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The Stone-Weierstrass theorem in Lipschitz algebras 

B y  LARS I~GE HEDBERG 

1. Introduction 

A normed function algebra is said to have the Stone-Weierstrass property if every 
subalgebra which separates points and contains constant functions is dense in the 
algebra. The purpose of this paper is to investigate this property in certain algebras 
of real-valued functions with norm greater than the sup norm. 

Let  X be a compact metric space, connected or not, with metric d(x,y). Let  
Lip (X, d~), 0 < ¢¢ ~< 1, be the Banaeh algebra of all real-valued functions / on X such 
that  

II f II -- ~ a x  {sup I / (x)l ,  sup I / ( ~ ) -  l(y)I/,~(~, y r }  < 

and let lip (X,d ~,) be the subset of all / in Lip (X,d~) with the property that  

sup (I](x)-f(y)l/d(x,y)~; x, yeX,  d(x,y)~<~}-~0 as 0-~0. 

If  0 < ~ < 1, lip (X,d a) always contains plenty of functions, and it is a point-separating 
closed proper subalgebra of Lip (X,d~). See [3] where these algebras are studied in 
detail. 

I t  is natural to ask if lip (X, d~) has the Stone-Weierstrass property (which, obvi- 
ously, Lip (X,d~) does not have). However, in [3], p. 249, reference is made to an 
unpublished example by Katznelson of a point-separating subalgebra of lip (X,d~) 
which is not dense in lip (X, da). In  the first part  of this paper we give a necessary 
and sufficient condition, in terms of local properties of the functions, for a point- 
separating subalgebra of lip (X,d ~) to be dense (Theorem 1, Corollaries 1 and 2). 

In the second part we consider algebras of periodic functions on the real line. For 
0 < a¢ < 1 we denote by Aa the algebra of all continuous real-valued functions with 
period 2~ such that  

and by ~ the closed subalgebra of functions such that  

li~ t-~ ~" l l(x + t ) -  t(~) I d~ = o. 
t--)0 J _ ~  

For 0 < :¢ < 2 wo denote by B,  the algebra of all continuous real-valued functions 
with period 2~ such that  
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or equivalently 

where f ,  are the Fourier coefficients o f / .  
We show tha t  2~ and B a have the Stone-Weierstrass proper ty  for 0 < ~ < 1 (Theorem 

2). On the other hand, Ba does not have this property for :¢>-- 1 (see [1]). 

2.  Subalgebras  o f  lip ( X ,  d'~), 0 < - < 1 

We use the following notation: 

s~(~) = {x E x ;  d(~, a) = ~ }, 

Ba(8) = {x£X; d(x,a) <~ }. 

The closure of a set E is denoted by  ~.  
We shall prove the following theorem. 

Theorem 1. Let X be a com~,ct space with metric d, and let A be a point.separating 
subalgebra of lip (X, d~), 0 < a < 1, which contains constant functions. Then A is dense 
in lip (X, d ~) i / a n d  only i f /or every a 6 X there are numbers Ms > 0 and ~a > 0 such that 
for every x £SJ~),  ~ ~<O~, there is an / e A  with/(a) = 1, l (x)=0,  and 

su fll(y)-l(~)l, , z E B , ~ , ]  <M~ 

The condition is clearly necessary, since for all a and ~ <fl < 1 the function g(x) = 
1-d(x,a)P/~P belongs to lip (X,d =) and satisfies g ( a ) = l ,  g(x)=0 for XESa(~), and 
I g(Y) - g(z) I/d(y, z)~ ~< 6 -= for y, z E Ba(~). 

To prove the sufficiency we need the following lemmas. 

Lemma 1. Let f, ..... / ,EA,  and let ~ be a real.valued function which is defined and 
IXpschitz continuous with respect to the Euclidean metric in a neighborhood of the set 
F =  {(h(x) ..... /,(x)); x E X }  in R' .  Then ~(/1 ..... /,) e.4. 

