢ is only Lipschitz
continuous. It is then enough to show that there exists a sequence, {¢,}7°, of C* func-
tions such that

[1(6—4,) (fr, s fa)]| =0, »—>c0.
Let g € C(R") have support in |u| <1, let g0, and [z g du=1. Put g,(u) =v"g(vu)

for =1, 2,... We can assume that ¢ is defined and Lipschitz continuous in all of B"
(see e.g. [3], p. 244), and then we put
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$u(v)= f (v u)g,(u)du= f () gy v~ u)ds.
Rn [o-u]<1»

It follows that | ¢(v) — $,(v)| < const. 1/». Moreover

Ou(v) N A P B og,(v — u)
avi B J'|v~u|<11v¢(u) a’”i du flv—ulsllv (¢(u) 95(1))) a’”i .

This implies that ¢, € C" and that

og(v(v—u))

du < Const.
ov;

M!SConst.f |w— vl *
70

{o-ul<lpy

We now choose a sequence {4,}{° so that §,—~0 and %~ oo, as v— co. We then

obtain for arbitrary » .
(Z | fi(@) — (%) Iz) 1 1
Il (6= ) (f1, -+, fa) || < Const. Max{ sup  ~ —},

R’
a(@, 1)<y d(z, y)* v05 ¥

which tends to zero as y—oo. This proves the lemma.
We single out the following consequence as a separate lemma.

Lemma 2. If {,€4, i=1, 2,...,n, then the function F defined by

F(x) =M3Xt {fl(x)i fz(x): ’fn(x)}
belongs to A, and || F|| <Max,||f,l.

Proof. The first assertion follows from Lemma 1, and the second is trivial.

Lemma 3. Let a€X be a point where the condition of Theorem 1 is satisfied. Then,
for every positive § <48, there is a function v € A with the following properties.

0<yp(x)<l, =z€X, 1)
p(x) =1 tn a neighborhood w of a, )
p(x)=0, x¢B.(J), ®
Iyl <. )

Proof. Let a€X and suppose that 3, and 6, are constants with the properties in
Theorem 1.

Then, if 0<4<4,, there is for every z,€S5,(6) an f€ 4 such that f(a) <0, f(z)>1in
a neighborhood of ,, and sup {|/(y) —f(z)| /d(y,2)%; y,2€ B,(8) } <M ,[6.

Since §,(8) is eompact it can be covered by a finite number of such open neighbor-
hoods. We denote the corresponding functions f by f;, i=1, 2,...,n. Then there is an
7>0 so that F.(x)=MaXicica {fi(x)}>1+4n, x€S,(0). We put

Ky ={z; Fo@)<1+29} 0 By(6), Ko={x; Fo@)>1+2n} 0 Bo(d), Ky=5.(8) U CB,(0).
These sets are compact, and K, n K3 =4.
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L. I. HEDBERG, Stone-Weierstrass theorem in Lipschitz algebras

Since A separates points on X it is readily seen by means of a compactness argu-
ment in X x X that there are functions in 4, f,.,,....fx, say, such that the vector-
valued function ®(z)= {f,(z),....fy(z)} maps K, and K, onto disjoint compact sets,
®(K,) and ®(K,), in R¥. K, is mapped onto ®(K,),

O(K,)= {u€RY;, MaxXi<icn > 1+2n}, and O(K;)< {u€R"; Maxicicn 4; <1 +27}.
Then there are compact neighborhoods N, of the ®(K,) so that
N;c{u€eR", Max u,<1+ 37},
1<ign

N,c{u€R" Maxu,>1+n}

1<ign

and NinNg=4.
We can now define a function ¢ on N, U N,U N, by putting
$(u)=Min{1, Max (0,1 — Maxu,)}
1

<ign

for u€N,U N, and ¢{u) =0 for €N,V N,. This is no contradiction, for both defini-
tions give zero for € N,. Since there is a positive distance between N, and N, it is
clear that ¢ is Lipschitz continuous. Then, by Lemma 2, p=d(f,,....fv) €4, and it is
eagsy to see that y has the required properties.

Proof of Theorem 1. We assume that A satisfies the conditions in the theorem, and
we shall show that a given function g€lip (X,d%) belongs to 4. We assume that for
all x and y with d(z,y) <20 we have

l9(x) —g(y) | Jd(, y)* <n(8)/(20), ()

where 7(9)/6—0, as §—0.
We choose £>0, to be kept fixed, and then for every a € X we choose d <4, so that

7(6)/6* < ¢ Min {1, 1/M,)}. (6)

Corresponding to this 4, there is by Lemma 3 a function y satisfying the conditions
in that lemma.

