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COMMUTATORS OF CONVOLUTION TYPE OPERATORS ON
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Abstract. We study the boundedness of Fourier convolution operators W 0(b)
and the compactness of commutators of W 0(b) with multiplication operators aI
on some Banach function spaces X(R) for certain classes of piecewise quasicon-
tinuous functions a ∈ PQC and piecewise slowly oscillating Fourier multipliers
b ∈ PSO�X,1. We suppose that X(R) is a separable rearrangement-invariant
space with nontrivial Boyd indices or a reflexive variable Lebesgue space, in
which the Hardy–Littlewood maximal operator is bounded. Our results com-
plement those of Isaac De La Cruz–Rodŕıguez, Yuri Karlovich, and Iván Loreto
Hernández obtained for Lebesgue spaces with Muckenhoupt weights.

1. Introduction and preliminaries

Let F : L2(R)→ L2(R) denote the Fourier transform

(Ff)(x) := f̂(x) :=

∫
R
f(t)eitx dt, x ∈ R,

and let F−1 : L2(R)→ L2(R) be the inverse of F ,

(F−1g)(t) =
1

2π

∫
R
g(x)e−itx dx, t ∈ R.

It is well known that the Fourier convolution operator W 0(a) := F−1aF is
bounded on the space L2(R) for every a ∈ L∞(R).

We will study Fourier convolution operators on (weighted) Banach function
spaces. Let R+ := (0,∞) and S ∈ {R+,R}. The set of all Lebesgue measurable
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complex-valued functions on S is denoted by M(S). Let M+(S) be the subset
of functions in M(S) whose values lie in [0,∞]. The Lebesgue measure of a
measurable set E ⊂ S is denoted by |E| and its characteristic function is denoted
by χE. Following [1, Chap. 1, Definition 1.1], a mapping ρ : M+(S) → [0,∞] is
called a Banach function norm if, for all functions f, g, fn (n ∈ N) in M+(S), for
all constants a ≥ 0, and for all measurable subsets E of S, the following properties
hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,

(A5) |E| <∞⇒
∫
E

f(x) dx ≤ CEρ(f)

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(S) of
all functions f ∈ M(S) for which ρ(|f |) < ∞ is called a Banach function space.
For each f ∈ X(S), the norm of f is defined by

‖f‖X(S) := ρ(|f |).

Under the natural linear space operations and under this norm, the set X(S)
becomes a Banach space (see [1, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a
Banach function norm, its associate norm ρ′ is defined on M+(S) by

ρ′(g) := sup

{∫
S
f(x)g(x) dx : f ∈M+(S), ρ(f) ≤ 1

}
, g ∈M+(S).

It is a Banach function norm itself [1, Chap. 1, Theorem 2.2]. The Banach
function space X ′(R) determined by the Banach function norm ρ′ is called the
associate space (Köthe dual) of X(S). The associate space X ′(S) is a subspace
of the (Banach) dual space [X(S)]∗.

Let M0(S) and M+
0 (S) be the classes of a.e. finite functions in M(S) and

M+(S), respectively. The distribution function µf of f ∈M0(S) is given by

µf (λ) :=
∣∣{x ∈ S : |f(x)| > λ}

∣∣, λ ≥ 0.

Two functions f, g ∈M0(S) are said to be equimeasurable if µf (λ) = µg(λ) for all
λ ≥ 0. The non-increasing rearrangement of f ∈ M0(S) is the function defined
by

f ∗(t) := inf{λ : µf (λ) ≤ t}, t ≥ 0.

We here use the standard convention that inf ∅ = +∞. A Banach function norm
ρ : M+(S)→ [0,∞] is called rearrangement-invariant if for every pair of equimea-
surable functions f, g ∈ M+

0 (S) the equality ρ(f) = ρ(g) holds. In that case,
the Banach function space X(S) generated by ρ is said to be a rearrangement-
invariant Banach function space (or simply rearrangement-invariant space).
Lebesgue, Orlicz, and Lorentz spaces are classical examples of rearrangement-
invariant Banach function spaces (see, e.g., [1] and the references therein). By
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[1, Chap. 2, Proposition 4.2], if a Banach function space X(S) is rearrangement-
invariant, then its associate space X ′(S) is rearrangement-invariant, too.

Now we give an example of a Banach function space which is not rearrangement-
invariant. Let p : R → [1,∞] be a measurable a.e. finite function. By Lp(·)(R)
we denote the set of all complex-valued functions f on R such that

Ip(·)(f/λ) :=

∫
R
|f(x)/λ|p(x)dx <∞

for some λ > 0. This set becomes a Banach function space when equipped with
the norm

‖f‖Lp(·)(R) := inf
{
λ > 0 : Ip(·)(f/λ) ≤ 1

}
.

