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ABSTRACT. The aim of this paper is to study properties of Besov-type spaces
with variable smoothness and integrability. We show that these spaces are
characterized by the p-transforms in appropriate sequence spaces and we obtain
atomic decompositions for these spaces.

1. INTRODUCTION

The most known general scales of function spaces are the scales of Besov spaces
and Triebel-Lizorkin spaces and it is known that they cover many well-known
classical function spaces such as Holder—Zygmund spaces and Sobolev spaces, see
Triebel’s monographes [32] and [33] for the history of these function spaces. These
spaces play an important role in Harmonic Analysis.

The theory of these spaces had a remarkable development in part due to its
usefulness in applications. For instance, they appear in the study of partial
differential equations.

In recent years, there has been growing interest in generalizing classical spaces
such as Lebesgue, Sobolev spaces, Besov spaces and Triebel-Lizorkin spaces to the
case with either variable integrability or variable smoothness. The motivation for
the increasing interest in such spaces comes not only from theoretical purposes,
but also from applications to fluid dynamics [24], image restoration and PDE
with non-standard growth conditions.

Variable Besov-type spaces Bs((f))”;((f)) have been introduced in [11], where their
basic properties are given, such as the Sobolev type embeddings and that un-

der some conditions these spaces are just the Besov spaces Ba(lm(1/70=1/p0))
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For constant exponents, these spaces unify and generalize many classical func-
tion spaces including Besov spaces, Besov—Morrey spaces (see, for example, [42,
Corollary 3.3]).

The main aim of this paper is to present another essential property of the
Besov-type spaces with variable smoothness and integrability such as the -
transforms characterization and the atomic decomposition.

The paper is organized as follows. First we give some preliminaries where we
fix some notations and recall some basics facts on function spaces with variable
integrability and we give some key technical lemmas needed in the proofs of the
main statements. For making the presentation clearer, we give their proofs later
in Section 5. We then define the Besov-type spaces B;‘((.')j’qT(g) and E;Y((_'))ﬁ(f)) as
follows. Let Q be the set of all dyadic cubes in R". For each cube P € Q, we
denote by xp the characteristic function of P. Select a pair of Schwartz functions

® and ¢ satisfy

suppF® C B(0,2) and |FP(£)| > cif |£] < g (1.1)

and

collection of all f € S'(R™) such that
< 0,
ZQ(')(LP(‘))

(2’1)0:(.)90@ * fXP)
| P|1/p() vouk
a(),7()

where (g is replaced by ®. While the Besov-type space Bp(%’q(.) is the collection
of all f € 8'(R™) such that

2va(-) y
1 £1l gacr.r) = sup LfXP < 00,
p(-)sa(-) PeQ HXPHT(.) ot
VZUp 2aC)(LP())

| f1l zec)00) := sup
p(hat)  PeQ

where g is replaced by ®, see Section 2 for the definition of Py, £20)(LP1)) and v}.
In this section several basic properties such as the (p-transform characterization
are obtained. The main statements are formulated in Section 4, where we give
the atomic decomposition of these function spaces. It is shown that the element

f € 8'(R") in the space BZ‘(.'))’;(S) or §;‘(_')) ’qp((.'))can be represented as

f= Z Z Nom Ov.ms converging in S'(R™),

v=0 mez"

where g, ,,’s are the so-called atoms and the sequence complex numbers {\, .}
belongs to an appropriate sequence space. Moreover, based on these sequence
spaces equivalent quasi-norms for corresponding function spaces are derived. In
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this section we also give some key technical lemmas needed in the proofs of the
main statements.

2. PRELIMINARIES

As usual, we denote by R™ the n-dimensional real Euclidean space, N the
collection of all natural numbers and Ny = N U {0}. The letter Z stands for the
set of all integer numbers. The expression f < g means that f < cg for some
independent constant ¢ (and non-negative functions f and g), and f ~ g means
f <9< f. Asusual for any o € R, [z] stands for the largest integer smaller than
or equal to z.

For x € R™ and r > 0 we denote by B(x,r) the open ball in R” with center
x and radius r. By supp f we denote the support of the function f , i.e., the
closure of its non-zero set. If E C R™ is a measurable set, then |E| stands for the
(Lebesgue) measure of E' and xg denotes its characteristic function.

The symbol S(R™) is used in place of the set of all Schwartz functions ¢ on R”,
i.e., ¢ is infinitely differentiable and

Ills, = sup  sup |[07¢(x)[(1 + |x)" ™M < oo
YENg <M veRn

for all M € N. We denote by S’(R™) the dual space of all tempered distributions
on R™. We define the Fourier transform of a function f € S(R") by F(f)(§) =
(2m) =2 [, e7 @ f(z)dx. Its inverse is denoted by F~'f. Both F and F~! are
extended to the dual Schwartz space S'(R™) in the usual way.

The Hardy-Littlewood maximal operator M is defined on Ll by

loc
1
Mf(x) = sup W /B(m) |f(y)| dy.

r>0
For v € Z and m = (mq,---,m,) € Z", let Q,., be the dyadic cube in R",
Qum = {(x1, - ,xn) :m; <2%; <m;+1,i=1,2,--- ,n}. For the collection of

all such cubes we use Q :={Qy, : v € Z,m € Z"}. For each cube (), we denote
by zg, ., the lower left-corner 27"m of @ = Q. ,, its side length by I(Q) and for
r > 0, we denote by Q) the cube concentric with @ having the side length r1(Q).
Furthermore, we put vg = —log, I[(Q) and v/, = max(vg,0).

Forv € Z, p € S(R") and = € R™, we set o(x) := o(—x), @,(x) := 2" p(2%2),
and

o (T) = 2vn/290(2vx —m) = |Qv7m|1/290v(x - va,m) if Q=CQumn.

By ¢ we denote generic positive constants, which may have different values
at different occurrences. Although the exact values of the constants are usually
irrelevant for our purposes, sometimes we emphasize their dependence on certain
parameters (e.g. ¢(p) means that ¢ depends on p, etc.). Further notation will be
properly introduced whenever needed.

The variable exponents that we consider are always measurable functions p on
R"™ with range in [c, 00| for some ¢ > 0. We denote the set of such functions by
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Po. The subset of variable exponents with range [1, oo is denoted by P. We use

the standard notation p~ := ess—Iénf p(z), pT = ess-sup p(x).
zeR™ FISIING
The variable exponent modular is defined by 0,.)(f) = fRn Pp) (| f(x)])dx

where p,(t) = t?. The variable exponent Lebesgue space LP() consists of mea-
surable functions f on R™ such that g,.)(Af) < oo for some A > 0. We define

the Luxemburg (quasi)-norm on this space by the formula [/ ||, := inf {/\ >0:

gp(_)<§> < 1}. A useful property is that [[f[|,, < 1 if and only if g, (f) < 1,

see [0], Lemma 3.2.4.
Let p,q € Py. The mixed Lebesgue-sequence space K‘J(')(LP(')) is defined on
sequences of LP()-functions by the modular

0010y (120 (fo)v) = Zinf{)‘v >0 0y <%) = 1}'

(%

The (quasi)-norm is defined from this as usual:

: 1
ol oy = 0 {1 > 0 gy (,(Fhe) <1} (21)

If ¢t < oo, then we can replace (2.1) by the simpler expression ng() Lp< N ((fo)o) =
Z |1.£o] )Hp() Furthermore, if p and ¢ are constants, then ¢2¢ (Lp ) = (1(LP).

The case p := oo can be included by replacing the last modular by
Qéﬂ)([po)((fv)v) = Z H’fu|q() ‘oo

It is known, cf. [1] and [16], that £90)(LP0)) is a norm if ¢(-) > 1 is constant
almost everywhere (a.e.) on R" and p(-) > 1, or if p( <1ae onR" or
if 1 <g(z) <p(xr) < oo ae. on R"

We say that g : R®™ — R is locally log-Holder continuous, abbreviated g € Cfg’f,
if there exists cjoq(g) > 0 such that

1
x q(r)

Clog(g)
log(e + 1/ ]z —y|)

for all z,y € R™. We say that ¢ satisfies the log-Holder decay condition, if there
exists g € R and a constant ¢, > 0 such that

(2.2)

l9(z) — g(y)| <

Clog
~ log(e + |x|)
for all x € R™. We say that g is globally-log-Hdélder continuous, abbreviated
g € "8 if it is locally log-Hélder continuous and satisfies the log-Hélder decay
condition. The constants cjog(g) and cioq are called the locally log-Hélder constant
and the log-Holder decay constant, respectively. We note that all functions g €
Clog always belong to L*°.

loc

19(2) = goo| <

We define the following class of variable exponents

1
ploe .= {p € P : — is globally-log-Holder continuous},
p
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were introduced in [7, Section 2]. We define 1/ps := lim;|—,o 1/p(x) and we use
the convention i = 0. Note that although % is bounded, the variable exponent p
itself can be unbounded. It was shown in [6, Theorem 4.3.8] that M : LP() — LP0)
is bounded if p € P and p~ > 1, see also [7], Theorem 1.2. Also if p € P8,
then the convolution with a radially decreasing L'-function is bounded on LP():
e * fllp)y < cllellill fllpe)- We also refer to the papers [3] and [4] , where various
results on maximal function in variable Lebesgue spaces were obtained.