Proof. I f  ~ is continuously differentiable the assertion follows from the Weierstrass 
approximation theorem (Whitney [4], p. 74). Now suppose that  ¢ is only Lipsehitz 
continuous. I t  is then enough to show tha t  there exists a sequence, {¢~}~, of C x func- 
tions such tha t  

(/1 . . . . .  /,,)11 

Let g E C°°(R ") have support in l ul < 1, let g ~> o, and f ~  g du = 1. Pu t  g~(u) =~"gO, u) 
for ~ = 1, 2 .... We can assume that  ~ is defined and Lipschitz continuous in all of R * 
(see e.g. [3], p. 244), and then we put  
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¢=(v)= ¢(v- u)g.(u)du=  )du 

I t  follows tha t  ]¢(v) - ¢,(v) I ~< cons/. 1/~. Moreover 

8¢~(v)= f l,_=l<.<ll~¢(u) Sg~(~ U) du= f l,_=i<~l~(¢(u)-¢(v)) ~g~(~v~ U) 

This implies tha t  ¢, E C 1 and tha t  

a¢,(v) < C o n s / . / I  ]U--Vlyn+IIag(V(V--U)) d u ~ < C o n s t .  

We now choose a sequence {8,}~ so that  ~ - + 0  and vS~-+ ¢¢, as v-+ ~ .  We then 
obtain for arbi t rary  )' I/,(x) -/,(y) I ~ 1"1 

. . . . .  / , , ) l l < C o n s t .  M a x ,  sup 
~(~.y)<~,. d(x, y)~ ~5~" ~ j '  

which tends to zero as v-+co. This proves the lemma. 
We single out the following consequence as a separate lemma. 

Lemma 2. I~/~EA, i = 1 ,  2 ..... n, then the/unction F defined by 

F(x) =Max, {/l(x),/2(x) . . . . .  /n(x)} 
beZongs to IIFII <Max, ll/,ll. 

Proo/. The first assertion follows from Lemma 1, and the second is trivial. 

Lemma 3. Let a E X  be a point where the condition o/ Theorem 1 is satisfied. Then, 
/or every positive (~ <~ ,  there is a/unction y~ EA with the/ollowing properties. 

0 <y,(x) ~<1, xEX, (1) 

~(x) = 1 in a neighborhood co el a, (2) 

yJ(x) =0,  x~B~(O), (3) 

Proo/. Let  a E X and suppose that  Ma and 5~ are constants with the properties in 
Theorem 1. 

Then, if 0 < ~ ~< (~a, there is for every x 0 E S~((~) an / E A such tha t / (a )  < 0,/(x) > 1 in 
a neighborhood of z0, and sup (I/(Y) -/(z) i/d(Y,Z)~; y, zeBo(O)} <Md(~ ~. 

Since S~(O) is compact it can be covered by  a finite number  of such open neighbor- 
hoods. We denote the corresponding functions / by/4,  i = 1 ,  2, ...,n. Then there is an 
~ > 0  so tha t  Fn(x)=Maxx,<t,<, {/i(x))>~l+4~?,XESa(~). We put  

Fn(x)/> 1 +2~} N B~(~), g 3 =S~(~) U CB~(~). K~ = {z; F.(~) < 1 +2~} n B°@, K~= {~; ' 

These sets are compact, and K 1 N Ka =¢.  
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Since A separates  points  on X it is readily seen b y  means  of a compactness  argu- 
men t  in X × X t h a t  there  are funct ions in A, /~+~ ..... IN, say, such t ha t  the vector-  
va lued  funct ion qb(x)= {/'~(x) ..... /N(X)} maps  K 1 and  K 3 onto disjoint compac t  sets, 
O(K1) and  (1)(Ka) , in R N. K 2 is m a p p e d  onto O(K2), 

( I ) (g2)c  {ueR~; Max~<,<~, u,/> 1 +2~},  and (I)(K~)~ {uER~; Max~<,<~ u~ ~< 1 +2~} .  

Then  there  are compac t  neighborhoods 37~ of the  O(K~) so t ha t  

X i c { u e R  N, Max u~ ~< 1 + 3~?}, 
l~<i~n 

X.,~  {u eR  ~, Max u~ >/1 + V} 

and ~¥1 ~ 373 =¢-  

We  can now define a funct ion ¢ on 371U 372 U N a b y  pu t t ing  

¢(u) = Min {1, Max (0,1 - Max u~)} 
l~<i<~n 

for u E N 1 U 37 2 and  ¢(u) = 0 for u E 37~. U 37a- This is no contradict ion,  for  bo th  def ini :  
t ions give zero for  u E N~. Since there  is a posi t ive distance be tween 2/1 and  N 3 it is 
clear t h a t  ¢ is Lipschitz  continuous. Then,  b y  L e m m a  2, ~v=¢(/1 .... ,/N)e-4, and  it is 
easy  to see t h a t  ~p has  the  required propert ies.  

