
Ann. Funct. Anal. 6 (2015), no. 4, 30–59

http://doi.org/10.15352/afa/06-4-30

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

WIENER’S THEOREM ON HYPERGROUPS

WALTER R. BLOOM1, JOHN J. F. FOURNIER2∗ AND MICHAEL LEINERT3

Communicated by L. Székelyhidi

Abstract. The following theorem on the circle group T is due to Norbert
Wiener: If f ∈ L1 (T) has non-negative Fourier coefficients and is square in-
tegrable on a neighbourhood of the identity, then f ∈ L2 (T). This result has
been extended to even exponents including p = ∞, but shown to fail for all
other p ∈ (1,∞] . All of this was extended further (appropriately formulated)
well beyond locally compact abelian groups. In this paper we prove Wiener’s
theorem for even exponents for a large class of commutative hypergroups. In
addition, we present examples of commutative hypergroups for which, in sharp
contrast to the group case, Wiener’s theorem holds for all exponents p ∈ [1,∞].
For these hypergroups and the Bessel-Kingman hypergroup with parameter 1

2
we characterise those locally integrable functions that are of positive type and
square-integrable near the identity in terms of amalgam spaces.

1. Introduction

On the unit circle T consider the following statement: If an integrable function
on T has non-negative Fourier coefficients and is p−integrable on some neigh-
bourhood of the identity, then f is p−integrable on all of T. For p = 2 this is a
theorem of Norbert Wiener. It was then shown to hold for all even p ∈ N and
p = ∞, but to fail for all other p ∈ (1,∞] [15, 13]. All of this was extended
(appropriately formulated) successively to compact abelian [12], locally compact
abelian [7] and finally IN -groups [11] (groups having at least one relatively com-
pact neighbourhood of the identity invariant under inner automorphisms). Since,
in the original formulation, Wiener’s theorem does not extend to non-compact
groups (it fails even for the real line), the results on non-compact groups G are
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formulated with Lp (G) replaced by the amalgam space (Lp, `∞) (G). (for com-
pact groups this is no change, as (Lp, `∞) (G) = Lp (G) in this case). Related
information can be found in [11, p. 1].

In Section 2 of this paper we extend the positive result to a large class of com-
mutative hypergroups, namely those where the product of bounded continuous
positive definite functions is itself positive definite (see Corollary 2.15 below). In
particular this applies to strong hypergroups.

In Section 3 we consider Bessel-Kingman hypergroups. These are strong hy-
pergroups, so the results of Section 2 apply to them. For the motion hypergroup,
i.e. the Bessel-Kingman hypergroup with α = 1

2
, we show (Theorem 3.6) that

for p = 2 there is a characterization like the one in [7] of positive definite func-
tions that are square integrable near the identity. Since the proof (following
[7]) makes use of results about Fourier transforms, duality and interpolation for
amalgam spaces defined via certain tilings, we need to show that on this hyper-
group the norms for these spaces are equivalent to amalgam norms defined using
translations. For groups this equivalence is well known (see [1] or [6]), but for
hypergroups this is not clear. We obtain some results on translation, convolution
and the Fourier transform for amalgam spaces on the motion hypergroup; these
are needed for the proof of Theorem 3.6. We also compare our amalgam norms
with some other ones, including those in [3].

Finally in Section 4 we look at the countable non-discrete hypergroups consid-
ered in [5] and [14]. We prove the analogue of Theorem 3.6 and show that for
these hypergroups, in sharp contrast to the group case, Wiener’s theorem holds
for all exponents p ∈ [1,∞]; see Theorem 4.10 and Corollary 4.12 below.

2. Wiener’s theorem for p ∈ N or p =∞

Let K be a hypergroup with Haar measure ωK . In the following any unex-
plained notation will be taken from [2]. Recall that, although the product of two
elements, say x, y of K, might not be defined, the convolution of the unit point
masses εx and εy is defined. When the integral of a function f on K against the
measure εx ∗ εy is defined, that integral is denoted by f(x ∗ y). We recall the
definition of positive definiteness on hypergroups ([2, Definition 4.1.1]).