It is known that for p € P°8 we have

x50 Ix5ll ) = 1Bl (2.3)
Also,
Ixallpe) = [Bl7@, zeB (2.4)
for small balls B C R" (|B| < 2"), and
1
Ixallpe) = [Bl7= (2.5)

for large balls (|B| > 1), with constants only depending on the log-Holder con-
stant of p (see, for example, [0, Section 4.5]). Here p’ denotes the conjugate
exponent of p given by 1/p(-)+1/p/(-) = 1. These properties are hold if p € Py,

since [|x5lp() = IX5)/5,, and ZEP¢ if p~ > a.

Recall that 7, m,(x) == 2"(1 + 2Y |z|)~™, for any z € R™, v € Ny and m > 0.
Note that n,,, € L' when m > n and that ||, ||, = ¢» is independent of v,
where this type of function was introduced in [15] and [6].

2.1. Some technical lemmas. In this subsection we present some results which

are useful for us. The following lemma is from [17, Lemma 19], see also [5, Lemma
6.1].

Lemma 2.1. Let a € C\°% and let R > cio5(qt), where cog(a) is the constant from
(2.2) for a. Then

QUQ(I)nv,mﬁ-R(x - ?/) <c 2va(y)77v,m(x - y)
with ¢ > 0 independent of v,y € R™ and v,m € Nj.

The previous lemma allows us to treat the variable smoothness in many cases as
if it were not variable at all, namely we can move the term inside the convolution
as follows:

2va(x)77v,m+R * f(:U) < € My * (QUa(‘)f) (x)

Lemma 2.2. Letr,R,N >0, m >n and 6,w € S (R™) with suppFw C B(0,1).
Then there ezists ¢ = c¢(r,m,n) > 0 such that for all g € §’' (R"), we have
N\m
|0r * wy * g ()] < ¢ max <1, <§) )(fr]N,m oy * g|" @)Y, zeR", (2.6)
where Og(-) = R"0(R-), wny(-) = N"w(N-) and Ny, = N"(1 + N |-|)~™.

This lemma is a slight variant of [30, Chapter V, Theorem 5], see also [5, Lemma
A.7]. For the convenience of the reader, we give the proof in the Appendix.
The following lemma is from [11, Lemma 2.11].
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Lemma 2.3. Let 7 € Py and k € 7.
(i) For any cubes P and Q, we have

HXP+I€Z(Q)||7‘(~) <ec (1 n 1(Q) |k‘)clog(71—)
Ixelly — [(P)

with ¢ > 0 independent of [(Q), I(P) and k.
(ii) For any cubes P and @Q, such that P C @Q, we have

. (@)w vl _ (@)W
1P| B ”XP“T(.) B 1P|

with ¢,C > 0 are independent of |Q| and |P)|.

Let L? E)) be the collection of functions f € LP)(R") such that

ocC

Ixp

< oo, p,TE Py,
p()
where the supremum is taken over all dyadic cubes P with |P| > 1. Also, the
spaces L70) is defined to be the set of all function f such that

1l pe) = sup

||f“i;() = Sup”fXPHp() < 00, pepo:
where the supremum is taken over all dyadic cubes P with |P| = 1. Notice that

qa(’)
Xp <1. (2.7)

1l ST sup
) PeQ,|P|I>1

Ixpll.

Let 6 be as in Lemma 2.2.

Lemma 2.4. Let RN > 0, 7,p € P(l)og, 0<r<p and,w € S(R") with

suppFw C B(0,1).
(i) For any f € S'(R™), any m > 2n + qog(%)r and any dyadic cube P with
|P| > 1, we have

QR*MN*f

N\m
< ¢ max (1, (—> > max(1, (NZ(P))(n_m)/T) lwn * fll 2 5
Ixpll R L)

XP

such that the right-hand side is finite, where ¢ > 0 is independent of R, N and
I(P).

(ii) For any f € S'"(R™), any m > 2n and any dyadic cube P with |P| =1, we
have

NN™ —m)/r
1(0r * wn * f)xpll,.) < c max <1’ <§> >max(1vN(n ) o £l iy

such that the right-hand side is finite, where ¢ > 0 is independent of R and N.
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The proof of this lemma is postponed to the Appendix. We introduce the
abbreviations

0)olliatyrp()y i=  sup
H(f) ng()(Lg(')) {PeQ,|P|<1}

fo
[P0 )
vzvp 2a()(LP())

and

Jo
||(f’l})q)|| ()l 3y -= sup T XP )
rO@o) e [\l

w20} || gaC) (Lr0))
where, vp = —log,l(P) and v} = max(vp,0). The following lemma is the
E‘?(')(ng:g)(—ET(')"?(')(Lp(')))—version of Lemma 4.7 from Almeida and Hésto [1] (we

use it, since the maximal operator is in general not bounded on ¢90)(LP())  see |1,
Example 4.1]).

Lemma 2.5. Let p € P% g, 7 € P with 0 < ¢~ < ¢t < 00 and p~ > 1.

(1) For m > 2n+ ciog(1/7) + c10g(1/q), there exists ¢ > 0 such that

[ (770,m * fv)v||zf(<),q(<)(Lp(-)) <c H(fv)szT(-),q(-)(LP(d) .

(ii) Form > 2n+ ciog(1/p) + c1og(1/q), there exists ¢ > 0 such that

”(nv,m * fv>ngq(<>(L ;) <c ”(fv%ng(-)(LZE:;) :

p(:
(-

The proof (i) is given in [11, Lemma 2.12], their arguments are true to prove
(i) in view of the fact that |[xp|,, = |P|'/P0) | since the supremum taken with
respect to dyadic cubes with side length < 1.

The next three lemmas are from [5] where the first tells us that in most cir-
cumstances two convolutions are as good as one.

Lemma 2.6. For vy,v; € Ny and m > n, we have

Nvo,m * Toy,m ~ nmin(vo,vl),m

with the constant depending only on m and n.

Lemma 2.7. Let v € Ny and m > n. Then for any Q € Q with I(Q) = 277,
y € Q and x € R™, we have

—p (%ﬁ) (2) % (& — 1)

with the constant depending only on m and n.

Lemma 2.8. Let v,j € Ny, r € (0,1] and m > 2. Then for any Q € Q with
1(Q) =27", we have

r v—3)tn(l—r
(nj,m * Nym * XQ) ~ 2( 3T )nj,mr * Nomr * XQ)

where the constant depends only on m, n and r.

The next lemma is a Hardy-type inequality which is easy to prove.
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Lemma 2.9. Let0<a<1,J €Z and 0 < g < oo. Let {e;} be a sequences of
positive real numbers and denote 0, = Z _,+a" e k> JT. Then there exists
constant ¢ > 0 depending only on a and q such that

o 1/q 00 1/q
k=J+ k=J+

Lemma 2.10. Let o € C\° and p,q,7 € P with 0 < ¢~ < ¢" < oco. Let

loc
{fk}keNo be a sequence of measurable functions on R™. For all v € Ny and
z € R, let g,(x) = Y oroo 2 "0 f(z). Then there exists a positive constant
c, independent of { fi}en, such that
n
H(gv)vHET(‘)yq(d(Lp(')) S c H(fv)v“éf(‘)yqt)([lp(‘)) ) o> 7___

and n
||(9v)v”gq<->(L§E:§) <c H(fv)v”eqt)(LiEj;) , 0> F

The proof of Lemma 2.10 is postponed to the Appendix.

a(-),p() a(-),7(-)
3. THE SPACESB() ) ANDB()q()

In this section we present the Fourier analytical definition of Besov-type spaces
of variable smoothness and integrability and we prove the basic properties in
analogy to the Besov-type spaces with fixed exponents. Select a pair of Schwartz
functions ® and ¢ satisfy (1.1) and (1.2), respectively. It easy to see that
Jgn ®7p(z)dx = 0 for all multi-indices v € Nj. For the convenience of the reader

we repeat the definition of the spaces Ba(()) 5 " and B T(())