It is easy to see that if p is constant, then Lp(·)(R) is nothing but the standard
Lebesgue space Lp(R). The space Lp(·)(R) is referred to as a variable Lebesgue
space, it is a Banach function space [7, Section 2.10.3]. If p : R → [1,∞] is not
constant, then Lp(·)(R) is not rearrangement-invariant [7, Example 3.14]. Put

p− := ess inf
x∈R

p(x), p+ := ess sup
x∈R

p(x).

The space Lp(·)(R) is separable if and only if p+ <∞ [7, Theorem 2.78]. Finally,
by [7, Theorem 2.80, Corollary 2.81], the space Lp(·)(R) is reflexive if and only if

1 < p−, p+ <∞. (1.1)

In the latter case, the associate space (Lp(·)(R))′ is isomorphic to the space
Lp
′(·)(R), where 1/p(x) + 1/p′(x) = 1 for a.e. x ∈ R.
A function w ∈ M+(R) is referred to as a weight if 0 < w(x) < ∞ a.e. on

R. Define the weighted Banach function space X(R, w) as the set of all complex-
valued measurable functions f on R such that fw ∈ R. This is a linear normed
space when equipped with the norm

‖f‖X(R,w) := ‖fw‖X(R) .

We say that f ∈ Xloc(R) if fχE ∈ X(R) for any measurable set E ⊂ R of finite
measure. If w ∈ Xloc(R) and 1/w ∈ X ′loc(R), then X(R, w) is a Banach function
space itself and X ′(R, w−1) is its associate space [15, Lemma 2.4]. If, in addition,
X(R) is separable, then the set of all bounded compactly supported functions
is dense in X(R, w) [15, Lemma 2.12(a)], which implies that L2(R) ∩X(R, w) is
dense in X(R, w). If X(R) is a Banach function space and w : R → [0,∞] is a
weight such that the Cauchy singular integral operator SR given by

(SRf)(x) := lim
ε→0

1

πi

∫
R\(x−ε,x+ε)

f(t)

t− x
dt, x ∈ R,

is bounded on the (normed) space X(R, w), then, by [15, Theorem 3.9], X(R, w)
is a Banach function space and

sup
I

1

|I|
‖wχI‖X(R)

∥∥w−1χI∥∥X′(R) <∞, (1.2)

where the supremum is taken over all bounded intervals I ⊂ R. In the latter case
we write w ∈ AX(R). We will use the following convention Ap(R) := ALp(R) for
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1 < p < ∞. The class Ap(R) is usually called the Muckenhoupt class because
Muckenhoupt proved in [20, Theorem 2] that w ∈ Ap(R) if and only if the Hardy–
Littlewood maximal operator defined for f ∈ L1

loc(R) by

(Mf)(x) := sup
I3x

1

|I|

∫
I

|f(y)|dy,

where the supremum is taken over all finite intervals I ⊂ R containing x, is
bounded on Lp(R, w), 1 < p <∞. Later Hunt, Muckenhoupt, and Wheeden [11,
Theorem 9], proved that SR is bounded on the weighted Lebesgue space Lp(R, w),
1 < p <∞, if and only if w ∈ Ap(R).

Let X(R) be a separable Banach function space and w : R → [0,∞] be a
weight. A function a ∈ L∞(R) is called a Fourier multiplier on X(R, w) if the
map f 7→ F−1aF maps L2(R)∩X(R, w) into X(R, w) and extends to a bounded
linear operator on X(R, w) denoted by W 0(a). The set of all Fourier multipliers
on X(R, w) is denoted byMX,w(R). It is clear thatMX,w(R) is a unital normed
algebra under pointwise operations and the norm

‖a‖MX,w(R) :=
∥∥W 0(a)

∥∥
L(X(R,w)) .

Here and in what follows L(X(R, w)) denotes the Banach algebra of all bounded
linear operators on X(R, w). If the operator SR is bounded on X(R, w), then

‖a‖L∞(R) ≤ cX,w ‖a‖MX,w(R) (1.3)

for all a ∈ MX,w(R), where cX,w is a positive constant depending only on X(R)
and w. Moreover, MX,w(R) is a Banach algebra [13, Theorem 1, Corollary 1].

The aim of this paper is to study the boundedness of convolution operators
W 0(b) on weighted Banach function spaces X(R, w) and the compactness of
commutators of multiplication operators aI and convolution operators W 0(b) on
separable rearrangement-invariant Banach function spaces X(R) and on reflex-
ive variable Lebesgue spaces Lp(·)(R). Our results complement a series of results
obtained for standard Lebesgue spaces with weights in [10, Lemmas 7.1–7.4] for
piecewise continuous functions a, b; in [17, Theorem 4.6] for piecewise slowly
oscillating functions a, b; and in [8, Theorem 4.4] for wider classes of piecewise
quasicontinuous functions a, b. Note that as soon as results on the compactness of
commutators aW 0(b)−W 0(b)aI are available, one can employ the Allan-Douglas
local principle (see, e.g., [2, Theorem 8.2]) and the two projections theorem (see,
e.g., [2, Theorem 8.7]) and develop a theory of Fredholmness (that is, invertibility
modulo the ideal of compact operators) for algebras generated by aI and W 0(b)
(see, e.g., [16] for weighted Lebesgue spaces). We plan to address these questions
in a forthcoming paper.

