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Abstract. We investigate maps between normed spaces which preserve the
orthogonality defined by the norm derivative. These maps are showed to be a
scalar multiple of an isometry.

1. Introduction and preliminaries

Let X be a normed space over F, where F is the real field R or the complex
field C. For x and y in X, we say that x is B-orthogonal to y, denoted by x⊥By,
if ‖x + λy‖ ≥ ‖x‖ for all λ ∈ F. It is easy to verify that in inner spaces this
orthogonality is equivalent to the usual notion of orthogonality, but in general
normed spaces is neither symmetric nor additive. However it is homogeneous,
thus x⊥By if and only if λx⊥Bµy for all nonzero scalars λ, µ ∈ F. It is well
known that a linear map between inner spaces that preserves orthogonality must
be a scalar multiple of an isometry.

In [6], Koldobsky proved that a linear map between real normed spaces that
preserves B-orthogonality must be a scalar multiple of an isometry. Blanco and
Turnšek [3] extended this result to complex spaces. Recently, similar investiga-
tions have been carried out in normed spaces for sesquilinear form in [9]. More-
over, the approximate orthogonality preserving mappings have been considered
in [4].

Besides the B-orthogonality, one can define other orthogonality relations in a
normed space X. Consider two mappings ρ′+, ρ

′
− : X ×X → R :

ρ′±(x, y) = lim
t→0±

‖x+ ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t→0±

‖x+ ty‖ − ‖x‖
t

,
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which are called norm derivatives [1]. It is easy to show that ρ′±(x, y) = 〈x, y〉
in a real inner space. Thus it is natural to define the following orthogonality
relations.

Definition 1.1. Let X be a normed space and x, y ∈ X.

(1). x is ρ+-orthogonal to y, denoted by x⊥ρ+y, if ρ′+(x, y) = 0;
(2). x is ρ−-orthogonal to y, denoted by x⊥ρ−y, if ρ′−(x, y) = 0;
(3). x is ρ-orthogonal to y, denoted by x⊥ρy, if ρ′+(x, y) + ρ′−(x, y) = 0.

In [5], Chmieliński and Wójcik proved that a linear map between real normed
spaces that preserves ρ±-orthogonality is a scalar multiple of an isometry. In [8],
Wójcik proved the same result for maps preserving ρ-orthogonality.

The first aim of this paper is to extend results of [5, 8] to complex spaces. The
second is to define and study a new orthogonality type — ρ∗-orthogonality.

Definition 1.2. Let X be a normed space and x, y ∈ X. We say that x is
ρ∗-orthogonal to y, denoted by x⊥ρ∗y, if ρ′+(x, y)ρ′−(x, y) = 0.

We will show that a linear map preserving ρ∗-orthogonality between normed
spaces is a scalar multiple of an isometry.

We close this section with some preliminaries. First, we collect some properties
of norm derivatives, which can be found, for example, in [1, 2].

Proposition 1.3. Let x and y be in a normed space X.

(1). ρ′−(x, y) ≤ ρ′+(x, y);
(2). ρ′−(x, y) = −ρ′+(x,−y) = −ρ′+(−x, y);
(3). ρ′±(x, x) = ‖x‖2;

(4). ρ′±(αx, βy) = |αβ|ρ′±(x, ei(θ−ω)y), α = |α|eiω, β = |β|eiθ;
(5). ρ′±(x, αx+ y) = Reα‖x‖2 + ρ′±(x, y) for α ∈ F;
(6). |ρ′±(x, y)| ≤ ‖x‖‖y‖.
Recall that a support functional φ at x ∈ X is a norm-one linear functional in

X∗ such that φ(x) = ‖x‖. By the Hahn-Banach Theorem, there always exists
at least one such functional for every x ∈ X. Recall also that X is smooth
at the point x in X if there exists a unique support functional at x. From [2],
for x, y ∈ X, x 6= 0, ρ′+(x, y) = ‖x‖ sup{Reϕ(y) : ϕ ∈ S(x)} and ρ′−(x, y) =
‖x‖ inf{Reϕ(y) : ϕ ∈ S(x)}, where S(x) is the set of all support functionals at x.
Thus, X is smooth at x if and only if ρ′+(x, y) = ρ′−(x, y) for all y ∈ X.