Since X is compact it can be covered by a finite number of the neighborhoods in
(2), {w;}}, say. If the corresponding 6 and y are denoted by {3,}} and {y;}}, and the
support of p, is Q;, (5) gives that

osc g(z) <7(4) (M
TeQdy
and hence, by (4) and (6)

ose g(z) || i{| <e. )

We shall now construct explicitly a function in 4 which approximates g. We
choose numbers [, <l, <... <[, so that

ly<gx)<l, z€X
and
L—L_,=Minn(4), 7=1,2,...,q. 9)

J
I<igy
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Let L; be the compact set
Ly={z;9(x)21;}, §=0,1,2,....q.

For each ¢=1, 2,...,p there is an integer (i), such that Q,< L, but Q; & L4
and there is an integer »(3) = u(é) such that w; N L,y =*=é, but w; N Ly =9

We put y; = (L) —Lun)ws if 9(5) >u(9), and y; = (I, — o)y, otherwise. It follows from
(8) and (9) that

[l 1] < (08¢ 9(@) + Luy+1 ~ buew) [l <2e.
Then we put '
hy(z) = 1y + Max o (z).
1<i<p
Clearly hy(z)>1,+1, —ly=1l;. Moreover, if z€L,, j>1, and if = belongs to some w;
such that Q, intersects Ly\L,, then w;(x) >1;—1,, so hy(z) =1,

We put ky(z) =Min {h,(z), [}, and hy(z) =Max {k,(z), k;(z) +Max {pi(z); Q;<L,}}.
Then hy(x)=>1,, z€L,, for either # belongs to some w; such that Q,<L,, and then
pi(@) =1, —1,, or else hy(x) >1,. If €L, for j>2, and if x belongs to some w; such that
Q, intersects L, \L,, then either Q,<L,, and v (x) >1,—1,, so hy(x)=1,, or else Q,
intersects Lg\Ly, so hy(x) 21,. For 2¢ Ly, hy(x) =h,(2).

Now assume that we have constructed A, so that h.(z)>!,, z€L, and so that
h(x) =1, j >r, if €L, and belongs to some w, such that , is not contained in L,.

Then we put

kr(x) =Min {hr(x)) lr}
and
by y(xr) =Max {h(2), k.(x) + Max {y;(z); Q<L }}.

If 2¢L,, clearly A, (x)=h,(x). If €L, ;, we have either that x belongs to some
0;<Q,<L,, so pi(x)=1,,,—1, or else h(x)=],,, by the hypothesis. In both cases
hea(@) 2l Ifx€L;, j>r+1, and  belongs to some w, such that Q, is not contained
in L, ,, then either Q, is contained in L,, and yi(z)>1,~1I,, or else h(z)>1,. In both
cases k, ,(x) =1,

The procedure breaks off for r =g, so we finally put 4,(z)=h(z), and we shall show
that ||g —h|| is small. Since A€ 4 by Lemma 2, this will prove the theorem.

We already know that k(x) >1;, x€L;. On the other hand we shall see that

h(x)<l;+2 Max n(6;), x€L\L

ST
This is certainly true for &,(x), for by (7) and (9)
hq(x) <ly+ Max o%c g(x) + 1, — I, <1y + 2 Max 5(d,).
zeldy i

Assume that

h(x)<l;+2 Max 9(6;), x€L;\L;,, j=1,2,..
Then, for z¢L,, k. ,(x)=h.(x), and for x€L,, either

Bopa(®) =1, +yi(z) <I,+Max osc g(x) +1,., I, <[, +2 Max 5(5,),
i i

el

or else h, ,(z)=h,(x), which proves the assertion.
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It follows that |g(x) —h(z)| <2 Max, #(d,), and hence for d(z,y) >2 Max; d, we have
by (6)

|9(x) — hx) — g(y) + hiy)| 4 Max;5(3) _

d(z, y)* S @2 Max, o)
For d(z, y) <2 Max, §, we have by (5) and (6)
|9@) —h@) —g) + hy)| _|9=) —g9()]  [A@) ~hy)| . [=) = k)|
d(z, y)* d(x, y)* d(z, y)* d(z, y)*

and it is thus enough to show that |A(z) —hA(y)| /d(x,y)* is small if d(z,y) <2 Max, ;.

Let z and y be given with d(z,y) <2 Max, 0;, and assume that k(z) =>h(y). Then
h(z) =1, +ypi(x) =h,,(z) for certain ¢ and j so that Q,= L,, and either yEL,, yEL; ,\L,,
or y¢L; .

In the first case A(y) >1;+9i(y), so h(z) —h(y) <yi(2) —pi(y).