The paper is organized as follows. In Section 2 we formulate our results on the
boundedness of convolution operators W 0(a) with symbols in the algebra V (R) of
functions of bounded total variation and in the algebras SO3

λ of three times con-
tinuously differentiable functions that slowly oscillate at λ ∈ R ∪ {∞}. Further,
we define the algebras of functions C(R), PC, SO�, QC, PSO�, all being subal-
gebras of the algebra PQC of the piecewise quasicontinuous functions, and the
corresponding algebras of Fourier multipliers CX,w(R), PCX,w, SO

�
X,w, PSO

�
X,w.
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The latter definitions rely on the above mentioned boundedness results. Finally,
we formulate the result on the compactness of the commutator aW 0(b)−W 0(b)aI.
In Sections 3 and 4 we prove the boundedness results for W 0(a) and in Section 5
we give a proof of the compactness result for the commutator aW 0(b)−W 0(b)aI.

2. Main results

2.1. Convolution operators with symbols in the algebra V (R). Let a be
a complex-valued function of bounded total variation V (a) on R where

V (a) := sup

{
n∑
k=1

|a(xk)− a(xk−1)| : −∞ < x0 < x1 < · · · < xn < +∞, n ∈ N

}
.

The set V (R) of all functions of bounded total variation on R is a unital non-
separable Banach algebra with the norm

‖a‖V := ‖a‖L∞(R) + V (a).

It is well known that the algebra V (R) is continuously embedded intoMLp,w(R)
in the case of standard Lebesgue spaces Lp(R), 1 < p < ∞, and Muckenhoupt
weights w ∈ Ap(R). Moreover, the embedding constant is equal to ‖SR‖L(Lp(R,w))
(see [10, Theorem 2.11] for w = 1 and [3, Theorem 17.1] for w ∈ Ap(R)). Now we
formulate the generalization of this result to weighted Banach function spaces.

Theorem 2.1. Let w : R→ [0,∞] be a weight and X(R) be a separable Banach
function space such that w ∈ Xloc(R) and 1/w ∈ X ′loc(R). Suppose the Hardy–
Littlewood maximal operator is bounded on the spaces X(R, w) and X ′(R, w−1).
If a has a finite total variation V (a), then the convolution operator W 0(a) is
bounded on the space X(R, w) and

‖W 0(a)‖L(X(R,w)) ≤ cX,w‖a‖V (2.1)

where cX,w is a positive constant depending only on X(R) and w.

This result follows from [15, Lemma 2.4(b)] and [12, Theorem 4.3].
If X(R) is a rearrangement-invariant space or a variable Lebesgue space, condi-

tions for the boundedness of the Hardy–Littlewood maximal operator on X(R, w)
are known, this observation allows us to simplify the formulation of the above
result.

Let X(R) be a rearrangement-invariant Banach function space generated by a
rearrangement-invariant Banach function norm ρ. In this case, the Luxemburg
representation theorem [1, Chap. 2, Theorem 4.10] provides a unique rearrange-
ment-invariant Banach function norm ρ over R+ equipped with the Lebesgue
measure, defined by

ρ(h) := sup

{∫
R+

g∗(t)h∗(t) dt : ρ′(g) ≤ 1

}
,

and such that ρ(f) = ρ(f ∗) for all f ∈ M+
0 (R). The rearrangement-invariant

Banach function space generated by ρ is denoted by X(R+).
For each t > 0, let Et denote the dilation operator defined on M(R+) by

(Etf)(s) = f(st), 0 < s <∞.
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With X(R) and X(R+) as above, let hX(t) denote the operator norm of E1/t

as an operator on X(R+). By [1, Chap. 3, Proposition 5.11], for each t > 0,
the operator Et is bounded on X(R+) and the function hX is increasing and
submultiplicative on (0,∞). The Boyd indices of X(R) are the numbers αX and
βX defined by

αX := sup
t∈(0,1)

log hX(t)

log t
, βX := inf

t∈(1,∞)

log hX(t)

log t
.

By [1, Chap. 3, Proposition 5.13], 0 ≤ αX ≤ βX ≤ 1. The Boyd indices are
said to be nontrivial if αX , βX ∈ (0, 1). The Boyd indices of the Lebesgue space
Lp(R), 1 ≤ p ≤ ∞, are both equal to 1/p. Note that the Boyd indices of a
rearrangement-invariant space may be different [1, Chap. 3, Exercises 6, 13].