Definition 2.1. A function f on K is called positive definite if it is measurable
and locally bounded, and

n∑
i=1

n∑
j=1

cicjf
(
xi ∗ x−j

)
≥ 0

for all choices of ci ∈ C, xi ∈ K and n ∈ N.

The set of continuous positive definite functions will be denoted by P (K).
Note that, unlike for groups, there are hypergroups where such functions are
not necessarily bounded (see [2, p. 268] or Remark 2.10 below). The subset of
bounded functions in P (K) is denoted by Pb(K).

When f, g and h are functions on K, the notation f(g ∗h) will mean the point-
wise product of the function f with the convolution g ∗ h, rather than meaning
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the integral of f against a measure g ∗ h as in the notation f(x ∗ y) above. We
sometimes also write (g ∗ h)f or f · (g ∗ h) (and this extends to cases where g is
a measure).

Definition 2.2. A locally integrable function f is said to be of positive type if∫
f · (g ∗ g∗) dωK ≥ 0

for every g ∈ Cc(K), where g∗ (x) := ∆ (x−) g∼ (x) , g∼ := g− and g− (x) := g (x−)
for all x ∈ K.

For continuous f this amounts to saying that f is positive definite (see [2],
Lemma 4.1.4; when K is not unimodular, the function g∼ in part (iii) of that
lemma should be replaced by the function g∗). In particular, if K is discrete the
notions “of positive type” and “positive definite” coincide.

Remark 2.3. If K is any non-discrete hypergroup, there exist lower semicontin-
uous functions of positive type in L1(K) that are unbounded near the identity
and hence don’t belong to P (K). To see this, note that using the outer reg-
ularity of ωK for the null set {e} there is a decreasing sequence of symmetric
neighbourhoods Un with ωK (Un) → 0, and we may assume ωK (Un) < 1/n. Let
f =

∑
λn1Un ∗ 1Un where λn = 1/ (nωK (Un)) and 1Un is the indicator function

of Un. Now

‖f‖1 =
∑

λnωK (Un)2 ≤
∑ 1

n2
<∞.

Being the supremum of continuous functions, f is lower semicontinuous, and we
have

f(e) =
∑

λnωK (Un) =
∑ 1

n
=∞

so f is unbounded near e. Since 1Un = 1Un
∼, f is of positive type.

On several occasions in this paper we use that if f is a function of positive type
and h is is a real-valued continuous function with compact support, then h∗f ∗h−
is of positive type. This can be seen from the definition using [2], (1.4.23), that
is ∫

(f ∗ h) g dωK =

∫
f ·
(
g ∗ h−

)
dωK (2.1)

and its left-hand version∫
(h ∗ f) g dωK =

∫
f ·
((

∆−h−
)
∗ g
)
dωK (2.2)

which has a similar proof. (Note that ∆−h− = h∗ since h is real-valued.) In the
special case when f ∈ L1(K) and the hypergroup K is commutative, we can also
see this using the Fourier transform.

Remark 2.4. Let K be a commutative hypergroup. A function f ∈ L1(K) is of

positive type if and only if
∧
f ≥ 0 on the support of the Plancherel measure πK .
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Proof. (a) Let f ∈ L1(K) be of positive type and let χ ∈ supp πK . By [2, 4.1.22],
there is net (fι) in Cc(K) such that fι ∗ f∼ι → χ uniformly on compact sets. We
may assume that fι ∗f∼ι (e) = 1 for all ι. For ε > 0 choose a compact C ⊂ K such
that

∫
K\C |f | dωK < ε. Since |χ| ≤ 1 and |fι ∗ f∼ι | ≤ 1 (for the second inequality,

note that fι ∗ f∼ι ∈ Pb (K) by [2, Lemma 4.1.5(b)], and the bound follows from
[2, Lemma 4.1.3(g)]), we have that∣∣∣∣∧f(χ)−

∫
f · (fι ∗ f∼ι ) dωK

∣∣∣∣ ≤ 2ε+

∫
C

|f | |χ− (fι ∗ f∼ι )| dωK < 3ε

for suitable ι. By the assumption on f we have
∫
f · (fι ∗ f∼ι ) dωK ≥ 0 (note that

f∼ι = f ∗ι since K is unimodular), and hence
∧
f(χ) ≥ 0.