Proo/ o/ Theorem 1. We assume t h a t  A satisfies the conditions in the theorem,  and  
we shall show t h a t  a given funct ion gElip (X,d ~) belongs to A. We assume tha t  for  
all x and  y wi th  d(x,y) ~<2(~ we have  

]g(x) -g(y)  l /d(x,y) ~ ~< ~/(~)/(2(~)% (5) 

where ~/(~)/~a~0, as (5~0. 
We choose e > 0 ,  to be kep t  fixed, and  then  for  every  a E X  we choose ~ < ~  so tha t  

<. Min {1, IlMo}. (6) 

Corresponding to this ~, there  is b y  L e m m a  3 a funct ion ~v satisfying the  conditions 
in t h a t  l emma.  

Since X is compac t  it can be covered by  a finite n u m b e r  of the neighborhoods in 
(2), {w,}~, say. I f  the  corresponding ~ and  ~o are denoted b y  {~,}~ and  {~v~}f, and  the  
suppor t  of ~ is ~ ,  (5) gives t ha t  

ose g(x) ~< v/(Oi) (7) 
x e ~  i 

and hence, by  (4) and  (6) 

osc w, ]] (s) 
x E ~ l  

We shall now construct  explici t ly a funct ion in -~ which approx ima tes  g. We 
choose number s  10 < 11 < ... < lq so t ha t  

1 o <<. g(x) <~ lq, x e X 
and 

/ j - / j _ l  = Min ~/(~,), j = l , 2  . . . .  ,q. (9) 
l~f~<p 
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Le t  Lj  be the  compac t  set  

Lj= {x;g(x)>~lj}, j=O,  1, 2 ..... q. 

For  each i =  1, 2 ..... p there  is an integer #(i), such tha t  ~ c L ~ ( ~ ) ,  bu t  ~ :  L~(~)+I, 
and  there  is an integer v(i)>~tt(i) such t ha t  w i N L~(~)=~ ~, bu t  wl N L~(~)+i =~.  

We pu t  y~[ = (l~(~) - l~(~))v2i if v(i) >#(i) ,  and ~v~ = (/i - 10) YJ~ otherwise. I t  follows f rom 
(8) and  (9) t h a t  

Then we pu t  
h~(x) = l0 + Max ~'(x).  

Clearly hi(x)>~lo÷li-l~=l i. Moreover,  if xEL~, ] > 1 ,  and  if x belongs to  some co~ 
such tha t  ~ intersects L 0 \Li, then  ~ ( x )  ~> l~-/0, so hi(x ) >~ l~. 

We pu t  k~(x) = M i n  {h~(x),/~}, and h2(x ) =Max{h~(x), k~(X) + M a x  (~;(x); a,~L1}}. 
Then h~(x)>~l 2, xEL 2, for either x belongs to some w~ such tha t  ~ , c L  i, and  then  
y~(x) ~>l~ - l~ ,  or else hi(x ) >~l~. If xEL~ for ] > 2 ,  and  if x belongs to some w~ such tha t  
~ intersects L i \Ls ,  then  either ~ L 1 ,  and y~[(x)>~lj-li, so ha(x)~I ~, or else ~ 
intersects Lo\Li, so hi(x ) >~l~. For  x ~Li, h~(x)=hi(x ). 

Now assume tha t  we have  constructed h~ so t h a t  hJx)>~l~, x EL,  and so tha t  
h/x) >11~, ] >r, if x E L~ and belongs to some w~ such tha t  ~ is not  contained in L~. 

Then  we pu t  
~/x)  = M i n  {h~(x), lr} 

and  
=Ma  

I f  x~L~, clearly h~+i(x)=hr(x ). I f  xELr+I, we have  either t ha t  x belongs to some 
w ~ c ~ c L ~ ,  so yJ~'(x)>~l~+i-l . or else hjx)~>lr+i, b y  the hypothesis .  I n  bo th  cases 
h~+i(x) ~>/~+i. I f  xELj, ] > r +  1, and x belongs to some eo~ such tha t  ~ t  is not  contained 
in Lr+l, then  ei ther  ~ is contained in L ,  and  ~p~(x) >~lt-lr, or else hJx) >~lj. I n  bo th  
eases h~+~(x) >1 lj. 

The  procedure  breaks  off for r = q, so we finally pu t  hq(x ) = h(x), and  we shall show 
tha t  I lg-hI l  i s  small. Since h EYI by  L e m m a  2, this will p rove  the theorem. 