Corollary 2.2. Let X(R) be a separable rearrangement-invariant space with non-
trivial Boyd indices αX , βX and w ∈ A1/αX (R)∩A1/βX (R). If a has a finite total
variation V (a), then the convolution operator W 0(a) is bounded on the weighted
rearrangement-invariant space X(R, w) and

‖W 0(a)‖L(X(R,w)) ≤ cX,w‖a‖V
where cX,w is a positive constant depending only on X(R) and w.

Corollary 2.2 will be proved in Section 4.3.
By BM(R) denote the set of all measurable functions p : R → [1,∞] such

that (1.1) holds and the Hardy–Littlewood maximal operator is bounded on the
variable Lebesgue space Lp(·)(R). To provide a simple sufficient conditions guar-
anteeing that p ∈ BM(R), we need the following definition. Given a function
r : R → R, one says that r is locally log-Hölder continuous if there exists a
constant C0 > 0 such that

|r(x)− r(y)| ≤ C0

− log |x− y|
for all x, y ∈ R such that |x − y| < 1/2. One says that r : R → R is log-Hölder
continuous at infinity if there exist constants C∞ and r∞ such that for all x ∈ R,

|r(x)− r∞| ≤
C∞

log(e+ |x|)
.

The class of functions r : R → R that are simultaneously locally log-Hölder
continuous and log-Hölder continuous at infinity is denoted by LH(R). From [7,
Proposition 2.3 and Theorem 3.16] we deduce that if p ∈ LH(R) satisfies (1.1),
then p ∈ BM(R).

Corollary 2.3. Let p ∈ LH(R) satisfy (1.1) and w ∈ ALp(·)(R). If a has a
finite total variation V (a), then the convolution operator W 0(a) is bounded on
the weighted variable Lebesgue space Lp(·)(R, w) and

‖W 0(a)‖L(Lp(·)(R,w)) ≤ cp(·),w‖a‖V
where cp(·),w is a positive constant depending only on the variable exponent p and
the weight w.
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Corollary 2.3 will be proved in Section 4.4.
Although p ∈ LH(R) provides a nice sufficient condition for the boundedness of

the Hardy–Littlewood maximal operator on the variable Lebesgue space Lp(·)(R),
it is not necessary. Notice that all functions in LH(R) are continuous and have
limits at infinity. An example of an exponent p ∈ BM(R), which does not have
limits at zero and infinity, and thus p /∈ LH(R), is given in [7, Example 4.68],
[9, Section 5.1]. We refer to the recent monographs [7, 9] for further discussions
concerning the fascinating and still mysterious class BM(R).

Corollary 2.4. Let p ∈ BM . If a has a finite total variation V (a), then the
convolution operator W 0(a) is bounded on the variable Lebesgue space Lp(·)(R)
and

‖W 0(a)‖L(Lp(·)(R)) ≤ cp(·)‖a‖V
where cp(·) is a positive constant depending only on the variable exponent p.

Corollary 2.4 will be proved in Section 4.5.

2.2. Convolution operators with symbols in the algebra SO3
λ. Consider

the one point compactification of the real line Ṙ := R ∪ {∞}. For λ ∈ Ṙ, put

Cb(Ṙ \ {λ}) := C(Ṙ \ {λ}) ∩ L∞(R).

For a bounded measurable function f : R→ C and a set I ⊂ R, let

osc(f, I) := ess sup
x,y∈I

|f(x)− f(y)|.

Following [17, Section 2.1], for λ ∈ Ṙ consider the C∗-algebras SOλ of slowly
oscillating functions at λ defined by

SO∞ :=

{
f ∈ Cb(Ṙ \ {∞}) : lim

x→+∞
osc(f, [−x,−x/2] ∪ [x/2, x]) = 0

}
,

SOλ :=

{
f ∈ Cb(Ṙ \ {λ}) : lim

x→+0
osc(f, λ+ [−x,−x/2] ∪ [x/2, x]) = 0

}
(λ ∈ R).

Consider the differential operator Dλ defined by

(Dλa)(x) :=

{
(x− λ)a′(x) for λ ∈ R,
xa′(x) for λ =∞ (x ∈ R). (2.2)

Following [17, Section 2.3], put

SO3
λ :=

{
a ∈ SOλ ∩ C3(R \ {λ}) : lim

x→λ
(Dj

λa)(x) = 0, j = 1, 2, 3
}
,

where D0
λf := f and Dj

λf := Dλ(D
j−1
λ f) for j ∈ N. It is easy to see that SO3

λ is
a commutative Banach algebra under the pointwise operations and the norm

‖a‖SO3
λ

:=
3∑
j=0

1

j!
‖Dj

λa‖L∞(R).
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Theorem 2.5. Let X(R) be a separable Banach function space and w : R →
[0,∞] be a weight such that w ∈ Xloc(R) and 1/w ∈ X ′loc(R). Suppose the Hardy–
Littlewood maximal operator M is bounded on X(R, w) and on X ′(R, w−1). If

λ ∈ Ṙ and a ∈ SO3
λ, then the convolution operator W 0(a) is bounded on the space

X(R, w) and

‖W 0(a)‖L(X(R,w)) ≤ cX,w‖a‖SO3
λ
,

where cX,w is a positive constant depending only on X(R) and w.