Definition 3.1. Let a : R" — R, p,q,7 € Py and ¢ and ¢ satisfy (1.1) and
(1.2), respectively and we put ¢, = 2""¢(2"-).
(i) The Besov-type space B;‘((f))’qp((_')) is the collection of all f € §’(R™) such that

(2,00 . FX )
| | / ’l}>’L)P

(ii) The Besov-type space Bs((,'))”;((,')) is the collection of all f € §'(R™) such that

[ £l gecrp0) = SUP < 00, (3.1)
p(-),a(-)

ZQ(‘)(LP(‘))

21)04(-)90” % f
1l oy ey s= sup ||| = —=xp < 00,
PeQ Ixell- S
VZVp 24 (LP())
where ¢ is replaced by ®.
Using the system {¢, },en, We can define the norm
1/q
1l gy = SUp TP Z 27 (e * ) xelly

’UUP
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for constants o and p,q € (0,00]. The Besov-type space BT consist of all
distributions f € S'(R") for which |[f]| g < oo. It is well-known that these
spaces do not depend on the choice of the system {¢,},en, (up to equivalence of
quasinorms). Further details on the classical theory of these spaces can be found
in [8] and [12]; see also [10] for recent developments.

One recognizes immediately that if «, 7, p and ¢ are constants, then éa( ) ’qp(.') =

B,?ql/p and B ())qT(()) Bp:7. When, ¢ := oo the Besov-type space B (())’:;() consist

of all distributions f € S’ (]R") such that

27}0['<p1)*f

[ P[L/r0) =

p()

sup
PeQu>v}

XpP

and the Besov-type space Bs((f))’;(') consist of all distributions f € S'(R™) such
that

202U, * f

< 00.
||XP||T(-)

p()
Let Bj be any ball of R® with radius 277, J € Z. In the definition of the spaces

Ba(()) T(()) and Ba())’p O)'if we replace the dyadic cubes P by the balls By, then

we obtain equlvalent quasi-norms. From these if we replace dyadic cubes P in
Definition 3.1 by arbitrary cubes P, we then obtain equivalent quasi-norms.
The spaces B;‘((.'))j’qT(S), were introduced and studied in [11], where we proved
that our spaces are well-defined, i.e., independent of the choice of the resolu-
tion of unity and we gave some properties of these function spaces, see Theorem

3.2, below. Moreover the Sobolev embeddings for these function spaces are ob-

tained. While the first time we introduce the spaces B (()) (()) with the quasi-norm

(3.1). Independently, Yang, Zhuo and Yuan, [41] studied the function spaces
B;‘((,'))’:;((,')) where several properties are obtained such as atomic decomposition and
the boundedness of trace operator.

Moreover, the following remarkable features are given in [11] where these results

with fixed exponents are given in [38] and [12].

sup
Pe Q,’UZ’U;

XpP

Theorem 3.2. Let a € C\°%, p,p1, pa, q, 7 € Py® and 0 < ¢+ < oo.

(i) Let 7o € (0,p7). If (1/7—1/p)~ >0 or (1/7 —1/p)~ > 0 and q := oo, then

OO _ Ba(-)+n<1/f<~>—1/p<~>>
p(-).a(")

(ii) If (pz _ >+ <0, then Ba( )+n/7()4+n/p2(-)—n/p1(-) < B (4

p2(),q() p1( ) ()’
(iii) We hcwe

, with equivalent norms.

Ba(()) (()) SN BO‘( )+n/7()=n/p(-)
q

Here Bp(()) () 18 the Besov space of variable smoothness and integrability and
it is the collection of all f € §’'(R™) such that

||f||B§<(f>)q<4> - H(2M(')% * )20

Y

eQ(~)(Lp(~))
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which introduced and investigated in [1] and [17] for further results. Taking
a € R and ¢ € (0,00] as constants we derive the spaces Bp(.)’q studied by Xu
in [43] and [44]. We refer the reader to the recent paper [40] for further details,
historical remarks and more references on embeddings of Besov-type spaces with
fixed exponents.

Let 0 < u < p < co. The Morrey space MP is defined to be the set of all
u-locally Lebesgue-integrable functions f on R™ such that

1/u
1_1 u
1l iz, := sup [B[» ™= (/ |f ()| dx) < 00,
B B

where the supremum is taken over all balls B in R". The spaces M?P are quasi-
Banach spaces (Banach spaces for u > 1). They were introduced by Morrey in
[21] and belong to the wider class of Morrey—Campanato spaces, cf. [23]. They
can be considered as a complement to L” spaces. As a matter of fact, M) = L?.
One can easily see that MP — MP if 0 < u < w < oo.

Definition 3.3. Let o : R" - R0 < u < p < oo and 0 < ¢ < oo. Let
® and ¢ satisfy (1.1) and (1.2), respectively and we put ¢, = 2""¢(2:). The
Besov-Morrey space N is the collection of all f € &' (R™) such that

00 1/q
1l = (Z 220, + fllqu) < o0,
v=0

where ¢ is replaced by ®.

Besov-Morrey spaces with fixed exponents were introduced by Netrusov [22].
Kozono and Yamazaki [18] studied semilinear heat equations and Navier-Stokes
equations with initial data belonging to Besov—Morrey spaces. The investigations
were continued by Mazzucato [20], where one can find the wavelet decomposition
of Besov—Morrey spaces. On the other hand, the Besov—Morrey space N® is a

p,q,u
1 1

proper subspace of the space Bi’q“ ? with u < p, and ¢ < oo, see [29]. Further
properties for these function spaces can be found in [26], [27] and [28].

Recently, Triebel in [35] further introduced and studied some local versions of
these smoothness Morrey-type spaces and also considered their applications in
heat equations and Navier-Stokes equations. More recent results can be found
in [39], where they studied the relations between Triebel’s local spaces and the
Besov-type and Triebel-Lizorkin-type spaces and their associated uniform spaces.

D. Yang and W. Yuan introduced and investigated in [36] and [37] the homo-
geneous Besov and Triebel-Lizorkin spaces, which generalize the homogeneous
Besov and Triebel-Lizorkin spaces.

The Besov—Morrey spaces with variable exponents have been first introduced
in [14], where are introduced equivalent quasi-norms of these new spaces, which
are formulated in terms of Peetre’s maximal functions. Also the authors obtain
the atomic, molecular and wavelet decompositions of these new spaces.
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In the next proposition we present the relations between variable Besov—Morrey
spaces and variable Besov-type spaces, see [11].

Proposition 3.4. Let o € Cllgf, 0<g<ooand0<p<u<oo.

(i) For 0 < g < oo we have the continuous embeddings

al) (1)1
N2t <—>Bp,é)’(” ) .

)
u7q7p
(ii) We have

Oé('), l_% -
Nz?oo N 2 BP700 (p ) .
Sometimes it is of great service if one can restrict suppeo in the definition to

a supremum taken with respect to dyadic cubes with side length < 1.

log

Lemma 3.5. Let o € C’fgf and p,q, T € Py® with 7o € (0,p7] and 0 < ¢* < oc.

(i) A tempered distribution f belongs to B ()’p(_) iof and only if,

(21}0{(')9011 % f XP)
| P|1/p() o>0p

Furthermore, the quasi-norms ||f||§a((A),p((A) and ||f||7%a(.) o) are equivalent.

< OQ.

||f|| a()p() = sup
p 2aC)(Lr())

)sa() {PeQ,|PI<1}

p( ).a()
(ii) A tempered distribution f belongs to B _ zf and only if,
2°0Up,  f
K o) sup oo XP < 0.
Bp(ya() {PGQ,\P\SI} HXPHT(.) vzvp Il ga) (1000

Furthermore, the quasi-norms HfHBa(()) -0 and || f]|* Ta(ur() Gre equivalent.
Bp(yaty

The proof is similar to that of [11]. We omit the details.

