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Abstract. We study concave trace functions of several operator variables
and formulate and prove multivariate generalisations of the Golden–Thompson
inequality. The obtained results imply that certain functionals in quantum
statistical mechanics have bounds of the same form as they appear in classical
physics.

1. Introduction

The Golden–Thompson inequality, which is of importance in statistical me-
chanics and in the theory of random matrices, states that

TreL+B ≤ TreLeB

for arbitrary self-adjoint matrices L and B. It is known that there is no direct
extension of this inequality to more operator variables, and there is an extensive
literature investigating these matters, cf. [7, 1, 3] and the references therein.

In Theorem 4.2 the following extension of Golden–Thompson’s trace inequality
is obtained. Let H1, . . . , Hk be m× n matrices with

H∗1H1 + · · ·+ H∗kHk = 1n ,

then the inequality

Tr exp
(
L +

k∑
i=1

H∗i BiHi

)
≤ Tr exp

(
L)

k∑
i=1

H∗i (expBi)Hi (1)
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is valid for arbitrary self-adjoint n×n matrices L and m×m matrices B1, . . . , Bk .
This is for m = n the same bound as obtained when all the matrices commute.
We are thus allowed to estimate partition functions or the Helmhotz function
in quantum statistical mechanics and obtain bounds on the same form as they
appear in classical physics.

Notice that (1) reduces to the Golden–Thompson inequality for k = 1, m = n,
and H1 = 1n (the identity n × n matrix), and to convexity under the trace of
the exponential function for L = 0. The inequality may thus be considered as
an interpolation inequality between Golden–Thompson’s inequality and Jensen’s
inequality. However, we cannot derive (1) from these special cases. If we first
apply Golden–Thompson’s inequality then we obtain

Tr exp
(
L +

k∑
i=1

H∗i BiHi

)
≤ Tr exp

(
L) exp

k∑
i=1

H∗i BiHi

but this inequality is insufficient to obtain (1), since L is arbitrary and the expo-
nential function is not operator convex.

We continue by giving more general multivariate versions of the Golden-
Thompson inequality in Theorem 4.3 and multivariate versions of the extended
Golden–Thompson inequality in Theorem 4.4.

A major technical tool in our investigation is the following known result [9,
Theorem 3].

Theorem 1.1. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk ≤ 1n

and a self-adjoint n× n matrix L. Then the trace function

ϕ(A1, . . . , Ak) = Tr exp
(
L +

k∑
i=1

H∗i (logAi)Hi

)
is concave in k-tuples of positive definite m×m matrices.

We recently obtained a generalisation of Theorem 1.1 for deformed exponentials
[6, Corollary 3.2]. Both proofs are rather intricate. We therefore find it useful to
give a conceptually simpler proof more in the spirit of Lieb as in [8, Theorem 6].

2. Preliminaries

The following lemma is both well-known and very useful. We include the proof
for the benefit of the reader.

Lemma 2.1. Let ϕ : D → Asa be a map defined in a convex cone D ⊆ X of a
Banach space X with values in the self-adjoint part of a C∗-algebra A. If ϕ is
Fréchet differentiable, convex and positively homogeneous then

dϕ(x)h ≤ ϕ(h) x, h ∈ D,

where dϕ(x) denotes the Fréchet differential of ϕ(x).
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Proof. Since

ϕ(x + th) = (1 + t)ϕ
( 1

1 + t
x +

t

1 + t
h
)

≤ (1 + t)
( 1

1 + t
ϕ(x) +

t

1 + t
ϕ(h)

)
= ϕ(x) + tϕ(h)

for 0 ≤ t ≤ 1, we obtain

ϕ(x + th)− ϕ(x)

t
≤ ϕ(h) for 0 < t ≤ 1

and thus dϕ(x)h ≤ ϕ(h). �

We refer to the monograph [2] for a general account of Fréchet differentiable
mappings between Banach spaces.

The logarithm is operator monotone with Lebesgue measure as representing
measure, thus

log x =

∫ ∞
0

(
t

1 + t2
− 1

x + t

)
dt x > 0.

Since

x1/2(x + h)−1x1/2 = (1 + x−1/2hx−1/2)−1 = 1− x−1/2hx−1/2 + o(h),

we derive that dx−1h = −x−1hx−1. Notice that h may be arbitrary as we are not
using the functional calculus. Consequently

d log(x)h =

∫ ∞
0

(x + t)−1h(x + t)−1 dt.