(b) Suppose
∧
f ≥ 0 on suppπK and let g ∈ Cc(K). We have using (2.1) and

Plancherel’s theorem∫
f · (g ∗ g∼) dωK =

∫
(f ∗ g) g dωK =

∫
∧
f
∧
g
∧
g dπK =

∫
f̂

∣∣∣∣∧g∣∣∣∣2 dπK ≥ 0 . �

As in [2, p. 8], the set of all probability measures on K will be denoted by
M1 (K).

Lemma 2.5. Let K be a commutative hypergroup. For every relatively compact
neighbourhood U of the identity there is a constant CU > 0 such that∫

g · (µ ∗ 1U) dωK ≤ CU

∫
g1U dωK (2.3)

for all choices of µ ∈M1 (K) and all non-negative g ∈ Pb (K).

Proof. By Theorem 4.1.13 of [2] we may write g(x) as a coefficient of a cyclic
representation D of the hypergroup K on a Hilbert space H, that is there is a
cyclic vector u ∈ H such that

g(x) = 〈D(x)u,u〉H
for all x ∈ K.

Choose a relatively compact neighbourhood V of e such that⋃
{supp (εx− ∗ εy) : x, y ∈ V } ⊂ U

and ωK (V ) ≤ 1; these conditions guarantee that

h := 1∼V ∗ 1V ≤ 1U . (2.4)

Since h ∈ C+
c (K) with h (e) > 0 and U is relatively compact, there exist

x1, x2, · · · , xn ∈ K and λ1, λ2, · · · , λn > 0 such that 1U ≤
∑n

i=1 λi τxih, where

τxih (y) = h (xi ∗ y)

is the xi−translate of h.
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Let ν =
∑n

i=1 λiεxi . Then∫
g · (µ ∗ 1U) dωK ≤

∫
g

(
µ ∗

(
n∑
i=1

λi τxih

))
dωK

=
〈
D(µ ∗ ν− ∗ h)u,u

〉
H

=
〈
D(µ ∗ ν− ∗ 1V )u, D(1V )u

〉
H

=
〈
D(µ ∗ ν−)D(1V )u, D(1V )u

〉
H

≤ ‖D(µ ∗ ν−)‖B(H) ‖D(1V )u‖2H

≤ ‖ν‖
∫
hg dωK

since ‖µ‖ = 1, and since

‖D(1V )u‖2H = 〈D(1V )u, D(1V )u〉H = 〈D(1V )∗D(1V )u,u〉H

= 〈D(1∼V ∗ 1V )u,u〉H = 〈D(h)u,u〉H =

∫
hg dωK .

So, letting CU = ‖ν‖, we have that∫
g · (µ ∗ 1U) dωK ≤ CU

∫
g1U dωK . �

Corollary 2.6. Let K be a commutative hypergroup such that Pb(K) · Pb(K) ⊂
Pb(K) and let p ∈ N be even. For every relatively compact neighbourhood U of
the identity there is a constant CU > 0 such that for all choices of µ ∈ M1 (K)
and f ∈ Pb (K) ∫

|f |p · (µ ∗ 1U) dωK ≤ CU

∫
|f |p 1U dωK . (2.5)

Proof. Let p ∈ N be even. Since f ∈ Pb(K), the same is true for f . It follows
that

|f |p = (ff)p/2 ∈ Pb(K)

and it is also positive. Inserting g = |f |p in inequality (2.3) yields the inequality
(2.5). �

Remark 2.7. We remind the reader that for strong hypergroups,

Pb (K) · Pb (K) ⊂ Pb (K) .

(Use Bochner’s theorem to write two functions f and g in Pb (K) as inverse
transforms of two nonnegative measures µ, ν respectively on K∧. Then fg is the
inverse transform of µ ∗ ν and hence belongs to Pb (K) as well.) In particular,
Corollary 2.6 and much of what follows holds for all strong hypergroups.