We a l ready  know t h a t  h(x)>~ l~, x EL]. On the other  hand  we shall see t ha t  

~(x)~</j+2 Max ~](($i), xEL \Lj+ i. 
i 

This is cer ta inly  t rue  for hi(x), for by  (7) and  (9) 

Assume t h a t  

hi(x ) < l 0 + Max osc g(x) + I i - l 0 ~< l o + 2 Max ~(6,). 
xe£2~ i 

hr(x) ~<li+2 Max ~7(~), xELj\Lj+i, ] = 1 ,  2 .... 
i 

Then,  for  x(~Lr, hr+i(x)=hJx) ,  and  for x EL,  either 
• 

h~+i(x) = lr +yJ~ (x) -~ lr + Max osc g(x) + l~+i - l, < l~ + 2 Max ~(~i), 
i xefl~ t 

or else hr+l(x)=hr(x),  which proves  the  assertion. 
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I t  follows that  ]g(x) -h(x)] <2 Max, ~((~), and hence for d(x,y) ~>2 Max~ ~ we have 
by (6) 

] g(x)  - h(x)  - g(y)  + h(y)  I .< 4 Max~ ~((~) -< 
~ . ~  -~.48. 

d(x, y)~ (2 lYIax~ ~) 

For d(x, y) ~< 2 Mar  u ~ we have by  (5) and (6) 

I g(~)  - h(~)  - ~(y)  + h(y )  l < I g(~)  - g(~)[  + I h(~)  - h(y)  I < e + I h(~)  - h(y)  I 
d(x, y)~ d(x, y)~ d(x, y)~ d(x, y)~ 

and it is thus enough to show that  Ih(x)-h(y)l/d(x,y)~ is small if d(x,y)<2 Max~ ~$,. 
Let  x and y be given with d(x,y)<2 Max, ~,, and assume that  h(x)>~h(y). Then 

h(x) =lj +y~(x) =hj+l(x ) for certain i and j so that  ~ , ~  Lj, and either y ELi, y ELj_~ \Lj, 
or y SLs_ 1. 

In  the first case h(y)~>/j ÷,p~(y), so h(x)-h(y)<~v/(x)-~(y) .  
In  the second case it is clear that  h(y)=hi(y ), so 

h(x) - h(y) -,~ hj+l(x ) - l j + hi(x) - hi(y) < 2 Max~ [,p,(x) - ~,(y) ], since 
[hj(x) - hj(y) l < Max~ I~:(x) -yJ:(y) ], and,p, (y) = 0. 

In the third case, finally, h ( x ) - h ( y ) = h ( x ) - l s + l ~ - h ( y  ) <~v/(x)-~p~(y)+g(x)-g(y) 
+g(y) -h(y)  <~y~(x) - ~ ( y )  +g(x) -g(y)  +Min, ~(~,). In this case d(x,y) ~>Min~ ~,  so we 
find in all cases 

~(~, y)~ 

which proves the theorem. 

Now let E ~  X be a compact, totally disconnected set, and let As be the subalgebra 
of lip (X,d ~) which consists of all functions in lip (X,d ~) which are constant in every 
component of some open neighborhood of E. Then As obviously separates points in X. 
The following corollary translates the condition in Theorem 1 into a metric condition 
on the set E. 

Corollary 1. As is dense in lip (X,d~), 0 < ~ < 1, i t and only i t/or every a E E there are 
numbers Ms > 0 and ~ > 0 such that/or every ~ < (~a there is an open set 0 containing 
E n B~(~) with the toUowing property: 

0 has finitely many components w~, i = 1, 2 ..... p, COo = CB~((~), with distances d(m~, eoj) 
=dij, and 

l~n ~- I~i >~ ~ , 
U=i J 

where the minimum is taken over all sums such that %=0, aEwvq, and over all q= 1, 
2 ..... p. 

Proo]. Suppose E satisfies the condition in the corollary. Choose a E E, and a ~ < (~=, 
so that  there is a set 0 D E fi B=(O) with the required property. 

We define a function ] on 0 by [(x)=0,  for xE~ 0, and for xE~j,  ]=1 ,  2 ..... p, by 

t(x) = Min {~ld,~-l,i } , 
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where the minimum is taken over all sums such tha t  %=0,  vq=], and over all q = l ,  
2 ..... p. 

Suppose xE~ j  and yE~k. Then d(x,y)>~djk. I f / (x )  >~/(y) it follows from the defini- 
tion tha t  /(x) <~/(y) +d]'~, so If(x) - / ( y )  I /d(x,y)~ ~< 1. Also /(a) >~/Ma,  and /(x) =0 
for x ~ Ba(~). 