In the second case it is clear that A{y)=hy), so
h(x) —h(y) <hyyy(2) —1,+ hy(@) - h,(y) <2 Max, lw,(x) ~y,(y) |, since
| () - hy(y) | <Max, |.(x) ~p.(y) |, and yi(y) =O0. ) )

In the third case, finally, A(z) —A(y) =h(z) — I, +1,—h(y) <vi(2)-vi(y) +9(x) —9(y)
+9(y) —h(y) <pi(x) —yi(y) +9(=) —g(y) + Min, 7(3,). In this case d(z,y) >Min, §,, so we
find in all cases

hz) — Wy)

< ’
iz )" M:ax"zp, | +2e<3e

which proves the theorem.

Now let £ < X be a compact, totally disconnected set, and let 4; be the subalgebra
of lip (X,d%) which consists of all functions in lip (X,d%) which are constant in every
component of some open neighborhood of E. Then 4 obviously separates points in X.
The following corollary translates the condition in Theorem 1 into a metric condition
on the set E.

Corollary 1. Ay is dense in lip (X,d2), 0<a <1, if and only if for every a € E there are
numbers M, >0 and 8,>0 such that for every § <04, there is an open set O containing
E n B,(0) with the following property:

O has finitely many components w;, =1, 2,...,p, wy=0B,(0), with distances d(w;, w;)
=d,;, and

q
Min{ > dﬁ;_l,,i} =6%/M,,
=1
where the minimum is taken over all sums such that vy=0, a€w,,, and over all ¢=1,

2,..,p.

Proof. Suppose E satisfies the condition in the corollary. Choose ¢ € K, and a § <4,
0 that there is a set O > E n B,(d) with the required property.
We define a function f on O by f(z) =0, for €@, and for x€®,, j=1, 2,...,p, by

f(x) =Min {iél d:zi_pi };
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where the minimum is taken over all sums such that »,=0, »,=7, and over all =1,
2,...,P.

Suppose z€®; and y €@;. Then d(x,y) =d,,. If f(z) =f(y) it follows from the defini-
tion that f(x)<f(y)+dfi, s0 |f(x)~f(y)|/d(z,y)*<1. Also f(a) >6%/M,, and f(z)=0
for z ¢ B,(d).

Moreover, for a<e' <1,

sup |f(@)— Hy)|/d(z, y)* <supdfi* <2,
T,y €0 ik

if o' — o is small enough. But f can be extended to a function in Lip (X,d*) with the
same Lipschitz constant ([3], p. 244). Thus

| H) =) | [z, y)* <2d(x,9)* "%, x,y€X,

so fE€lip (X,d2). This proves the sufficiency part of the corollary, since it is obvious
that functions f with the required properties exist for a ¢ .
The necessity is obvious.

In the case when X is an interval < R! and d(z,y) = |« —y|, the corollary gets a
particularly simple form.
If O= UY w, is a union of disjoint intervals, we put M,(0)=3F |w,[*.

Coroliary 2. Let E < I be compact and totally disconnected. Then Agisdenseinlip (I,d%)
if and only if for every a €E
lim M((1\E) 0 Bo(9))/8*>0.

550
The proof is obvious.

3. The Stone-Weierstrass theorem in A, and B,, 0 <a <1

We refer to the introduction for the notation. It is easy to prove the following fact.

Lemma 4. 1, is a closed subalgebra of A, 0 <a<1.

The purpose of this section is to prove the following theorem.

Theorem 2. The algebras A, and B,, 0 <a <1, have the Stone-Weierstrass property.

Remark. The algebras B, «>1, were studied in [1]. It was shown there that they
do not have the Stone-Weierstrass property (p. 85 f., p. 94). It is easy to see that this
extends to a=1.

Lemma 5. T'he C* functions are dense in A, and B,.

The proofs are straightforward, and are omitted.
In what follows, 4 is a subalgebra of A, or B, which separates points and contains
constant functions.
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Lemma 6. Let >0 and —n<a—-8<a<b<b+d<m. Then there is a function f€ A
such that

0<fz) <1,
é
flx)=1, a——2-<x<b,
8
flx)=0, —zw<zx<a—06 oand b+§<x<n,
—o " 1- 6
and ¢ | Hz + t) — f(x) | dz <46'7%, 0<t<s,
12 ] 4
or f t‘l“"dtf | flx+8) — f(z) Pda < — 8%,
0 - l—ea

respectively.

Proof. For a moment we consider the functions in 4 as functions on the circle. We
then make the following observation.

If I, and I, are two open intervals which together cover the circle, and if f, €4 and
f-€A are equal on I, n I,, then the function f,, defined as f, on I, and as f, on I,
belongs to 4.