Remark 3.6. (i) We like to point out that this result with fixed exponents is given
in [12, Lemma 2.2] with 1/7 in place of 7.
(i) Let o € C%, p,q, € Py and 0 < ¢ < oo. As in [11], we obtain BeOPt)

p(+),00
B Also, 20(@@+n(/r@=1/p@))|p, % f(z)| < c|lfll gocrrey for any z € R,
p(-).a()
e C'°® and p,q € P%.

loc

(111) It is clear that if a and p are constants, then Ba(())f(()) Fg .,

the properties of Fy, .

see [13] for

log log

(iv) We can easily prove that if « € C\J%, p,q € P,

«r) ., FeOn()
Byt = By s

(v) In [11] the definition of Besov-type spaces B;‘(.) 4y is based on the technique

and 0 < g7 < oo, then

of decomposition of unity.
Let a € O\, p,q € Py and o < . We obtain

loc
Ep(())’q(()) oy BQ(OSP() Bao s S’(Rﬂ)
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Let a™ < a;. We obtain

n « o Oélp() a(),p(-)
S(R)c—>B1 B() <—>B()q().

) to denote either B (()) p((,)) or B;‘((.));] (f)).

Theorem 3.7. Let a € C'°¢ and p,q,T € P(I)Og with 0 < gt < oo. Then

loc

S(R") < A ) S'(RY).

We use A

Similar arguments of [11] can be used to prove the following Sobolev-type
embeddings.

Theorem 3.8. Let ag,ay € CF°F and po,p1,q € Py® with 0 < ¢t < co. If
with <@> <1, then

ap > oy and ap(z)——= = oy (z)—

po(x) p1(x)

= a0()0() 1Op0)
Byt = B

Notice that the case of Bs((.'))”;(g) spaces is given in [11].

Let @ and ¢ satisfy, respectively (1.1) and (1.2). By [13, pp. 130-131], there
exist functions ¥ € S(R™) satisfying (1.1) and ¢ € S(R™) satisfying (1.2) such
that for all £ € R™

Fo )+ Z]:go IOFY(27E) =1, £eR™ (3.2)
Furthermore, we have the followmg identity for all f € S'(R™); see [13, (12.4)]
o= Uxdxf+ > thyxPyxf
v=1
= D S flm)W(—m)+ D 2 Y Gk fRTm)( — 27" m).
mezn v=1 mez"
Recall that the o-transform S, is defined by setting (S,)om = (f, ®m) where

P, (x) = @(x —m) and (Sy)pm = (f, Qom) Where @, (x) = 2””/2g0(2”:v—m) and
v € N. The inverse gp-transform 7}, is defined by

Tw)\ - Z AO,m\Ijm +Z Z Av,mwv,ma

meZ™ v=1 mezn

where A = {\,,, € C:v e Ny, m € Z"}, see [13].

For any v € Z, we put
(21)0:(.)90@ * fXP)
‘P‘l/p() v>Up—y

2va(- ©y * f
1 a0 = S I\ el X2 < o0,
p():a() Ixpll
v2Up =7l ga() (Lr())

< 00

[f I 5ec)m0) == sup
p(ha()  {PeQ,P|<1} 04 (Lp()

and
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where ¢_, is replaced by ®_,

Lemma 3.9. Let o € C%, p,q, 7 € Py® and 0 < ¢* < oo. The quasi-norms

||f||za(.)),T((.) and ||f||Ag(<)),qT(()) are equivalent with equivalent constants depending on
oSa(- Yol

Proof. By similarity, we only consider Ba(('))’qT((')) and the case v > 0. First let
us prove that || f[}, 200 <c HfHBa()T( By the scaling argument, it suffices to
P(a() ()

consider the case || f I gt = 1 and show that the modular of f on the left-hand

side is bounded. In partlcular, we will show that

i 2va(')§0v * f a0) -
T Xp =cC
vy HXPHT() 20

q(")
for any dyadic cube P. As in [42, Lemma 2.6], it suffices to prove that for all
dyadic cube P with [(P) > 1

0

Ip=)Y_

v=—7y

¢
220, % f "

Xp <c
||XP||T()

and for all dyadic cube P with [(P) < 1,

vp—1 ) q(-)
2va() "
v=vp—y APllr() p()

)

Q

ook f q(’)
||XP||T(.)

<c

The estimate of Ip, clearly follows from the inequality H P
p()

q(*)
for any v = —v,--- ,0 and any dyadic cube P with [(P) > 1. This claim can be

reformulated as showing that

o xS <e (3.3)
||XPHT() ()
By (1.1) and (1.2), there exist w, € S(R"), v = —v,- -+, —1 and n, 2 € S(R")
such that
o =wy k@, v=—7,--, =1 and @ =@ = * P+ k1.
Hence p, * f = w,x®x fforv=—v,--- ,—land pox f =m *«P* f+my*x 1 % f.

Applying Lemma 2.4, (2.7) and the fact that ||f[|ac)r) < 1 to estimate the
p(),a()
left-hand side of (3.3) by
ClIL s fll oy + Cllgr = fll ey < e

To estimate Jp, denote by P(7) the dyadic cube containing P with I(P(y)) =

HXP(W) “T(')

27(P). If vp > v + 1, applying the fact that UP(y) TUP =Y Tnplen o

~ ¢ (see
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Lemma 2.3) and P C P(7), we then have

vp—1 ) a(’)
2v2()ip,, *
DY HL”]C Xpe||  <e
v=vpe ||| APl ol
If 1 <wvp <v, wewrite Jp =3 ---+> " Lo = JL 4+ J3. Let P(2vP)

the dyadic cube containing P with l(P(QUP)) = 2'P[(P) = 1, by the fact that

X vp _ —
el < 2mvr/m < 9T see Lemma 2.3, we have

||XP||T(.)
vp—1 va () a(-)
Jp S Z R XP(2vP) <ec
V=Vp v HXP(QUP)HT()
(2"P)

p()
q(-)
By a similar argument to the estimate for Ip, we see that J} < c.
For the converse estimate, it suffices to show that
a()
XP <c
p()
©
')’T((') with HfH*Ba@T(.) < 1. This claim
p()a()
XPH < c. Using the fact that there

D« f
HXPHT()

Q3

for all P € Q with I[(P) > 1 and all f € BY

can be reformulated as showing that ‘ ||><p|| 5

exist p, € S(R™), v = —v,--+, 1, such that &x* f = p,W*CI),V>c<f—|—211):177 Po* ok f,
see [13, p. 130]. Applying Lemma 2.4 we obtain

o= % Byt fll o) SNy fll oy <.
and
Hpv * Py * fHLPE)) 5 HSO’U * fHLPE)) <¢ v= 1 IR 17
by using (2.7) and the fact that || f||;ac.-) < 1. The proof is complete. O
ONO}

Definition 3.10. Let p,q,7 € Py and let o : R* — R. Then for all complex
valued sequences A = {\,,, € C:v € No,m € Z"} we define

peOp() {)\ N ey poy < oo},
p(-).a(") H ”bp<<»>),5<(»>)

where
SO @O/ N v
Pz = 22 - | P|1/#0) Xp
v20b || g (L)
and
b;((:)):;((:)) = { H/\||ba(<)>f(<)> < oo}
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where

Z 2v(ac>+n/2))\v,mX1},m

A o0.r0 = sup || [ 2= Xp
SOt PeQ Ixell-

vl || ga() (Lp0))

If we replace dyadic cubes P by arbitrary balls B; of R” with J € Z, we then
obtain equivalent quasi-norms, where the supremum is taken over all J € Z and

all balls By of R™. In the definition of b ( i ) the supremum can be taken over all

dyadic cube P, with |P| < 1. Slmllarly, we use ap((,))’q(,) to denote either bp(,)’q(,)

or EZ((:)):?((:)). Let ag,oq € Ci°8 and po, p1, ¢, 7 € Py® with 0 < ¢t < oo. If g > oy

loc

1o = o (r)— = with <@)_ < 1, then us in [11], we can prove the
po(z) p1(7) p1
following Sobolev-type embeddings
ao(),7(") a1 (-),7(")
Dpo(rat) T Ppa()a)
Lemma 3.11. Let o € C\%, p,q,7 € Py®, 0 < ¢t < o0, v € Noym € Z7,

T € Qum and X € ag((.'))’;((.')). Then there exists ¢ > 0 independent of v and m such

that

and ap(z)——"—

—v(a(x)+n/2) -1
[Avm| <2 H)\HbZ(());(()) ”Xv,mHT(.) HXv,me(.)

and
unl < € 2O A
sa(+)

Proof. By similarity, we only consider bp(,')”é’ (( )) Let \ € ba( ’p ,v € Ng,m € Z"

and x € Qym, With Qum € Q. Then |Ayn|P = |Quml|” 1 vam ‘)\U,m’p_Xv,m(y)dy-
Using the fact that oule(@)-a) < ¢ for any z,y € Q,, and |Q,U7m|1/p(x) ~
||Xy7m||p(.), see (2.4), we obtain

gv(ale)+n/2)p- ) | gv(aly)+n/2)p~ )
Qo / e Xom()dy

= e’ S
‘Qv,m|p /p(@) ”Xv me

< 10 |1/ Qv(a(y)Jrn/?)p P (v)d
~ v,m TA o Il | NMom va y y
Qo |vim|p /p(y)

Applying Holder’s inequality to estimate this expression by

ou(e()+n/2)p~

( |)\v,m|p7 Xv,m

C|Qv,m|_1 |Q——)

Xl (/)
p/p~

5 ||)‘|| ),p(+) HXU m”p/p— )

p ,q()

where we have used (2.3). Therefore for any x € Qy.m

Mol < 2—’1}(0&(1‘)"’71/2)|QU7 |1/p(x) ||>\||ba<)p<>||va|| 0

< 9—v(a(z)+n/2) ||)\||~

~ a()p(),
Q)
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again by (2.4), which completes the proof. O

Lemma 3.12. Let o € Cloc, ¢, 7 € P2 and U, o € S(R™) satisfy, respectively,

(1.1) and (1.2). Then for all X € a .)7;((.))