It turns out that the smoothness is closely related to the Gateaux differentia-
bility. Recall that the norm ‖ · ‖ is said to be Gateaux differential at x ∈ X if the
limit

fx(y) = lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all y ∈ X. We call such fx the Gateaux differential at x of ‖ · ‖. It is
not difficult to verify that fx is a bounded real linear functional on X. When x is
a smooth point, it is easy to see that ρ′+(x, y) = ρ′−(x, y) = ‖x‖fx(y) for y ∈ X.
Therefore X is smooth at x if and only if the norm is Gateaux differential at x.

Proposition 1.4. [7] Every norm on Rn is Gateaux differentiable µn-a.e. on Rn.
Here, µn is the Lebesgue measure on Rn.
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2. Linear maps preserving ρ+, ρ−, ρ∗-orthogonality

In this section, we characterize linear maps of normed spaces which preserve ρ∗-
orthogonality (ρ+-orthogonality, ρ−-orthogonality). Recall that x is ρ∗-orthogonal
to y if ρ′+(x, y) = 0 or ρ′−(x, y) = 0. We need a lemma which characterizes the
B-orthogonality using norm derivatives.

Lemma 2.1. Let x and y be in a normed space X. Then the following conditions
are equivalent.

(1). x⊥By;
(2). ρ′−(x, λy) ≤ 0 for all λ ∈ F;
(3). ρ′+(x, λy) ≥ 0 for all λ ∈ F.

Proof. (1)⇒ (2). Let λ be in F. Since x⊥By, it follows that ‖x+ tλy‖−‖x‖ ≥ 0

and then ‖x+tλy‖−‖x‖
t

≤ 0 for all t < 0. So

ρ′−(x, λy) = lim
t→0−

‖x+ tλy‖ − ‖x‖
t

≤ 0.

(2)⇒ (3). Let λ be in F. Then −λ ∈ F. By the condition (2), ρ′−(x,−λy) ≤ 0.
Hence, by Proposition 1.3, ρ′+(x, λy) = −ρ′−(x,−λy) ≥ 0.

(3) ⇒ (1). Let λ be in F. By the condition (3), ρ′+(x, λy) ≥ 0. Hence by
Proposition 1.3,

‖x‖2 ≤ ‖x‖2 + ρ′+(x, λy) = ρ′+(x, x+ λy) ≤ ‖x‖‖x+ λy‖.
This implies that ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ F. Namely, x⊥By. �

The main result in this section is as follows.

Theorem 2.2. Let X, Y be normed spaces, T : X → Y a nonzero, linear map.
Then the following conditions are equivalent.

(1). T preserves ρ∗-orthogonality;
(2). T preserves ρ+-orthogonality;
(3). T preserves ρ−-orthogonality;
(4). T preserves B-orthogonality;
(5). ‖Tx‖ = ‖T‖‖x‖ for all x ∈ X.

Proof. That (5) implies (1)-(4) is obvious. From [3], (4) implies (5). Now we
show that each of conditions (1)-(3) implies (4).

First suppose that (1) holds. Let x, y ∈ X, x 6= 0 and suppose that x⊥By. Our
task is to show that Tx⊥BTy. By Lemma 2.1, this is equivalent to show that
ρ′+(Tx, λTy) ≥ 0 for all λ ∈ F.

By Proposition 1.3, we have, for λ ∈ F, that

ρ′+

(
x,−

ρ′+(x, λy)

‖x‖2
x+ λy

)
= −

ρ′+(x, λy)

‖x‖2
‖x‖2 + ρ′+(x, λy) = 0.

Since T preserves ρ∗-orthogonality, it follows that ρ′+

(
Tx,−

ρ′+(x, λy)

‖x‖2
Tx+ λTy

)
=

0 or ρ′−

(
Tx,−

ρ′+(x, λy)

‖x‖2
Tx+ λTy

)
= 0. Hence by Proposition 1.3 and Lemma
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2.1 , we have, for λ ∈ F, that

ρ′+(Tx, λTy) =
‖Tx‖2

‖x‖2
ρ′+(x, λy) ≥ 0,

or

ρ′+(Tx, λTy) ≥ ρ′−(Tx, λTy) =
‖Tx‖2

‖x‖2
ρ′+(x, λy) ≥ 0.