This is proved as in the proof of Lemma 3.

Now let a, b, and 8 be given as stated. By assumption there is a function 4, € 4 such
that h;(a —(6/2)) >1, and hy(a —8) <0. Let h, be the truncation of &, by 0 and 1. Then
hy€A4 by Lemma 2, which clearly applies. Similarly there is a function ;€4 such
that As(b) >1, and hy(b +(3/2)) <0, with a corresponding truncation %,. By the above
observation the function h;, defined by

[ )
hy(x), a—6<x<a—§,
1, a—g<x<b,
hg(x) =

hy(x), b<x<b+g,

. 0, elsewhere in (— 7, 7),
also belongs to 4.
Now denote ks by k and consider the interval {(a —§, @) = I. By a well-known lemma
of Riesz (see [2], p. 6) the set
O={z€l;3y€l, y>z, suchthat h(y)<h(xr)}

is open, 0= U w,, w,=(x,, 8,), and A{a,)=h(8,). Clearly, A(x)>h(«,) for a, <z <B,,
and A(x) =h(f,) for 8, <z <a.
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For any &>0 we now define a function &, by
{h(x), x€I\O
)=
Min {k(z), h(e) + &}, z€w,, v=1,2,...

We shall show that if &, is defined in a similar way in (5,5 +4), and as h elsewhere,
then &, is the required function, if ¢ is chosen small enough. It is immediate from
Lemma 2 and the earlier observation that A, € 4, because h(x) <h(x,) + ¢ in all but a
finite number of the w,,.

Let €1, 0<t<§/2, and assume that h,(x —t) >k, (x). We claim that then

h(x—t) —h () <Min {e, h(x—t)—h(z)}.

In fact, it is clear from the definition of A, that k. (x —t) —k(2) < e. On the other
hand, k(x—¢)>h(x) implies that A (z)=~h(x), for otherwise we would have

h(x)>h(a,)+¢ for some u, «,<z<f,, and then h,(z)=h(x,)+e>h(x—t). Thus
k(x —t) —hy(z) =h({x—t) —h(x) <h{x —t) — h{z).
For any f it is true that |f| =f+2f-, where f~=Max {—/, 0}. We find for 4,,
f | ho(2) = he(x— 8) | dwr = J {(he(x) — Pe(x —8))dx + 2 ( (fe(x) = Be(z— 1))~ da.
I I v i
Here

t‘“f (he(x) = he(x — 1)) do = t'“f

and

a a-t

he(x)dx—17* f

a—

52

2t'°‘f (he(x)-—hs(x—t))‘dx<2t'“f | A(x) — R(z—t) Id:cé?t_“f | h(x) — h(z — t) | da
1 I

-7t

or 2 f (he(z) = he(x— 1)) "da < 267 %.
JI

Now choose ¢, >0 so that 267 [ | h(x) — h(x —#)|dx < 6*~* for 0 <t <{,, and then
choose & so small that 265%¢ < §7*. It follows that

a
t""f | Be(x) = he(x — £) |dr < 267%, 0< t<é.
a—93 2
This follows in the same way for (b, b+4), and for all other  the integrand is 0, so

the lemma is proved for A,.
For B, the proof is similar, because |k (z) —h (2 ~1t)|> < |he(x) —he(x —1) .

Proof of Theorem 2. Let g be a C! function which is non-decreasing in an interval
{2, ¢), non-inecreasing in an interval (c, b), and 0 elsewhere. It suffices to show that
g€A. We can also assume that |g'(z)] <1.

Choose >0 and let I; <...<l,,, be such that |, <g(z)<l,,, and I,,, —1, =0 for all
v=1,2, ...p. Then, for every », there is an interval I,={a,,b,) such that g(z)>1, for
xz€l,, and g(x) <, for ¢ ,. Clearly b,_, ~b,>6 and @, —a,_, >4.
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By Lemma 6, for every v=1,...,p. there is a function f,€ 4 such that f,(x) =46 on
1,, f,(x)=0 outside I,_;, and (if f(z+t)—f(z)=A,f(x))

—“f | Acfo(z) | de < K*%, O0<t<d/2

312 1]
or f t‘l“"dtf | Acfo(z) Pdx < K6*~%,
0 -5

respectively.
Then |g(z) — D% f,(x )] d for all . Moreover, for A,

-5
L

because pd < ose g <z. But § is arbitrary, which proves the theorem for A,. For B,
the proof is similar, and is omitted.

2t~ 28 < 8%, £>6/2,

dxgt-uf |A,g|dx+2t‘“r |Adfy|de

r=1

<2t "%+ pK&® < (2+ K)md' ™%, 0<£< /2,
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