We will prove Theorem 2.5 in Section 4.1.

Corollary 2.6. Let X(R) be a separable rearrangement-invariant space with non-

trivial Boyd indices αX , βX and w ∈ A1/αX (R)∩A1/βX (R). If λ ∈ Ṙ and a ∈ SO3
λ,

then the convolution operator W 0(a) is bounded on the space X(R, w) and

‖W 0(a)‖L(X(R,w)) ≤ cX,w‖a‖SO3
λ
,

where cX,w is a positive constant depending only on X(R) and w.

A proof of Corollary 2.6 will be given in Section 4.3.

Corollary 2.7. Let p ∈ LH(R) satisfy (1.1) and w ∈ ALp(·)(R). If λ ∈ Ṙ and
a ∈ SO3

λ, then the convolution operator W 0(a) is bounded on the space Lp(·)(R, w)
and

‖W 0(a)‖L(Lp(·)(R,w)) ≤ cp(·),w‖a‖SO3
λ
,

where cp(·),w is a positive constant depending only on the variable exponent p and
the weight w.

Corollary 2.7 will be proved in Section 4.4.

Corollary 2.8. Let p ∈ BM . If λ ∈ Ṙ and a ∈ SO3
λ, then the convolution

operator W 0(a) is bounded on the variable Lebesgue space Lp(·)(R) and

‖W 0(a)‖L(Lp(·)(R)) ≤ cp(·)‖a‖SO3
λ

where cp(·) is a positive constant depending only on the variable exponent p.

We will present a proof Corollary 2.8 in Section 4.5.

2.3. Compactness of commutators. Let C(Ṙ) and C(R) denote the C∗-algeb-

ras of continuous functions on Ṙ and R := [−∞,+∞], respectively, and PC stand

for the C∗-algebra of all functions f : Ṙ→ C that possess finite one-sided limits

f(x± 0) := lim
t→x±0

a(t)

at every point x ∈ Ṙ, where a(±∞) = a(∞∓ 0). Note that if V (a) < ∞, then
a ∈ PC. Following [17, Section 2.1], let SO� be the smallest C∗-subalgebra of

L∞(R) that contains all the C∗-algebras SOλ with λ ∈ Ṙ. In particular, SO�

contains C(Ṙ).
Let H∞ (resp. H∞) be the closed subalgebra of L∞(R) that consists of all

functions being non-tangential limits on R of all bounded analytic functions on
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the upper (resp. lower) half-plane. Following [21, 22] consider the C∗-algebra QC

of quasicontinuous functions on Ṙ defined by

QC := (H∞ + C(Ṙ)) ∩ (H∞ + C(Ṙ)),

and the C∗-algebra PQC of piecewise quasicontinuous functions, which is the
smallest C∗-subalgebra of L∞(R) that contains PC and QC. By [17, Theo-
rem 4.2], SO� ⊂ QC. According to [17, Section 2.4], PSO� is a smallest C∗-
subalgebra of L∞(R) that contains PC and SO�. Thus PSO� ⊂ PQC.

For a Banach algebra A and its subset S, let algAS denote the smallest Banach
subalgebra of A that contains the set S.

Let w : R → [0,∞] be a weight and X(R) be a separable Banach function
space such that w ∈ Xloc(R) and 1/w ∈ X ′loc(R). Suppose the Hardy–Littlewood
maximal operator is bounded on the spacesX(R, w) andX ′(R, w−1). By [15, The-
orem 3.8] and [13, Theorem 1, Corollary 1],MX,w(R) ⊂ L∞(R) andMX,w(R) is a
Banach algebra. From Theorems 2.1 and 2.5 we know that V (R) ⊂MX,w(R) and

SO3
λ ⊂ MX,w(R) for all λ ∈ Ṙ. By analogy with [10, Chap. I], [17, Section 2.4],

[18, Section 3], put

CX,w(R) := algMX,w(R)(C(R) ∩ V (R)), PCX,w := algMX,w(R)(PC ∩ V (R)),

SO�X,w := algMX,w(R)
(
∪λ∈ṘSO

3
λ

)
, PSO�X,w := algMX,w(R)(PCX,w ∪ SO

�
X,w).

It is clear that CX,w(R) ⊂ C(R), PCX,w ⊂ PC, SO�X,w ⊂ SO�, PSO�x,w ⊂ PSO�,
and all above algebras are contained in PQC. Our last result is the following.
Its proof will be given in Section 5.3

Theorem 2.9. Let X(R) be either a separable rearrangement-invariant Banach
function space with nontrivial Boyd indices or the variable Lebesgue space gener-
ated by an exponent p ∈ BM(R). If one of the following conditions is fulfilled:

(i) a ∈ PQC and b ∈ SO�X,1;
(ii) a ∈ SO� and b ∈ PSO�X,1;

(iii) a ∈ algL∞(R)(QC ∪ C(R)) and b ∈ algMX,1(R)(SO
�
X,1 ∪ CX,1(R));

then the commutator aW 0(b)−W 0(b)aI is compact on the space X(R).