Consequently, we have that ρ′+(Tx, λTy) ≥ 0 for all λ ∈ F.
In a similar way, we can show that (2) implies (4).

Finally, using ρ′−

(
x,−

ρ′−(x, λy)

‖x‖2
x+ λy

)
= 0, we can show that (3) implies

(4).
The proof is complete.

�

3. Linear maps preserving ρ-orthogonality

In this section, we characterize linear maps of normed spaces which preserve
ρ-orthogonality in the complex space case. We need a lemma.

Lemma 3.1. [3] Let ‖ · ‖ be any norm on F2 and let D ⊆ F2 be a set of all
non-smooth points. Then there exists a path γ : [0, 2]→ F2 of the form:

γ(t) :=

{
(1, tξ), t ∈ [0, 1];
(1, (2− t)ξ + (t− 1)), t ∈ [1, 2],

for some ξ ∈ F, ξ 6= 0, 1, so that ν{t : γ(t) ∈ D} = 0.

The main result is as follows.

Theorem 3.2. Let X, Y be normed spaces, T : X → Y a nonzero, linear map.
Then T preserves ρ-orthogonality if and only if T is a scalar multiple of an isom-
etry.

Proof. The sufficiency is obvious. We now suppose that T preserves ρ-orthogonality
and want to prove that T is a scalar multiple of an isometry. For convenience,
we write ρ′ = 1

2
(ρ′+ + ρ′−). Then x⊥ρy if and only if ρ′(x, y) = 0.

Claim 1. T is injective.
Suppose on the contrary that Tx = 0 for some non-zero x ∈ X. Let y

be a vector in X which is independent of x. Then we can choose a non-zero

β ∈ R such that 0 < β‖y‖
‖x+βy‖ < 1. Let z = x + βy. A computation shows

ρ′
(
z,−ρ

′(z, y)

‖z‖2
z + y

)
= 0. Since T preserves ρ-orthogonality, it follows that

ρ′
(
Tz,−ρ

′(z, y)

‖z‖2
Tz + Ty

)
= 0. Since Tx = 0, by Proposition 1.3 we have that

0 = ρ′
(
Tz,−ρ

′(z, y)

‖z‖2
Tz + Ty

)
= ρ′

(
βTy, (1− ρ′(z, y)

‖z‖2
β)Ty

)
= β(1− ρ′(z, y)

‖z‖2
β)‖Ty‖2. (3.1)
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By Proposition 1.3, ∣∣∣∣ρ′(z, y)

‖z‖2
β

∣∣∣∣ ≤ ‖z‖‖y‖β‖z‖2
=

β‖y‖
‖x+ βy‖

< 1.

So 1 − ρ′(z, y)

‖z‖2
β 6= 0. This together with (3.1) yields that Ty = 0 for all y

independent of x. Hence T = 0, a contradiction.
Claim 2. Let x and y be in X and suppose that ‖x‖ = ‖y‖. Then ‖Tx‖ = ‖Ty‖.

If x and y are linearly dependent, saying y = µx for some µ ∈ F, then |µ| = 1,
and ‖Ty‖ = ‖µTx‖ = ‖Tx‖. Now let us suppose that x and y are linearly
independent. Let M be the linear subspace spanned by x and y. For u ∈ M ,
define ‖u‖T = ‖Tu‖. Then by Claim 1, ‖ ·‖T is a norm on M . Clearly, (M, ‖ ·‖T )
is smooth at u if and only if TM is smooth at Tu. Let ∆ be the set of all
those u ∈ M at which at least one of the norms, ‖ · ‖ or ‖ · ‖T , is not Gateaux
differentiable.

For u ∈ M\∆, by fu and gu denote the Gateaux differentials at u of ‖ · ‖ and
‖ · ‖T on M respectively. Let v ∈ ker fu. Then ρ′(u, v) = ‖u‖fu(v) = 0 since
(M, ‖ ·‖) is smooth at u. Hence ρ′(Tu, Tv) = 0 since T preserves ρ-orthogonality.
Moreover, since (M, ‖ · ‖) is smooth at u, we have gu(v) = 1

‖Tu‖ρ
′(Tu, Tv) = 0.