We now extend inequality (2.5) to integrable functions f of positive type.

Corollary 2.8. Let K be a commutative hypergroup such that Pb(K) · Pb(K) ⊂
Pb(K) and take p ∈ N to be even. For every relatively compact neighbourhood U
of the identity there is a constant CU > 0 such that for all choices of µ ∈M1 (K)
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and f ∈ L1 (K) of positive type (equivalently: f ∈ L1(K) with
∧
f ≥ 0 on supp πK)

it holds that ∫
|f |p · (µ ∗ 1U) dωK ≤ CU

∫
|f |p 1U dωK . (2.6)

Proof. Let f be such a function with
∫
|f |p 1U dωK <∞ and write fι = kι∗f ∗k−ι

where kι ∈ C+
c (K) ,

∫
kι dωK = 1 and supp kι ↓ {e} . (If K is first countable,

then this approximate identity can in fact be chosen to be a sequence.) Clearly
fι is bounded, continuous and integrable. Since fι is of positive type (see the
paragraph immediately preceding Remark 2.4), it is also in Pb (K). Now the
values of fι on U depend on the values of f on a slightly larger neighbourhood
U ′, and we cannot rule out a priori the possibility that

∫
|f |p 1U ′ dωK =∞. For

this technical reason we first use a compact neighbourhood W of e contained in
the interior of U.

For sufficiently large ι the values of fι on W only depend on the values of f on
U, and we have

‖(f − fι) 1W‖p ≤
∥∥f1U − kι ∗ (f1U) ∗ k−ι

∥∥
p
→ 0 (2.7)

since f1W = f1U1W and fι1W = [kι ∗ (f1U) ∗ k−ι ] 1W for sufficiently large ι. We
also have

‖fι − f‖1 → 0 (2.8)

and we can extract a sequence (fn) from (fι) satisfying both (2.7) and (2.8), and
(if necessary, passing to a subsequence thereof) converging pointwise a.e. to f.
Using Fatou’s lemma we obtain∫

|f |p · (µ ∗ 1W ) dωK ≤ lim inf
n

∫
|fn|p µ ∗ 1W dωK

≤ CW lim inf
n

∫
|fn|p 1W dωK

≤ CW

∫
|f |p 1W dωK

where, for the middle inequality, we have appealed to (2.5), and the last inequality
follows from (2.7). Choose x1, x2, · · · , xn ∈ K and λ1, λ2, · · · , λn > 0 such that
1U ≤

∑n
i=1 λi τxi1W . We then have∫

|f |p · (µ ∗ 1U) dωK ≤
n∑
i=1

λi

∫
|f |p · (µ ∗ τxi1W ) dωK

=
n∑
i=1

λi

∫
|f |p ·

(
µ ∗ εx−i ∗ 1W

)
dωK

≤ CW

(
n∑
i=1

λi

)∫
|f |p 1W dωK

≤

(
n∑
i=1

λi

)
CW

∫
|f |p 1U dωK
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and this ends the proof of the corollary. �

To prepare for Remark 2.11, we insert the following definition.

Definition 2.9. For p ∈ [1,∞) we say that a measurable function f belongs to

the amalgam space (Lp, `∞) (K) if ‖f‖p,∞,U := supx

∥∥∥f (τx1U)1/p
∥∥∥
p

is finite for

some relatively compact neighbourhood U of the identity.

In the discussion following Corollary 2.15 below, we show that replacing U by
a different relatively compact neighbourhood of the identity yields an equivalent
norm and hence the same space (Lp, `∞)(K). Note that

L1 (K) ⊂ (L1, l∞) (K) ⊂ L1
loc (K) .