Tq/,/\ = Z /\O,m\llm + i Z >\U,m¢’u,m7

mezn v=1 mezZ"
converges in S'(R™); moreover, T : aa((f))’T(.') — S'(R™) is continuous.

Proof. By similarity, we only consider b () (() Let A € b, ()T(.) and ¢ € S(R").
Observe that

gmvlaT /) 1Mo wr lxemll
’A?

~J

||va||

< gun(l/p~—1/2—a~ /n— 1/T+) ||)‘||b“<)*(<>

for all dyadic cubes Q. Let M > max(n,n/p~ —a~ —n/7" —n). We see that,

Y Pomll(¥m d) S 1Mo >Z /I‘I’@"— )| (x)|dx

mezZmn meznr

S oy W01l 1915, D (1 ml)

mezZ™

On the other hand, by [12, Lemma 2.4], we obtain

SN Pomll{nm. 0|

v=1 meZ"
(= /n+1/7T=1/p~+1+M/n)

2 vn
S 10lsyrs, 18l 1A o0 Z 2 T A e
5 ||Q/)||SA4+1 ||¢||S]M+1 ||A||b§(()>:;—(()) ’

which completes the proof. |

For a sequence A = {\,,, € C:v e Ny,m € Z"},0 <r < oo and a fixed d > 0,

set
’)\ "r 1/r
* — ’U,h
v,m,r,d * (};Z:n (1 + 2v|27vh _ 2vm|)d>
and A ;= {A} .4 €EC:veENg,meZ"}.

Lemma 3.13. Let o € CF5, p,q,7 € Py, 0 < ¢ < 00, 0 < r < p~ and

a = rmax(2¢g(q) + Clog(), 2((1% - —) +at —a7). Then

[ A%l w7 ™ [ Moo
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where
i n+a+n/T" if a;‘(fj’&(f) =0, ('.ﬁ)”‘;ﬁ('.ﬁ)
n+a+cog(l/p) +n/p” if ay )c,T(() Do)

The proof of this lemma is postponed to the Appendix.

Theorem 3.14. Let o € C’loc, p.q,T € P2 and 0 < ¢t < oo. Suppose that ®,
U e S(R") satisfying (1.1) and ¢, € S(R™) satisfy (1 2) such that (3.2) holds.
The operators S, : AZ((_'))”;((_')) — ag((f))f((f) and Tw a (()) AU A .) are bounded.
Furthermore, Ty, 0 S, is the identity on A . (.)).

Proof. By similarity, we only consider b v .' and B . For any f € S'(R™)

we put sup(f) := {sup,,,(f) : v € N, m 6 Z"} where
sup(f) :=27"% sup |@, * f(y)]
v,m YEQu,m
ifveN,meZ"and
sup(f) :== sup |® = f(y)]

Orm yeQO,m
if m € Z". For any v > 0, we define the sequence inf.(f) := {inf,,,,(f) : v €
No,m € Z"} by setting

inf (f) =2~ vn/2 sup{ inf |©y* f(¥)] 1 Quiyn N Qum # 0}

v,m,7y hezZn yer+'y h

if ve N,meZ"and
oi%ffy(f) := sup{ inf |<I>* T Qyn N Qom # 0}

hezZr YEQn,h
if m € Z". Here p;(x) := 2/"p(—2x) and ®(z) := ®(—x). As in Lemma A5 of
[13] we obtain

inf -0 S a

iy (H)lle0200 S N1 F 1l g

for any o € C\°%, p, q, 7 € Py®, 0 < ¢t < 0o and v > 0 sufficiently large. Indeed,
we have

Z 23(@()+”/2 mf] »ymv(f)Xjf%m

mezm"

Hinf ( )”ba()f() = csup

Xp
(),a0) PeQ Ixpllz

720547 || pa() (L2 0)

Define a sequence {\; i }ieng kezn by setting A;y := 27"/ inf o, , [@io* f(y)| and
Aok = infyeq  [® * f(y)|. We have

inf (f) =27 sup{Ajn : Qjn N Qjym # 0}

J=v.my hezn

and

inf (f) := sup{Aop : Qyp N Qom # 0}

0,m,y hezn



272 D. DRIHEM

Let h € Z™ with Q5 N Qj—ym # 0. Then A;;, < ¢ de/r)\;%’kmd for any k € Z"
with @, N Qj—y.m # 0. Hence

S it ()Xjym S D N raXik

1,
mEZ"J e kezm

and

|inf, (f)]| a( T<> < sup Xp
Bo(yiaty PeQ HXPHT(.)
JZUF"‘W £aC) (LP())

Notice that P = U2" P,,, where {P,,}2", are dlSJOlnt dyadic cubes with side
length [(P,,) = 2*(1’1’+'y . Therefore, taking 0 < s < $ min(p~, ¢~,2) and applying
Lemmas 2.3 and 3.13,

o > 2iOn/R) °
. s keZm
lnf f a(-),7 () S Sup Xpwn
Jin, )”"pm,qm mZ:lPeQ Ixpllr

3z (Pt e (Lr())
3 2j(a(')+"/2))\j7kxj7k

keZm
S osup

PeQ ||XP||T(.)

XP

jZ”; 2aC) (LP())
By Lemma 3.9, we obtain
inf ey < C *a,77,<c () () -
| W(f)pr((-)),q((-)) - ”f”Bm(»),q((») - HfHBp((-)),q((-))
Applying Lemma A.4 of [13], see also Lemma 8.3 of [2], we obtain inf,(f);; ~
sup( f )j’d. Hence for v > 0 sufficiently large we obtain by applying Lemma 3.13,

||in, (f ideaw,T(-) ~ ||inf, (f )||ba<>r<) and [|sup(f); 4 ,ecr0r = [[sup(f)|l,oc).¢) for
) aC) p()a() p()ra()

any o € CIOC, P, q, T € 79(1] , with 0 < g7 < 0o. Therefore,

inf a()r() R a()r() & |[su ()7 () -

Jint () gy & 1L ger = 0Py
Use these estimates and repeating the proof of Theorem 2.2 in [13] or Theorem
2.1 in [42], and complete the proof of Theorem 3.14. O

From Theorem 3.14, we obtain the next important property of spaces AZ((:))’;((.')).

Corollary 3.15. Let o € C’llgf, p.¢, 7 € P2 and 0 < ¢t < oo, The definition of
the spaces A;((f))’;((f)) is independent of the choices of ® and .

4. DECOMPOSITION BY ATOMS

In recent years, it turned out that atomic and sub-atomic, as well as wavelet
decompositions of some function spaces are extremely useful in many aspects.
This concerns, for instance, the investigation of (compact) embeddings between
function spaces. But this applies equally to questions of mapping properties
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of pseudo-differential operators and to trace problems, where arguments can be
equivalently transferred to the sequence space, which is often more convenient
to handle. The idea of atomic decompositions leads back to M. Frazier and B.
Jawerth in their series of papers [12], [13], see also [31].

The main goal of this section is to prove an atomic decomposition result for
B;Y((_'))&(_')) and E;Y((_'))ﬁ(_')). Atoms are the building blocks for the atomic decomposi-
tion.

Definition 4.1. Let K € No, L +1 € Ny and let v > 1. A K-times continuous
differentiable function a € C¥(R™) is called K, L]-atom centered at @, ,, v € Ny
and m € Z", if

supp a € YQum (4.1)
10%a(z)| < 22WBHYD - for 0<|B| < K,z € R" (4.2)

and if
/ Pa(z)dr =0, for 0<|3|<Landov>1. (4.3)

If the atom a located at @, ,, that means if it fulfills (4.1), then we will denote
it by aym. For v =0 or L = —1 there are no moment conditions (4.3) required.