So, we have ker fu ⊆ ker gu for all u ∈M\∆, equivalently, there exists a function
λ : M\∆→ C such that gu = λ(u)fu for all u ∈M\∆. As

‖Tu‖ = gu(u) = λ(u)fu(u) = λ(u)‖u‖, u ∈M\∆,

it is easily seen that λ is in fact real valued.
Let L : C2 → M, (α, β) 7→ αx + β(y − x). Clearly, L is a linear isomorphism.

Set D = L−1(∆), then D is the set of those points (α, β) ∈ C2 at which at least
one of the functions (α, β) 7→ ‖L(α, β)‖ or (α, β) 7→ ‖L(α, β)‖T is not Gateaux
differentiable. Both these functions are norms in C2 = R4, hence by Proposition
1.4, ν4(D) = 0. Let γ : [0, 2] → C2 be the path obtained in Lemma 3.1. Then
Γ : [0, 2]→M defined by

Γ(t) =
‖x‖
‖Lγ(t)‖

Lγ(t), t ∈ [0, 2],

is a path from x to y such that ‖Γ(t)‖ = ‖x‖ and ν{t : Γ(t) ∈ ∆} = ν{t : γ(t) ∈
D} = 0. Note that t 7→ ‖Lγ(t)‖ and t 7→ ‖Lγ(t)‖T are Lipschitz functions and ,
therefore, absolutely continuous. Indeed,

Lγ(t) =

{
x+ tξ(y − x), t ∈ [0, 1];
x+ ((2− t)ξ + (t− 1))(y − x), t ∈ [1, 2].

Hence
(a) if t1, t2 ∈ [0, 1], then

‖Lγ(t1)‖ − ‖Lγ(t2)‖ ≤ ‖Lγ(t1)− Lγ(t2)‖ = |t1 − t2||ξ|‖y − x‖;

(b) if t1, t2 ∈ [1, 2], then

‖Lγ(t1)‖ − ‖Lγ(t2)‖ ≤ ‖Lγ(t1)− Lγ(t2)‖ = |t1 − t2||1− ξ|‖y − x‖;
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(c) if t1 ∈ [0, 1], t2 ∈ [1, 2], then∣∣‖Lγ(t1)‖ − ‖Lγ(t2)‖
∣∣ ≤ ‖Lγ(t1)− Lγ(t2)‖

= ‖y − x‖|(t1 + t2 − 2)ξ − (t2 − 1)|
≤ ‖y − x‖(|(t1 + t2 − 2)ξ|+ |t2 − 1|)
≤ ‖y − x‖(|t1 − t2||ξ|+ |t1 − t2|)
= |t1 − t2|(1 + |ξ|)‖y − x‖.

So t 7→ ‖Lγ(t)‖ satisfies Lipschitz conditions. Similarly, t 7→ ‖Lγ(t)‖T satisfies
Lipschitz conditions. It follows that

‖Γ(t)‖T =
‖x‖‖Lγ(t)‖T
‖Lγ(t)‖

is absolutely continuous too, and that

ν{t : Γ′(t) does not exist } = ν{t : ‖Lγ(t)‖′ does not exist } = 0.

Since t 7→ ‖Γ(t)‖ = ‖x‖ is a constant function, we have

‖Γ(t)‖′T = lim
∆t→0

‖Γ(t+ ∆t)‖T − ‖Γ(t)‖T
∆t

= lim
∆t→0

‖Γ(t) + ∆tΓ′(t)‖T − ‖Γ(t)‖T
∆t

= gΓ(t)(Γ
′(t)) = λ(Γ(t))fΓ(t)(Γ

′(t))

= λ(Γ(t))‖Γ(t)‖′ = 0

ν-a.e. on [0,2]. Hence t 7→ ‖Γ(t)‖T is a constant function and we have that
‖x‖T = ‖Γ(0)‖T = ‖Γ(2)‖T = ‖y‖T , i.e., ‖Tx‖ = ‖Ty‖. Claim 2 is established.

Now we fix a unit vector x0 in X. For a non-zero vector x ∈ X, by Claim 2,

we have that
∥∥∥T (

1
‖x‖

)
x
∥∥∥ = ‖Tx0‖. Therefore ‖Tx‖ = ‖Tx0‖‖x‖ for all x ∈ X.

This implies that 1
‖Tx0‖T is an isometry.

�
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