We have thus obtained the following integral expression

Q(x, h) = Trh∗d log(x)h = Tr

∫ ∞
0

h∗(x + t)−1h(x + t)−1 dt. (2)

It follows from the integral expression that Q(x, h) is positively homogeneous
in (x, h). Lieb proved that it is a convex function in two variables [8, Theorem
3]. But this is a reflection of a quite general result. Zhang and the author [5]
recently proved that for a strictly increasing continuously differentiable function
f : (0,∞)→ R the form

(x, h)→ Trh∗df(x)h x > 0

is convex, if the derivative of f is operator convex and numerically decreasing.
We record the following consequence of Lemma 2.1. Since Q(x, h) is defined

in the convex cone D = B(H)+ ×B(H), where H is a finite dimensional Hilbert
space, we obtain the inequality

dQ(x, h)(y, k) ≤ Q(y, k) (3)

for positive definite x, y and arbitrary h, k.
We close this section by giving a new result for the form Q.
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Proposition 2.2. Let X be an invertible contraction. Then

Q(XAX∗, B) ≤ Q(A,X−1B(X∗)−1)

for positive definite A and arbitrary B.

Proof. We use the integral representation of the form Q and obtain

Q(XAX∗, B) = Tr

∫ ∞
0

B∗(XAX∗ + t)−1B(XAX∗ + t)−1 dt.

Since X is a contraction we derive the inequality

1

XAX∗ + t
≤ 1

X(A + t)X∗
= (X∗)−1(A + t)−1X−1.

Under the trace this inequality implies

Q(XAX∗, B)

≤ Tr

∫ ∞
0

B∗(X∗)−1(A + t)−1X−1B(X∗)−1(A + t)−1X−1 dt

= Q(A,X−1B(X∗)−1)

which is the desired result. �

3. Concave trace functions

Theorem 3.1. Let H be a contraction. Then the trace function

ϕ(A) = Tr exp
(
H∗(logA)H

)
is concave in positive definite matrices.

Proof. We may without loss of generality assume that H is invertible. We calcu-
late the first Fréchet differential

dϕ(A)B = Tr d exp
(
H∗(logA)H

)
(H∗(d log(A)B)H)

= Tr exp
(
H∗(logA)H

)
(H∗(d log(A)B)H),

where we used the identity Tr df(A)B = Trf ′(A)B valid for differentiable func-
tions. We then consider the following mappings of the single operator variable A.

C = H∗(logA)H

D = H∗(d log(A)B)H = dA(H∗(logA)H)B = dA(C)B

E = H exp(C)H∗ = H exp
(
H∗(logA)H

)
H∗

G = H d exp(C)(D)H∗ = dC(H exp(C)H∗)D = dC(E)D.

For clarity, we use the notation dA to indicate Fréchet differentiation with re-
spect to A of compound expressions. We proceed to calculate the second Fréchet
differential

d2ϕ(A)(B,B) = dA(dϕ(A)B)B = dA(Tr exp(C)D)B

= Tr d exp(C)(D)D + Tr exp(C)H∗d2log(A)(B,B)H

= Tr d exp(C)(D)D + TrEd2log(A)(B,B).
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We recall [2] that ϕ is concave if and only if d2ϕ(A)(B,B) ≤ 0 for positive definite
A and self-adjoint B. To evaluate the second term we apply the chain rule to the
form Q(A,B) and obtain

dQ(A,B)(a, b) = d1Q(A,B)a + d2Q(A,B)b

= TrB d2log(A)(B, a) + Tr b d log(A)B + TrB d log(A)b

for positive definite A, a and self-adjoint B, b. The integral representation in (2)
implies TrB d log(A)b = Tr b d log(A)B, and we therefore obtain

dQ(A,B)(a, b) = TrB d2log(A)(B, a) + 2Tr b d log(A)B.

By using (3) we now obtain the inequality

Tra d2log(A)(B,B) = TrB d2log(A)(B, a)

= dQ(A,B)(a, b)− 2Tr b d log(A)B

≤ Q(a, b)− 2Tr b d log(A)B

for positive definite A, a and self-adjoint B, b. Since E is positive definite we may
put a = E and thus obtain

d2ϕ(A)(B,B) = Tr d exp(C)(D)D + TrE d2log(A)(B,B)

≤ Tr d exp(C)(D)D + Q(E, b)− 2Tr b d log(A)B.