For weighted Lebesgue spaces Lp(R, w) with w ∈ Ap(R) a more general result
was proved in [8, Theorem 4.4].

3. Norm estimate for a classical Calderón–Zygmund operator

3.1. Pointwise estimate for the sharp maximal operator of Tf implies
the norm estimate for T . For δ > 0 and f ∈ Lδloc(R), consider the sharp
maximal operator defined by

(M#
δ f)(x) := sup

I3x
inf
c∈R

(
1

|I|

∫
I

|f(y)− c|δdy
)1/δ

where the supremum is taken over all finite intervals I ⊂ R containing x. If δ = 1,
then this is the Fefferman–Stein sharp maximal operator.

The set of all bounded sublinear operators on the space X(R, w) will be denoted
by B(X(R, w)). Obviously, L(X(R, w)) ⊂ B(X(R, w)).



200 A.YU. KARLOVICH

Theorem 3.1 ([15, Theorem 3.6]). Let X(R) be a separable Banach function
space and w : R→ [0,∞] be a weight such that w ∈ Xloc(R) and 1/w ∈ X ′loc(R).
Suppose the Hardy–Littlewood maximal operator M is bounded on X(R, w) and
on X ′(R, w−1). Assume that 0 < δ < 1 and T : M(R) → M(R) is a linear
operator such that

(a) T is bounded on some Lp(R) with p ∈ (1,∞);
(b) for every f ∈ C∞0 (R), the operator T satisfies the following pointwise

estimate:

(M#
δ (Tf))(x) ≤ Cδ(Mf)(x) (x ∈ R)

where Cδ is a positive constant depending only on δ.

Then T ∈ L(X(R, w)) and

‖T‖L(X(R,w)) ≤ (1/λ)δC‖M‖B(X(R,w))‖M‖B(X′(R,w−1))Cδ, (3.1)

where λ ∈ (0, 1) and C > 0 are some absolute constants.

3.2. Pointwise estimate for the sharp maximal operator of TCZf with a
classical Calderón–Zygmund operator TCZ.

Theorem 3.2 ([18, Lemma 2.2, Corollary 2.8]). Let δ ∈ (0, 1) and a ∈ C3(R\{0})
be such that

B(a) := max{‖Dj
0a‖L∞(R) : j = 0, 1, 2, 3} <∞, (3.2)

where the differential operator D0 is defined by (2.2). Then

(a) the distribution K = F−1a agrees with a function K differentiable in
R\{0} and such that |K(x)| ≤ c0B(a)|x|−1 and |K ′(x)| ≤ c1B(a)|x|−2 for
all x ∈ R \ {0}, where the constants ci ∈ (0,∞) depend only on i = 0, 1;

(b) for every f ∈ C∞0 (R), the classical Calderón–Zygmund operator

(TCZf)(x) := p.v.

∫
R
K(x− y)f(y) dy (x ∈ R) (3.3)

satisfies the following pointwise estimate:

(M#
δ (TCZf))(x) ≤ c(δ)B(a)(Mf)(x) (x ∈ R)

with

c(δ) := 22/δ−1(2(1− δ)−1/δ(20 + 16c1) + 32c1). (3.4)

3.3. Norm estimate.

Theorem 3.3 ([18, Theorem 2.9]). Let 1 < p <∞ and w ∈ Ap(R). If a function
a ∈ C3(R \ {0}) satisfies (3.2), then a classical Calderón–Zygmund operator TCZ
given by (3.3) with the kernel K = F−1a is bounded on the weighted Lebesgue
space Lp(R, w) and

‖TCZ‖L(Lp(R,w)) ≤ cp,wB(a),

where cp,w is a positive constant depending only on p and w.

Now we extend the previous result to the case of weighted Banach function
spaces.
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Theorem 3.4. Let X(R) be a separable Banach function space and w : R →
[0,∞] be a weight such that w ∈ Xloc(R) and 1/w ∈ X ′loc(R). Suppose the Hardy–
Littlewood maximal operator M is bounded on X(R, w) and on X ′(R, w−1). If
a function a ∈ C3(R \ {0}) satisfies (3.2), then a classical Calderón–Zygmund
operator TCZ given by (3.3) with the kernel K = F−1a is bounded on the weighted
Banach function space X(R, w) and

‖TCZ‖L(X(R,w)) ≤ cX,wB(a), (3.5)

where cX,w is a positive constant depending only on X(R) and w.