For proving the decomposition by atoms we need the following lemma, see
Frazier & Jawerth [12, Lemma 3.3].
Lemma 4.2. Let ® and ¢ satisfy, respectively, (1.1) and (1.2) and let p,m,m be an
K, L]-atom. Then

|05 % pom(@)] < ¢ 20 DEH2Z (L ov g gy )TV

ifv<j, and
() % pom(x)] < ¢ 20D EEnERen/2 (1 4 9 |z — va,mDiM
if v > j, where M is sufficiently large, ¢; = 27"p(27-) and o is replaced by .
Now we come to the atomic decomposition theorem.

Theorem 4.3. Let a € C\°% and p,q, 7 € P with 0 < ¢~ < q© < co. Let
0

loc

0<p <p"<ooandlet K,L+ 1€ Ny such that

K> ([a"+n/T7]+ 1), (4.4)
respectively

K> ([a" +n/p7]+1)"

and
1

L > max(—1, [n(m

1) —a)). (4.5)
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Then f € S'(R™) belongs to B (()) (') , respectively to B (( )p. , if and only if it can
be represented as

f= Z Z Ao Ov.ms converging in S'(R™), (4.6)

v=0 mezZ"

where 0, are [K, L] atoms and A = {\,,, € C:v € Noy,m € Z"} € p())q(())7
,p(

respectively A\ € b o0 Furthermore, inf [|A|oc) =), respectively inf ||)\||ba()r<)
NS (),a()

where the mﬁmum is taken over admissible representations (4.6), is an equwalent

quasi-norm in Bp((.))q(g), respectively B“()),p(())

The convergence in §’(R™) can be obtained as a by-product of the proof using
the same method as in [34, Corollary 13.9 |, so the convergence is postponed to
the Appendix.

If p, q, 7, and « are constants, then the restriction (4.4), and their coun-
terparts, in the atomic decomposition theorem are K > ([a + n/7] + 1) and
L > max(—1, [n(m — 1) — a]), which are essentially the restrictions from the

works of [10, Theorem 3.12], with < in place of 7.

Proof. By similarity, we only consider B (())q((')) The proof follows the ideas in

[12, Theorem 6.

Step 1. Assume that f € B (()) ((')) Using the same of the arguments used
in [9, Theorem 3] we obtain a sequence {A\o.m} and p,, (atoms in the sense of

Definition 4.1) such that f = Z > AvmOum and HAHba() ) < chHBa()T(
a()

v=0meZ"

Step 2. Assume that f can be represented by (4.6), with K and L satisfying
(4.4) and (4.5), respectively. We will show that f € B (())q(() and that for some
c >0, [[fll gaerrr < c|[Al[yacrrr. We write

p(-),q(") p(),q(+)

0o i 00
f:ZZ)\v’mpum:Z..._k Z

v=0 mezZ" v=0 v=7+1

Recalling the definition of B (()) space, it suffices to estimate

(Z 3" 290 Al g *pvml) and (Z 37 2990 2l Loy *py,m|>
3=>0 7=>0

v=0 mezn" v=3 mezZm



CHARACTERIZATIONS OF VARIABLE BESOV-TYPE SPACES 275

in £70):40)(LPO))-norm. From Lemma 4.2, we have for any M sufficiently large and
any v < j

Y 2D Dl s % pum (@)

mezn
< o(v—j)(K—a™) Z gu(a(z)+n/2) Aol (1 +2° |x —TQym )7M
mezn
= Q(yfj)(Kiaﬁ—) Z 2U(a(m)7n/2) |)‘v,m| nv,M(x - IQv,m)
mezn
< Q(U_j)(K_aJr) Z gv((@)+1/2) |)‘v,m’ N, M * Xv,m(aj)’
mezn

by Lemma 2.7. Lemma 2.1 gives 2y, 5 * Xom S o1 * 20%0)xy iy With T =
M — ¢iog(a) and since K > a™ +n/7~ we apply Lemma 2.10 to obtain

j
(Z Qv=i)(K=a), [2“(‘“('””/ Y IAU,mIXU,mD

v=0 mez"

<m’T N [2U(a(')+n/2) Z \)\v,mlxv,m]>

meZ™

J £7(:a0) (LP())

AN

er()a() (Lp()

The right-hand side can be rewritten us

. 1/r
<77U,T % |:2v(a(')+n/2) Z |>\U7m|X’U,m:|>
mezn
sup > Xp
Peo HXPHT()
w20} || gaC)/r (Lo /7
1/r
—_— [Qv(a(~)+n/z)r 3 ’)\v’mer,m}
- mezn
< sup " . |
PcO ||XP||T()
va; 2a()/T(LP()/T)

by Lemma 2.8, since 1,7 =~ 1y * 7y and 0 < r < min(1,p~). The application
1/r
— 1/r
(g”)vz”fg () /r(Lp()/r) H (19 )UZUF () (Lp0))
give that the last expression is bounded by |[A||,a¢).-). Now from Lemma 4.2, we
p()a()

of Lemma 2.5 and the fact that




276 D. DRIHEM

have for any M sufficiently large and v > j

Z 9ie(@) |)\v,m| |90j * pv,m(x)‘

mezn

< QU—v)(IH14n/2) Z 9i(a(z)+n/2) | Avm] (1 + 27 \x - xgu,m‘)iM
mezn

_ 9U-v)(+1+n/2) Z @)=/ |\ i (z — 20,
mezn

< QUIATEn2) Z 2@ =r/D |\ i * e (T — 200,.,.),
mezn

where the last inequality follows by Lemma 2.6, since 7 ;s = Nmin(v,j),m- Again
by Lemma 2.7, we have

N * Dot (T — 20, ) S 27" 000 * No,ar * Xom ().

Therefore, " 20%@) |\, .| |¢; * po.m ()| is bounded by

meZ™

¢ 9Ui—v)(L+1-n/2) Z 9i(a(z)+n/2) | Xvn| Mjng % Mot * Xom (T)

mez”

< QUTIEH=aT) o s [2“@(')*”/2) > \Av,mlxv,m] (),

meZ™

by Lemma 2.1, with 7" = M — ¢jog(ar). Let 0 < r < min(1,p~) be a real number
such that L > n/r —1 —a~ —n. We have

(Z Qli=0)(IH1=a )y ek [2v(a(')+n/2) Z |>\v,mlxv,m]>

U:j mEZ”
< 22(j7v)(L+1fa_)r (mT o * lzv(a(')+n/2) Z | Av.ml va])
v=j mezZmn

o0
< Z QUi—v)(Ln/rl-a4mry ok lgv(a(-)+n/2)7“ Z Ao X@,m] ;

v:j mGZ"

where the first estimate follows by the well-known inequality (Z;io |aj|> <

> =0 la;j|”; with {a;}, C C, o € [0, 1] and the second inequality is by Lemma 2.8.
The application of Lemma 2.5 gives that

<Z 2(j7v)(L+1fa_)77j7T $ Ty * [2v(a(-)+n/2) Z ’)\v’m Xv,m] >
mez"

v=j Fller(:a() (Lp())
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is bounded by
1/r
S 20y g 2O S A

mezn

c sup

T XpP )
PeQ ||XPHT()

3235 || g/ (L) /Y

where H := L —n/r + n+ 1 — a~. Observing that H > 0, an application of
Lemma 2.10 (this is possible, see the proof of this lemma) yields that the last
expression is bounded by

1/r
N, Tr * QU(Q( )+n/2)r Z |>‘v m| X’U m
¢ sup = Xp S MMl
PeQ HXPHT(.) b a()
w20 || gaC)/r (Lo /7
where we used again Lemma 2.5 and hence the proof is complete. 0

5. APPENDIX

Here we present more technical proofs of the Lemmas.
Proof of Lemma 2.2. First let us prove that
jwn g ()] < ¢ (i * |wn * g (@), o €RY, (5.1)
where ¢ > 0 independent of g, N and z. Let ¢ be a function in S (R™) satisfying
Fo=1o0n B(0,1). Then wy *x g = ¢y *wy * g and we can distinguish two cases

as follows:
e 1 <1r < oo: observe that

lwy * g (x)| < c / N (T = y) (14 Nz —y) ™" |wn * g(y)| dy,
R?’L

where 7’ is the conjugate exponent of r and we have used the fact that |¢p(Nzx)| <
c(1+ N|z|)~™. By Holder’s inequality,

wn g (@) < e N (g * |wn gl ()7 || (L4 N - [) 7

,r./

< ¢ My * lwn * g|" (2))".

e 0 <r < 1:weput g} y,,(z) = sup% and we have
ve

n

oy *g(2)] < o / vz — ) o * 9(9)] dy.