Moreover, for c¢ < a '  < 1, 

sup [ / ( x ) - / ( y )  [/d(x, yf'<~ sup d?~" ~< 2, 
X, yED t ~ k  

if a ' - a  is small enough. But  / can be extended to a function in Lip (X, d ~') with the 
same Lipschitz constant ([3], p. 244). Thus 

I/(x)-/(y)[/d(x,y)~ <~2d(x,y) ~'-~, x, y e X ,  

so /elip (X,d~). This proves the sufficiency par t  of the corollary, since it is obvious 
that  functions / with the required properties exist for a $ E. 

The necessity is obvious. 

In  the ease when X is an interval I c  R 1 and d(x,y)= I x - y l ,  the corollary gets a 
particularly simple form. 

I f  0 = U~ ¢ o)~ is a union of disjoint intervals, we put  M~(O)=ET [wd ~. 

Corollary 2. Let E c I be compact and totally disconnected. Then A s is dense inlip ( I , d ~ ) 
i / and  only i / /or  every a E E 

lim M~((I\E) fi B~(~))/(V > O. 

The proof is obvious. 

3. The Stone-Weierstrass theorem in ~ and B=, 0 < u < 1 

We refer to the introduction for the notation. I t  is easy to prove the following fact. 

Lemma 4. ~t~ is a closed subalgebra o/A~, 0 < ~ < 1. 

The purpose of this section is to prove the following theorem. 

Theorem 2. The algebras ~t~ and B~, 0 < a < 1, have the Stone- Weierstrass property. 

Remark. The algebras B~, a > 1, were studied in [1]. I t  was shown there that  they 
do not  have the Stone-Weierstrass proper ty  (p. 85 f., p. 94). I t  is easy to see tha t  this 
extends to ~ = 1. 

Lemma 5. The C 1/unctions are dense in ha and B~. 

The proofs are straightforward, and are omitted. 
In  what  follows, A is a subalgebra of 2~ or B~ which separates points and contains 

constant functions. 
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L e m m a  6. Let ~ > 0  and -7r<~a-~<a <b <b + ($ <~r. Then there is a/unction/E.~ 
such that 

0 <./(x) <~ 1, 

/(x) = 1, a-~<~x<~b, 

/ ( x )=O,  -jr<.x<~a-($ and b+~ <~x<~xr, 

and 

or 

t-a f~n[/(Xq-t)--/(X)[dx<~4(~ 1-~, 0<t< ~, 

t_x_~,dt l l(x+t)_l(x)12dx < 4 a~_~, 
~, 1 - - ~  

respectively. 

Proo/. For  a m o m e n t  we consider the functions in A as funct ions on the  circle. We  
then  make  the  following observat ion.  

I f  11 and  I2 are two open intervals  which together  cover the  circle, and  if/1 E A and 
/sEA are equal  on 11 N Is,  then  the  funct ion/3 ,  defined a s /1  on 11 and  a s / s  on I~, 
belongs to ~ .  

This  is p roved  as in the  proof  of L e m m a  3. 
Now let a, b, and  8 be  given as s ta ted .  B y  assumpt ion  there  is a funct ion h 1EA such 

that_hl(a - (6/2)) > 1, a n d  hl(a -(~) < 0. Le t  h 2 be the  t ruaca t ion  of h 1 b y  0 and  1. Then  
hsEA b y  L e m m a  2, which clearly applies.  Similarly there  is a funct ion haEA such 
tha t  ha(b ) > 1, and  ha(b + (8/2)) <0 ,  wi th  a corresponding t runca t ion  h 4. B y  the  above  
observat ion the  funct ion h 5, defined b y  

hs(x)= 

hs(x), a - ~ x ~ a - -  
2' 

1, a - ~ x < ~ b ,  

h4(x), b<~x<~b+~, 

O, elsewhere in ( - re, re), 

also belongs to ~ .  
Now denote  h 5 by  h and  consider the  in terval  (a - 8, a) = I .  B y  a well-known l e m m a  

of Riesz (see [2], p. 6) the  set  

O={xEI; 3yEI, y>x, such tha t  h(y)<h(x)} 

is open, 0 = U•to,, w~=(a~, fl~), and h ( ~ )  =h(fl~). Clearly, h(x) >h(a~) for  a ~ < x < f l , ,  
and  h(x) >~h(fl~) for fly ~<x ~<a. 
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For  a ny  s > 0 we now define a funct ion he by  

fh(x), x ~ I \ 0  
hs(x) ] 

[Min {h(x), h (~)  + s}, x e e~,., v = 1, 2 . . . .  