Proof. In view of Theorem 3.3, the classical Calderón–Zygmund operator TCZ
given by (3.3) is bounded on every Lebesgue space Lp(R), 1 < p < ∞, whence
Condition (a) of Theorem 3.1 is fulfilled for T = TCZ . Fix some δ ∈ (0, 1). If
f ∈ C∞0 (R), then by Theorem 3.2,

(M#
δ (TCZf))(x) ≤ c(δ)B(a)(Mf)(x) (x ∈ R),

where the constant c(δ) is given by (3.4). This means that Condition (b) of
Theorem 3.1 also holds for T = TCZ . Applying Theorem 3.1, we deduce that
TCZ ∈ L(X(R, w)) and (3.5) holds with

cX,w := (1/λ)δC‖M‖B(X(R,w))‖M‖B(X′(R,w−1))c(δ)

where C > 0 and λ ∈ (0, 1) are some absolute constants. �

4. Proofs of the boundedness results

4.1. Proof of Theorem 2.5. For λ ∈ {0,∞}, Theorem 2.5 follows immediately
from Theorem 3.4 because W 0(a) is a classical Calderón–Zygmund operator with
the kernel K = F−1a and B(a) ≤ 6‖a‖SO3

λ
. Let eµ(x) := eiµx for all µ, x ∈ R.

If λ ∈ R \ {0}, then a0(x) = a(x + λ) belongs to SO3
0 and ‖a0‖SO3

0
= ‖a‖SO3

λ
.

Moreover, W 0(a) = e−λW
0(a0)eλI. Hence, by what has already been proved,

‖W 0(a)‖L(X(R,w)) = ‖e−λW 0(a0)eλI‖L(X(R,w)) = ‖W 0(a0)‖L(X(R,w))

≤ cX,w‖a0‖SO3
0

= cX,w‖a‖SO3
λ
,

which completes the proof. �

4.2. The Boyd interpolation theorem for sublinear operators. The fol-
lowing theorem for linear operators was proved by Boyd [4, Theorem 1]. The
same proof also works for sublinear operators because it relies on an estimate by
Calderón [5, Theorem 8], which is also valid for sublinear operators. We also refer
to [1, Theorem 5.16] and for the case of linear operators to [19, Theorem 2.b.11].

Theorem 4.1. Suppose 1 < p < q < ∞. If a sublinear operator is bounded on
the Lebesgue spaces Lp(R) and Lq(R), then it is also bounded on a rearrangement-
invariant space X(R) with the Boyd indices satisfying

1/q < αX ≤ βX < 1/p.
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4.3. Proof of Corollaries 2.2 and 2.6. Since αX , βX ∈ (0, 1), w ∈ A1/αX (R)
and w ∈ A1/βX (R), from [2, Theorem 2.31] it follows that, there are p and q such
that

1 < q < 1/βX ≤ 1/αX < p <∞
and w ∈ Ap(R) ∩ Aq(R). Therefore wχI ∈ Lp(R) ∩ Lq(R) for every finite in-
terval I ⊂ R. By [19, Proposition 2.b.3], wχI ∈ X(R). From this fact and
Axiom (A2) we obtain wχE ∈ X(R) for any measurable set E of finite measure.
Thus w ∈ Xloc(R). From Mukenhoupt’s theorem [20, Theorem 2] we know that
M ∈ B(Lp(R, w))∩B(Lq(R, w)), whence the sublinear operator A := wMw−1I is
bounded on the Lebesgue spaces Lp(R) and Lq(R). By the Boyd interpolation the-
orem (Theorem 4.1), the operator A is bounded on the rearrangement-invariant
space X(R), whence the Hardy–Littlewood operator M is bounded on the space
X(R, w). From αX , βX ∈ (0, 1) and [1, Chap. 3, Proposition 5.13] we deduce
that αX′ = 1− βX , βX′ = 1− αX ∈ (0, 1) and 1/w ∈ A1/αX′

(R) ∩ A1/βX′
(R). As

before we can show that 1/w ∈ X ′loc(R) and that the operator B := w−1MwI is
bounded on the associate space X ′(R). Therefore, the operator M is bounded
on the space X ′(R, w−1). To complete the proof of Corollary 2.2 (resp. Corol-
lary 2.6), it remains to apply Theorem 2.1 (resp. Theorem 2.5). �

4.4. Proof of Corollaries 2.3 and 2.7. Since p+ <∞, from [7, Theorem 2.78]
we deduce that the space Lp(·)(R) is separable. If p satisfies (1.1), then it is
easy to see that p ∈ LH(R) if and only if p′ ∈ LH(R). From [7, Theorem 2.80,
Corollary 2.81] it follows that the associate space to Lp(·)(R) is isomorphic to
Lp
′(·)(R). Hence w ∈ ALp(·)(R) is equivalent to

sup
I

1

|I|
‖wχI‖Lp(·)(R)‖w−1χI‖Lp′(·)(R) <∞, (4.1)

where the supremum is taken over all finite intervals I ⊂ R. From (4.1) we
immediately get wχI ∈ Lp(·)(R) and w−1χI ∈ Lp