We use the estimate (1+ N|z—y|) " < (1+N|z—z))" (1 + Nz —y|) " we
obtain

Gomm(®) < / Mvm(@ — 4) o % 9@ o * 9(3)[" dy

< gt wmla /Rﬁle’— Vow * 9@ dy.  (5.2)
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Since ¢ is a tembered distribution and w € S (R™), |wy * g(y)| is dominated by

cllon(y —)lls,, = ¢N" sup sup|dw(N(t—y))|(1+ |t[) MR
~YENG,|v|<M teR™

< ¢ maX(NM+n,N_2M)(1 +N‘y’)n+2M

for some M € N and any y € R", with C' > 0 independent of N and y. Therefore,

g* (l’) = sup ‘WN * g(y)|
N yerr (L + N |y — z|)™

max(NYH N7 (14 Ny — a) 7™ (1 + Nyl
C(N)(L+ N |z)m4

IA A

if m > n+2M and hence g, v ,,,(2) is finite (of course m > n+2M). Now we use
the idea of [25, Lemma 2.9]. Observe that the right-hand side of (5.1) decreases as
m increases. Therefore, we have (5.1) for all m > n but with ¢ = ¢(g) depending
on g. We can easily check that (5.1), with ¢ = ¢(g) imply that g}, y,,(z) < oco.
We assume that the right-hand side of (5.1) is finite (otherwise, there is nothing
to prove). Returning to (5.2) and having in mind that now g v ..(z) < oo, we
end up with

(Goin@) < [ vl =) ox + g0)] 53)

n

for all m > n and ¢ independent of g, N and x, which completes the proof of
(5.1). Now observe that

Ogrwy g(@)] < o / nra( — y) lox * 9(y)| dy
< cghwml@) / nrale —y)(1+ Nlz — y|)"dy

< ¢ max (1, (%>m>gz’N7m(Q:)R” /n(l + R|z — y|)™ dy

< ¢ max (1, (%)m)g:;Nm(x)v

provided we pick d > m + n and ¢ independent of g, N and x. Hence the proof
of (2.6) is complete by using (5.3). O

Proof of Lemma 2.4. By similarity, we only consider L” E)) We use Lemma 2.2,
in the form

|0r *xwy * [ (x)] < ¢ max (1, (%>m> (MNm * lwn * f]" (x))l/’".
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where 0 <r <p—, m > 2n—|—clog(%)r and x € P. We have, with k = (ky,--- , k),

. lwn * f(2)]"
1IN, *le*f| (‘T) /R" (1—|-N’.TJ—Z|) z

/3P Z P+kI(P)

kEZ™ maxi—1.... n |ki|>2

= Jxl(wy * f)(@) + > T3 1wy * f)(@).

kGZ”,maxizl“u n |k1|22

Thus we obtain

93 * WN * f
el <
() p(")
N\ mr 1
< () [ 2
Xl P()/r
N mr J?  (wy *
cmax (L()) D sy
kEZM max;— ... n |ki|>2 HXPHT(') p()/r
Let us prove that the first norm on the right-hand side is bounded by
wy * f
d i (59)
() p()

We have

s ) 5w [ Ll B0,

Now the function z — ( is in L' (since m > n), then using the majorant

1
1+[z])™
property for the Hardy-Littlewood maximal operator M, see [31, Chapiter 2,

(3.9)], <|g| * W)(m) < WHIM(Q)(@, it follows that for any =z € P,

| Iy (wn *x f)(z)] < C M <|wN * f|TX3p) (x) where the constant C' > 0 is indepen-
dent of x and N. Hence the first norm of (5.4) is bounded by

wn * "
¢ M(MX?)P)
HXPHT(-)

T
|WN*f’T

HXP”:(-)

wy *x f

X3P
HXPHT(-)

X3P

p(:)/ p()/r p()
after using the fact that M : LPO/m — LPO/" is bounded. Notice that 3P =
U™, P, where {Ph}?;:l are disjoint dyadic cubes with side length I(P,) = I(P).
Therefore y3p = 22:1 X p, and the expression in (5.5) can be estimated by

~
T

3n s

wn * f

XP
||XPh||7—(-) "

S llwn * f||2p<(;)) ,

h=1 ()
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HXPh Hr(q
el
of the first part is finished. The summation in (5.4) can be rewritten us

Z et Z (5.6)

keZr |k|<4y/n keZr |k|>4y/n

where we have used the fact that < ¢, see Lemma 2.3 (ii) and the proof

The estimate of the first sum follows in the same manner as in the estimate of
JY(wy * f), so we need only to estimate the second sum. Let us prove that

lwn * f|"

(L)r JJQV,k(wN * f)
[xP-sxcp) H:(‘)

||XP||:(-)

|k|m—n—clog

S (NI(P)™"
PO/

Xp X P-+kl(P)

p()/r

(5.7)
Let € P, z € P+ kI(P) with k € Z" and |k| > 4y/n. Then |z — z| > 2 [k| (P)
and the term [J3 . (wy * f)(z)] is bounded by

C k| N (1)) / o # ()] d=

P+kI(P)

< RN () / won * ) xpnag (2)d
2=l <2/AlkII(P)

S R NPT M (e S Xperr) ) ().
Hence the left-hand side of (5.7) is bounded by

C M <|k|7qog($)r |wi f|TXP+kl(P)>

SLS e,

p(-)/r
lwn * fI"XPyricp)
HXPH:(-)

S (NUP))" " || ereet)r :

p()/r
after using the fact that M : LPO/" — [PO/7 is hounded. By Lemma 2.3 (i),

X
—H I];IZT‘PE ’JT“ < c\k\clog(%), with ¢ > 0 independent of N, h and k. Hence the last

expression is bounded by

lwn * fI"X pirip)

NI(P)) i
c(NI(P)) ||XP+kl(P)||T(')

p()/7
Since m can be taken large enough such that m > 2n + clog(%)r, then the second
sum in (5.6) is bounded by

i

NIUP n—m k”*’clog(%)T_m T nr
(NU(P)) Z %1 ||XP+kl(P)||T(~)

keZn k| >4y/m
n—m n—+c 1 r—m r
S (NI(P)) D kT oy |
kEZn k| >4y/m =
< (NZ(P))n_m ||LUN * f||2p(()) .

XP+kI(P)

p()/r
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Hence the proof is complete. O

Proof of Lemma 2.10. By similarity, we only consider ¢7()40)(LP0)) spaces. Let
P € Q. In view of the proof of Lemma 2.5 the problem can be reduced to the
case when £40)(LP0)) is a normed space. Then

(9—”><p> (5.8)
HXPHT(-) vl

a() (Lp(<))

IN

+

Up o |k—

2 |k—v|d

ZH_kaXP >
=0 IXPllr()

”Z”zt 2a() (LP())

00
+ E c.
k=v UZU; pa()

v2vp |l gat) (£p0))

(Lp(~))

The first norm is bounded by

v; Q(v;fv)éf

=0 ||XP||T(.) v20f || ga (o))

Let Q. be a dyadic cube such that P C Q. Obviously vgkh = k and by

X _
| Qk’hHT('> < 9nwh=k)/T"  Therefore the last sum is bounded

Lemma 2.3 we have ————
Ixpl,cy ~

by

vp
Z 2(1@—11;)(5—”/7'7) (LXQk h)
p HXQk,h HT(-) 7 jzvgk hllea() (Lp())

+
Up
—vh)(6—n/7™
S ZZ(k P/ )||(fv)v||z7('),Q(-)(Lp(~)) 5 H(fv)vl|[7(~)ﬂJ(-)(Lp(-))7
k=0



282 D. DRIHEM

. _ +
since 6 > n/7". Let o > max(¢*, =) and |[(fo)ol¢r.a0)(zor) = 1. Then

f: ZZ:’U; 2(k—v)5fv q(:)
XP
vk ||XP||T() o)
a(-)
0o v —v ()/e 7
Z Zk:fug 2(k )6fv !
= XP
" ||XPHT() o)
P q(-)
00 ) f q()/o
k—v)dq )
< > |2 el X
v=vh \ k=ov} Xp () op(-)
P P “a()
< e <1
~ XpP >~ 1,
2 HXPHT() o
’U—’UP b

a()

by Lemma 2.9. The desired estimate is completed by the scaling argument. Now
the last norm in (5.8) is bounded by