We shall show tha t  if h~ is defined ha a similar way  in (b,b +8),  and as h elsewhere, 
then  h~ is the required function, if s is chosen small enough. I t  is immediate f rom 
Lemma 2 and the earlier observat ion tha t  h~e~I, because h(x)<h(a,)+ s in all bu t  a 
finite number  of the wv. 

Let  x e I ,  0 < t < 8/2,  and assume tha t  h~(x - t) > he(x). We claim tha t  then 

h~(z-t)-h~(z) ~<Min {e, h ( x - t ) - h ( z )  }. 

I n  fact,  it is clear f rom the definition of he tha t  hs(x-t)-h~(x)<~e. On the other 
hand, hs(x-t)>h~(x) implies t ha t  h~(x)=h(x), for otherwise we would have 

h(x)>h(a~)+e for some #, a~<x</3~,  and then h~(x)=h(a~)+e>~h~(x-t). Thus 

h ~ ( ~  - t )  - h e ( x )  = h ~ ( x  - t )  - h ( z )  < h ( x  - t )  - h ( z ) .  

For  a ny  / it is t rue tha t  [/[ =1+21% w h e r e / - = M a x  { - ] ,  0}. We find for 2~, 

f ]h~(x)-h,(x- t )[dx= f (h~(x)-h~(x-t))dx+2 fz (h~(x) -h , (x- t ) ) -dx .  

Here 

t -~ (h~(x)-h~(x-t))dx=t -~ h~(x)dx-t  -~ h~(x)dx<~t~-~<-<l~l 
I a - ~  a - 5 - t  

and  

; f f 2t -~ (h~(x)-h~(x-t))-dx<~2t -~ I h ( x ) - h ( x - t )  Idx<2t -~ Ih(x) - -h(x- t ) ldx  

or 2t -~ ~ (he(x) - h~(x- t))-dx < 2t-~s. 
~ 1 I  

Now choose t o > 0 so tha t  2t -~ j'~_= ] h(x) - h ( x -  t)]dx < 5 x-= for 0 < t < t o, and then 
choose e so small tha t  2t~=e < ~-~ .  I t  follows tha t  

f t -~ [h~(xl-h~(x-01d~,<2O ~-~, 0 < t < ~ .  
a - d  

This follows ha the same way  for (b, b +d),  and  for all other x the integrand is 0, so 
the lemma is proved for 2~. 

For  B~ the proof is similar, because ]h~(x) - h~(x - t)12 ~< I h~(x) - h~(x-  t)[. 

Proo/o/ Theorem 2. Let  9 be a C 1 funct ion which is non-decreasing in an interval 
(a, c), non-increasing in an  interval (c, b), and 0 elsewhere. I t  suffices to show tha t  
g E ~ .  We can also assume tha t  Iz'(x)] <1.  

Choose (~ > 0  and let l~ < ... < Iv+ ~ be such tha t  l I <~g(x)<~lp+~ and 1,+~-l~ =5  for all 
v = I, 2 .... p .  Then, for every v, there is an  interval  I ,  = (a,, b~) such tha t  g(x) > l~ for 
xEI , ,  and  g(x) <~l~ for xiiI~. Clearly b~_l-b,>~5 and a,.-a~_l >~. 
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B y  L e m m a  6, for  e v e r y  ~ =1  .... .  p .  t he re  is a func t ion  ] ~ E ~  such t h a t  ]~(x)=8 on 
I , ,  [~ (x )=0  outs ide  I , _ j ,  and  (if [ (x+t ) - [ (x )=At / (x ) )  

f t -~ [ /h l . (x ) ldz<.K8 2-~, 0<t<6/2 

f? f or t - l - ~ d t  I A,/,(x)IZdx <~ K8 s-' ,  
--Xg 

respec t ive ly .  
Then  [ g ( x ) -  ~ f v ( x )  [ ~< 8 for al l  x. Moreover,  for  2~, 

and  

< 2~$1-= q- pK8  2-a < (2 + K)z~81-~, 0 < t < 8 /2 ,  

because  p~ < osc g ~< z~. B u t  8 is a r b i t r a r y ,  which  proves  t he  theorem for 2~. F o r  B~ 
the  proof  is s imilar ,  a n d  is omi t ted .  
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