′(·)(R) for any finite interval I.
By Axiom (A2), this implies that wχE ∈ Lp(·)(R) and w−1χE ∈ Lp

′(·)(R) for any

measurable set E ⊂ R of finite measure. Hence w belongs to L
p(·)
loc (R) and 1/w

lies in L
p′(·)
loc (R). By [6, Theorem 1.5], the operator M is bounded on the weighted

variable Lebesgue space Lp(·)(R, w) if and only if w satisfies (4.1). From (4.1) we
see that w ∈ ALp(·)(R) if and only if 1/w ∈ ALp′(·)(R). Thus, if w ∈ ALp(·)(R),
then M is bounded on both Lp(·)(R, w) and Lp

′(·)(R, w−1). The latter space is
isomorphic to the associate space [Lp(·)(R, w)]′ in view of [15, Lemma 2.4(c)] and
[7, Theorem 2.80, Corollary 2.81]. To complete the proof of Corollary 2.3 (resp.
Corollary 2.7), it remains to apply Theorem 2.1 (resp. Theorem 2.5). �

4.5. Proof of Corollaries 2.4 and 2.8. Since 1 < p−, p+ <∞ for p ∈ BM(R),
from [7, Theorems 2.78, 2.80, Corollary 2.81] we know that Lp(·)(R) is separable
and that its associate space is isomorphic to Lp

′(·)(R). By the hypothesis, the
Hardy–Littlewood maximal operator M is bounded on Lp(·)(R). In view of [9,
Theorem 5.7.2], the latter is equivalent to the boundedness of M on the space
Lp
′(·)(R). To complete the proof of Corollary 2.4 (resp. Corollary 2.8), it remains

to apply Theorem 2.1 (resp. Theorem 2.5). �
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5. Proof of the compactness result

5.1. Compactness of commutators on weighted Lebesgue spaces. The
following theorem is one of the main ingredients of the proof of Theorem 2.9.

Theorem 5.1. Let 1 < p <∞ and w ∈ Ap(R). If one of the following conditions
is fulfilled:

(i) a ∈ PQC and b ∈ SO�Lp,w;
(ii) a ∈ SO� and b ∈ PSO�Lp,w;

(iii) a ∈ algL∞(R)(QC ∪ C(R)) and b ∈ algMLp,w(R)(SO
�
Lp,w ∪ CLp,w(R));

then the commutator aW 0(b) − W 0(b)aI is compact on the weighted Lebesgue
space Lp(R, w).

A more general result was obtained in [8, Theorem 4.4] (see also [17, Theo-
rem 4.6]).

5.2. Transferring the compactness from standard Lebesgue spaces. The
following result was proved in [14, Corollary 2.3] in the case of rearrangement
invariant spaces over finite measure spaces, however, the proof is the same in the
case of X(R).

Lemma 5.2. Suppose a linear operator A is bounded on all Lebesgue spaces Lp(R)
with p ∈ (1,∞). Then A is compact on a rearrangement-invariant space X(R)
with nontrivial Boyd indices if and only if it is compact on a Lebesgue space Lr(R)
with some r ∈ (1,∞).

The following result obtained in [12, Lemma 6.4] is an analogue of Lemma 5.2
for variable Lebesgue spaces.

Lemma 5.3. Suppose a linear operator A is bounded on all variable Lebesgue
spaces Lp(·)(R) with p ∈ BM(R). If A is compact on a Lebesgue space Lr(R) with
r ∈ (1,∞), then A is compact on all Lp(·)(R) with p ∈ BM(R).

5.3. Proof of Theorem 2.9. From Corollaries 2.2, 2.6 and 2.4, 2.8 it follows
that the algebras CX,1(R), PCX,1, SO

�
X,1, and PSO�X,1 are well defined. From

their definitions we conclude that there is a sequence bn ∈MX,1(R) such that

(i′) bn ∈ (SO3)�, (ii′) bn ∈ (SO3)�∪(PC∩V (R)), (iii′) bn ∈ (SO3)�∪(C(R)∩V (R)),

in cases (i)–(iii), respectively, where (SO3)� := ∪λ∈ṘSO3
λ, and

‖W 0(bn)−W 0(b)‖L(X(R)) = ‖bn − b‖MX,1(R) → 0 as n→∞. (5.1)

In each case (i)–(iii), the operators aW 0(bn)−W 0(bn)aI are compact for all n ∈ N
on every Lp(R), 1 < p < ∞, in view of Theorem 5.1. From Lemmas 5.2-5.3 we
deduce that the operators aW 0(bn)−W 0(bn)aI are compact for all n ∈ N on the
space X(R). This observation and (5.1) yield the compactness of the commutator
aW 0(b)−W 0(b)aI on the space X(R) in each case (i)–(iii). �
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