By setting b = G we then obtain

d2ϕ(A)(B,B) ≤ Tr d exp(C)(D)D + Q(E,G)− 2TrG d log(A)B

for positive definite A and self-adjoint B. But since

TrG d log(A)B = TrH d exp(C)(D)H∗d log(A)B

= TrH∗(d log(A)B)H d exp(C)D

= Tr dA(H∗(logA)H)B d exp(C)D

= Tr(dA(C)B) d exp(C)D

= TrD d exp(C)D,

we obtain

d2ϕ(A)(B,B) ≤ Q(E,G)− TrD d exp(C)D.

We now apply Proposition 2.2 and obtain

Q(E,G) = Q(H exp(C)H∗, G)

≤ Q(expC,H−1G(H∗)−1)

= Q(expC, d exp(C)(D))

= Tr d exp(C)(D) d log(expC) d exp(C)(D).

However, since the inverse of the linear map h→ d exp(x)h is given by

d exp(x)−1 = d log(exp x),
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we realise that

d log(expC) d exp(C)(D) = d exp(C)−1(d exp(C)D) = D.

Therefore,
Q(E,G) ≤ TrD d exp(C)D

and thus d2ϕ(A)(B,B) ≤ 0 for positive definite A and self-adjoint B. This shows
that ϕ is concave. �

Corollary 3.2. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk ≤ 1n

where 1n denotes the n× n unit matrix. Then the trace function

ϕ(A1, . . . , Ak) = Tr exp
(
H∗1 (logA1)H1 + · · ·+ H∗k(logAk)Hk

)
is concave in k-tuples of positive definite m×m matrices.

Proof. We set

A =


A1 0 · · · 0
0 A2 0
...

. . .
...

0 0 . . . Ak

 and H =


H1 0 · · · 0
H2 0 · · · 0
...

...
. . .

...
Hk 0 · · · 0


with zero matrices of suitable orders inserted and notice that H is a contraction.
Furthermore,

H∗(logA)H =


∑k

i=1H
∗
i (logAi)Hi 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 . . . 0

 .

Thus

Tr exp
(
H∗(logA)H

)
= Tr exp

( k∑
i=1

H∗i (logAi)Hi

)
+ (k − 1)n

and the statement follows from Theorem 3.1. �

Proof of Theorem 1.1: By appealing to continuity we may without loss of
generality assume

H∗1H1 + · · ·+ H∗kHk < 1n

and set Hk+1 =
(
1n − (H∗1H1 + · · · + H∗kHk)

)1/2
. Then Hk+1 is positive definite

and since
H∗1H1 + · · ·+ H∗kHk + H2

k+1 = 1n

we deduce from Corollary 3.2 that the trace function

ϕ(A1, . . . , Ak, Ak+1) =

Tr exp
(
H∗1 (logA1)H1 + · · ·+ H∗k(logAk)Hk + Hk+1(logAk+1)Hk+1

)
is concave in positive definite matrices. We keep Ak+1 constant by setting

Ak+1 = exp
(
H−1k+1LH

−1
k+1

)
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and the statement follows. �

Remark 3.3. Theorem 1.1 contains two celebrated theorems of Lieb. If we set
k = 1, m = n, and H = 1n then the trace function

ϕ(A) = Tr exp(L + logA)

is concave in positive definite matrices [8, Theorem 6]. If H1, . . . , Hk are chosen
as square roots of positive numbers times the identity matrix then we obtain that
the trace function

ϕ(A1, . . . , Ak) = Tr exp(L + p1 logA1 + · · ·+ pk logAk),

defined in positive definite matrices, is concave, where p1, . . . , pk are non-negative
numbers with p1 + · · ·+ pk ≤ 1, cf. [8, Corollary 6.1 (1)].

Corollary 3.4. Let L be a fixed self-adjoint matrix, and let A1, . . . , Ak be random
self-adjoint matrices. Then the inequality

ETr exp
(
L +

k∑
i=1

H∗i AiHi

)
≤ Tr exp

(
L +

k∑
i=1

H∗i (logEeAi)Hi

)
holds for fixed matrices H1, . . . , Hk with H∗1H1+· · ·+H∗kHk ≤ 1n, where E denotes
the expectation operator.

The result follows directly from Theorem 1.1 by applying Jensen’s inequality,
cf. also [11, Corollary 3.3]. A simple consequence is that

ETr exp
(
L +

A1 + · · ·+ Ak

k

)
≤ Tr exp

(
L +

logEeA1 + · · ·+ logEeAk

k

)
for a fixed self-adjoint matrix L, and for random self-adjoint matrices A1, . . . , Ak.