- 2_i6fi+v
Z ||XP||T(-)XP
=0 v2>vh | pac)

. (LP('))

< 3o (—H I Xp)
i=0 XPIO J ksutil s

: (Lp(~))

9) B fk:
< ) 2 (—XP S Cfo)ollererae (o -
! k>vT

el ™ ) e o,

Hence the lemma is proved. O
Proof of Lemma 5.15. First we consider the space ba('):T(('). Obviously, ||)\||ba(-) -0 <
H)‘rd”ba()fé) Let us prove that H)\Td”bo‘(()) - <c ||)\||ba( o). By the scaling argu_
ment, it suffices to consider the case ||A[|,a¢).-) =1 and show that the modular
b():q()

of a constant times the sequence on the left-hand side is bounded. It suffices to
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prove that
c ZZ 2v(a(.)+n/2)>‘z,m,r,d>€v,m a()
meLn
XP
HXPHT()
p()
a(*)
Z 20(a(-)+n/2))\v mXv,m )
ei/r MEL" i —v
S el | X ¥ 69
i= P ()
p()

)

Q
—~

where, v > v5, e = (n—d+a+n/77)/2, P € Q and Q(cp,2°7%F) is the cube
concentric with P having the side length 27v7. Therefore,

(o) Z 21)(a(~)+n/2))\z o aXvsm q()
meLn T <1
Z el Xp ~
v=v}, p(-)

[10)
for any dyadic cube P. The claim can be reformulated as showing that

c Z 2U(a(~)+n/2))\;7m7r7dxv7m a(’)

(571 mezn < 1,
el s
o
e
which is equivalent to
gu(a(-)+n/2) y»
e mé” )\v,m,r,dXU:m
5 a0 Xp <ec. (5.10)

||XP||T()
(")
For each k € Ny we define Q; = {h € Z" : 21 < 2°|27vh —27vm| < 2}
and Qg = {h € Z" : 2"|27h—27"m| < 1}. Then for any z € Q,,, N P,

6 q(z 2'u'ra(z)|>\ hl b tt
Zhezn Tz iz voe can be rewritten as

5~ atey Quralz) |)\ i
Sy

Y
k=0 heQ m|)
DI M
heQy
— ZQ(n—d)k+(u—k)n+vm(x)5—ﬁ / Z Donl” Xon(y)dy. (5.11)
k=0 UzerQv,z hGQk

Let v € Qum NP and y € U,eq, Quz, then y € @, for some z € ) and
21 < 2v|27v2 — 279m| < 2%, From this it follows that y is located in some cube
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Q(x,2Fv3). In addition, from the fact that
‘yl - (Cp)i‘ < ’yl - xl| + |x7« - (CP)’i’ < 2k7v+2 + 271}P71 < 2k7vp+37 1= 17 e, n,

we have y is located in some cube Q(cp, 287?P). Since 1/q is log-Holder contin-
uous and 0 € [27Y, 1 + 27|, we have

Clog(q) (2v+1) (@ (@vt1)
1 1 1 1 VS Y ! v
da@ ") < 2|q(z>_@|(2v+1) < 210g(e+lmly‘) <2 Oifkfhn ~ < 22c10g(q)k

for any k < max(0,v — h,) and any y € Q(z,2* V") with h, € N. If k >
max (0, v—h,,) then since again 6 € [277,14+27"], §aw T < c ol —at |+1) < ¢

a1
2?77 % Also since o is log-Holder continuous we can prove that

{ 200s(@k if | < max(0,v — hy,)

pu(alz)-a(y)) < !
20 =ak if k> max(0,v — hy),

~

where ¢ > 0 not depending on v and k. Therefore, (5.11) does not exceed

c Z 2(n—d+a)k+(v—k)n / 5—ﬁ2va(y)r Z |)‘v,h|T Xv,h(y)XQ(cp,Zk—”P*"l)dy

0 Qo 2k-v+3) hest
(

9 n7d+a)kM< Z 5 a0 200" | X, " Xv,hXQ(cP,zk*”P“)) (2).
heQy,

k=
<2
k=0
Hence the left-hand side of (5.10) is bounded by

o . 1/r
kZ:O 2(n—d+a)kM ( hZQ 67m2’u(a(-)+774/2)7’ ‘)\whr X’U,hXQ(CP,Qk_”P‘HL))
= €8

c T
||XPHT(-)

p()/r

-, 1/r

o > 5T 2e) /) [ Av il Xo.hXQep,2i-vr)

5 i 26k Z 26i/7° heq;
k=0 =0

HXQ(CPQ”“P) HT(.)
p()

00 1/r
< (Z 2% |
k=0

where on the first estimate we use Lemma 2.3 and the boundedness of the maximal
function on LP/" (since r < p~), and for the last estimate we use the fact that

LS SO s

Z 26i/r hezn™

i=0 HXQ(CP,T"”P) HT(.)

XQ(cp,2i-vP) S

p()
and d sufficiently large such that d >n+a+n/7".
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Now we consider the space fl;;‘((f)) ’5 ((,')). Obviously we need only to prove (5.9) with

Q(ep, 27)|" i place of || xg(ep -0m) [y € = (n=d+-at-ciog(1/p)+n/p7) /2,
P e Q, [P <1(|lxpll, inplace of [[xpl. ) We use the same arguments above,
we obtain that the left hand side of (5.10 ) (With power r) is bounded by

1 5—ﬁ2v(a( )+n/2)r

|AU h| X, hXQ(CP 2k— vptd)

c Z 2(n—d+a)k
k=0

||XP||p(.) he,
for any dyadic cube P € Q, with |P| < 1. Observe that

onvp /p(a) (142 |z — yl)%g“/ P) gnup /ply) < gkciog(1/p)gnvr /p(y)

<
< ok(ewg(t/p)+n/p™) \Q 2k—vp+4)|_1/p(y)

for any € P and any y € Q(cp,2¥vP™). Hence, (5.12) is bounded by

. hEZQ 5 7 gula()+n/2)r Ay h| XohXQep 2h-vr+4)
cd) 2%k b < 1.
2 Qep, 2-or )70
p()/r
The proof of the lemma is thus complete. O

The convergence of (4.6). Let ¢ € S(R™). By (4.1)-(4.2)-(4.3) and the
Taylor expansion of ¢ up to order L with respect to the off-points zq, ., we
obtain for fixed v

/Zkvm@vm p(y)dy

mezn

804
/ Z /\v ,mOv, m gﬁ(y) - Z (y - va,m)ﬁw(%mm) dy

mezn BI<L

The last factor in the integral can be uniformly estimated from the above by

¢ 27D )™M sup (1+ 2™ > [0%e(x)]
veRn Bl<L+1

where M > 0 is at our disposal. Let 0 < t < <p() (1 - m»i + 1 and
s(z) = alz) + o) (t — 1) be such that L +1 > —a(-) +n <m - 1) >

—s(+). Since g, are [K, L]-atoms, then for every S > 0, we have |0,,(y)| <
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22 (1+2° |y — zq,,, |)7S. Therefore,

/Rn > Avmom()e(y)dy

meZ™
2\—-M/2
< ¢ 2v(L+1)/ Z 2'Lm/2 |)\v,m| (1 + |y| ) de
R™ mezn (1 +2 ‘y - va,mD
= 2_v(L+1) / . .dy
he%’ Qo,n

Applying Lemma 2.7 to obtain
ST ol (1425 = 20,,.1) 77 S 3 vanl s * Xoum (1)
mezZm™ mezn

We split M into R + S. Since we have in addition the factor (1 4 |y|*)~/2,
Holder’s inequality, the fact that HXQo,h”T(.) R HXQo,h”(p(.)/t)/ ~ 1, see (2.5), and

(1 + |y[*)"®2 < (1 + |h|*)~ /2 give that the term | [,, - - -dy

is bounded by

Mo, S * |: Z 21)”/2 |/\v,m| Xv,m]

v — mezn

2 S ) |

hezZm onllr(y
p()/t
o(s(-)+n/2)j Z |)‘jm|ij
5 Sup et XP S ||/\||b3(')77(') )
PeQj>j} IxPll MRV
p()/t

where the first inequality follows by Lemma 2.5, L + 1+ s(-) > 0 and by tak-
ing R large enough. The convergence of (4.6) is now clear by the embeddings
[Alyerer = Al arer = [All=c2.mc) - The proof is completed.

p(-),a() b(-),00 p(-)/t,00
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