4. Multivariate trace inequalities

Lemma 4.1. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk = 1n

and a self-adjoint n× n matrix L. Then we have the inequality

Tr exp
(
L +

k∑
j=1

H∗j (logBj)Hj

)
≤ Tr exp

(
L +

k∑
j=1

H∗j (logAj)Hj

) k∑
i=1

H∗i (d log(Ai)Bi)Hi

for positive definite m×m matrices A1, . . . , Ak and B1, . . . , Bk .

Proof. Since the trace function

ϕ(A1, . . . , Ak) = Tr exp
(
L +

k∑
j=1

H∗j (logAj)Hj

)
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is concave and (positively) homogeneous, we may apply Lemma 2.1 and obtain
the inequality

dϕ(A1, . . . , Ak)(B1, . . . , Bk) ≥ ϕ(B1, . . . , Bk).

By applying the chain rule for Fréchet differentials we then derive

ϕ(B1, . . . , Bk) ≤
k∑

i=1

diϕ(A1, . . . , Ak)Bi

=
k∑

i=1

Tr d exp
(
L +

k∑
j=1

H∗j (logAj)Hj

)
H∗i (d log(Ai)Bi)Hi

=
k∑

i=1

Tr exp
(
L +

k∑
j=1

H∗j (logAj)Hj

)
H∗i (d log(Ai)Bi)Hi

and the statement follows. �

Theorem 4.2. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk = 1n .

Then we have the inequality

Tr exp
(
L +

k∑
i=1

H∗i BiHi

)
≤ Tr exp

(
L)

k∑
i=1

H∗i (expBi)Hi

for self-adjoint n× n matrices L and m×m matrices B1, . . . , Bk .

Proof. Choose in Lemma 4.1 for i = 1, . . . , k the matrix Ai as the identity matrix.
Then the Fréchet differential d log(Ai)Bi = Bi and logAi = 0. The result then
follows by replacing Bi with expBi for i = 1, . . . , k. �

The above inequality is a direct generalisation of Golden–Thompson’s inequal-
ity. Indeed, if we put k = 1, m = n, and take H1 as the identity matrix then the
inequality in Theorem 4.2 takes the form

TreL+B ≤ TreLeB,

cf. [4, 10, 8]. We may obtain other corollaries of Lemma 4.1 .

Theorem 4.3. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk = 1n .

Then we have the inequality

Tr exp
( k∑

i=1

H∗i (logBi − logAi)Hi

)
≤

k∑
i=1

TrH∗i (d log(Ai)Bi)Hi

for positive definite m×m matrices A1, . . . , Ak and B1, . . . , Bk .

Proof. The result follows by setting

L = −
(
H∗1 (logA1)H1 + · · ·+ H∗k(logAk)Hk

)
in Lemma 4.1. �
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If we in Theorem 4.3 put k = 1, m = n, and take H1 as the unit matrix we
obtain

Tr exp(logB − logA) ≤ Tr d log(A)B = TrA−1B

which is the Golden–Thompson inequality.

Furthermore, if Ai and Bi commute for i = 1, . . . , k then Theorem 4.3 reduces to
the inequality

Tr exp
( k∑

i=1

H∗i (logBi − logAi)Hi

)
≤

k∑
i=1

TrH∗i BiA
−1
i Hi

which is an expression of operator convexity of the exponential function under
the trace.

Theorem 4.4. Consider m× n matrices H1, . . . , Hk with

H∗1H1 + · · ·+ H∗kHk = 1n .

Then the inequality

Tr exp
( k∑

i=1

H∗i (logBi + logCi − logAi)Hi

)
≤ Tr exp

( k∑
i=1

H∗i (logCi)Hi

) k∑
i=1

H∗i (d log(Ai)Bi)Hi

is valid for positive definite m×m matrices A1, . . . , Ak, B1, . . . , Bk and C1, . . . , Ck .

Proof. The result follows by setting

L = H∗1 (logC1 − logA1)H1 + · · ·+ H∗k(logCk − logAk)Hk

in Lemma 4.1. �

If we in Theorem 4.4 put k = 1, m = n, and take H1 as the unit matrix we
obtain the extended Golden–Thompson inequality

Tr exp(logB + logC − logA) ≤ TrC d log(A)B.

The extended Golden–Thompson inequality reduces to the Golden–Thompson
inequality if A and B commute.
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