Remark 2.10. In the group case, Corollary 2.8 extends to locally integrable func-
tions f of positive type (see [11, 1.1 and Theorem 1.6]), but for hypergroups this
is not always possible. Indeed the Naimark hypergroup ([2, p. 99], but note
the misprint in line 5, the second occurrence of an should be deleted) is a coun-
terexample. For this hypergroup on R+ with Haar measure dω (x) = sinh2 x dx

there are unbounded (positive definite) characters of the form χa (x) = sinh(rx)
r sinhx

where r > 1 and a = −r2. Then χa (x) behaves like e(r−1)x as x → ∞. Writing
U := [0, 1], for x > 1 we have 0 ≤ τx1U ≤ 1, supp (τx1U) ⊂ Jx := [x− 1, x+ 1]
and

∫
τx1U dω =

∫
1U dω =: c, so that τx1U ≥ c

2ω(Jx)
on a set with measure at

least c
2
. Therefore

∥∥∥χa (τx1U)1/p
∥∥∥
p
≥ ‖χaτx1U‖p ≥

(
min
Jx

χa

)
c

2ω (Jx)

( c
2

) 1
p
.

For a sufficiently small (a < −9 will do), the right-hand side of this inequality
tends to ∞ as x → ∞ (and hence Jx → {∞}), which shows that Corollary 2.8
does not hold on this hypergroup.

Remark 2.11. The proof of Corollary 2.8 works for any (locally integrable) func-
tion f of positive type for which the convolutions fι all belong to L∞. Those con-
volutions are continuous, of positive type and (by assumption) bounded, hence
positive definite. The L1-convergence in (2.8) can then be replaced by local L1-
convergence, that is by convergence in L1 (C) for every compact set C.

In particular, the proof works for all f ∈ (L1, `∞) (K) of positive type because
the kι in our proof all belong to Cc (K). So f ∗k−ι ∈ L∞, as we show in a moment,
and hence so does fι = kι ∗ f ∗ k−ι , which shows that fι is bounded for each ι.
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For any relatively compact neighbourhood U 3 e, and ι chosen suitably large
so that supp (kι) ⊂ U , we have∣∣f ∗ k−ι ∣∣ (x) ≤

∫ ∣∣f (x ∗ y) k−ι
(
y−
)∣∣ dω (y)

≤ ‖kι‖∞
∫
|f (x ∗ y)|1U (y) dω (y)

≤ ‖kι‖∞
∫
|f | (x ∗ y) 1U (y) dω (y)

= ‖kι‖∞
∫
|f (y)|1U

(
x− ∗ y

)
dω (y)

= ‖kι‖∞ ‖|f | τx−1U‖1
≤ ‖kι‖∞ ‖f‖1,∞,U

where for the first equality we refer to [2], Theorem 1.3.21, and hence f ∗ k−ι is
bounded.

Theorem 2.12. Let K be a commutative hypergroup such that Pb(K) · Pb(K) ⊂
Pb(K) and let p ∈ N be even. For every relatively compact neighbourhood U of
the identity there is a constant CU > 0 such that for all choices of µ ∈ M1 (K)
and f ∈ (L1, `∞) (K) of positive type it holds that

‖f · (µ ∗ 1U)‖p ≤
∥∥∥f · (µ ∗ 1U)1/p

∥∥∥
p
≤ C

1/p
U

∥∥∥f (1U)1/p
∥∥∥
p

= C
1/p
U ‖f 1U‖p . (2.9)

In particular this holds for f ∈ L1 (K) of positive type (equivalently: f ∈ L1(K)

with
∧
f ≥ 0 on supp πK).

Proof. The first inequality in (2.9) holds for all finite exponents p > 1 since
0 ≤ µ ∗ 1U ≤ 1. The next inequality in (2.9) uses Corollary 2.8, the assumption
that p ∈ N is even and Remark 2.11. �

Corollary 2.13. Let K be a commutative hypergroup such that Pb(K) ·Pb(K) ⊂
Pb(K). For f ∈ (L1, `∞) (K) of positive type it holds that

‖f‖∞ ≤ ‖f1U‖∞ .
In particular, since 0 ≤ τx1U ≤ 1,

‖fτx1U‖∞ ≤ ‖f1Ux‖∞ ≤ ‖f1U‖∞ (2.10)

where Ux = {y |τx1U(y) > 0}.
Proof. The second quantity in (2.9) is the Lp norm of f relative to the measure
(µ ∗ 1U) dω. Since the total mass of this measure is finite, letting p→∞ in (2.9)
gives the essential supremum of |f | on the set where µ ∗ 1U > 0. Apply this with
µ = εx for various points x in K, and use the fact that Ux is a neighbourhood of
x−, to obtain ‖f‖∞ ≤ ‖f1U‖∞. �

Remark 2.14. Note that taking µ = εx in Theorem 2.12 gives that for all even
p ∈ N

‖f τx1U‖p ≤
∥∥∥f (τx1U)1/p

∥∥∥
p
≤ C

1/p
U ‖f 1U‖p . (2.11)
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It is useful to recall at this stage that for fixed p, the quantities ‖f τx1U‖p and∥∥∥f (τx1U)1/p
∥∥∥
p

agree on groups but not necessarily on hypergroups (see the end

of Remark 3.4 below).

We restate (2.10) and (2.11) using Definition 2.9.

Corollary 2.15. (Wiener’s theorem for functions in (L1, `∞) (K)) Let K be a
commutative hypergroup such that Pb(K) · Pb(K) ⊂ Pb(K) and take p ∈ N even
or p =∞. If f ∈ (L1, `∞) (K) is of positive type, and satisfies f 1U ∈ Lp (K) for
some relatively compact neighbourhood U of e, then

f ∈ (Lp, `∞) (K) and ‖f‖p,∞,U ≤ C
1/p
U ‖f 1U‖p .

In particular this holds for f ∈ L1 (K) satisfying the same conditions.

Note that, by the equivalence proved next, if K is compact, then (Lp, `∞) = Lp

and ‖ · ‖p,∞,U equals (up to equivalence) the Lp norm on K (take ‖ · ‖p,∞,K and
use τx1K = 1K).

We now compare ‖f‖p,∞,U for different choices of U (even on non-commutative
hypergroups). Let U and V be relatively compact neighbourhoods of e, and de-
note the corresponding amalgam spaces by (Lp, `∞)U and (Lp, `∞)V respectively.
There are λi > 0 and xi ∈ K such that 1U ≤

∑n
i=1 λiτxi1V . Let f ∈ (Lp, `∞)V

and x ∈ K. When 1 ≤ p <∞ we have∥∥∥f (τx1U)1/p
∥∥∥p
p

=

∫
|f |p τx1U dωK ≤

∫
|f |p τx

(
n∑
i=1

λiτxi1V

)
dωK

=
n∑
i=1

λi

∥∥∥f (τxτxi1V )1/p
∥∥∥p
p
≤

(
n∑
i=1

λi

)
‖f‖pp,∞,V

by Lemma 2.16 below (set µ = εx− ∗ εx−i ). Hence

f ∈ (Lp, `∞)U and ‖f‖p,∞,U ≤ C‖f‖p,∞,V
with C = (

∑n
i=1 λi)

1/p
, so that the amalgam space (Lp, `∞) (K) does not depend

on the chosen neighbourhood.
Note that, since necessarily

∑
λi ≥ 1, this sum can serve as a constant for all

finite p. So we have constants of equivalence which only depend on U and V , but
not on p.

If p = ∞ and (as before) we denote by Ux the set where τx1U > 0, then
‖f‖∞,∞,U = supx ‖f1Ux‖∞. It follows that ‖f‖∞,∞,U = ‖f‖∞ since Ux is a neigh-
bourhood of x. So in this case, if we use V instead of U , we obtain not only an
equivalent norm but in fact the very same norm.

Lemma 2.16. Let p ∈ [1,∞] . For f ∈ (Lp, `∞)V and µ a probability measure with

compact support it holds that f (µ ∗ 1V )1/p ∈ Lp and ‖f (µ ∗ 1V )1/p ‖p ≤ ‖f‖p,∞,V .

Proof. By [10, Proposition 13.64] and the remarks following it, the set S of all
convex linear combinations of Dirac measures is weakly dense in M1(K). So
there is a net (µι) in S with µι → µ weakly. In the present case we may assume
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suppµι ⊂ suppµ (in the proof of [10, 13.64], if Aj ∩ suppµ 6= ∅, choose xj in this
set and not just in Aj). By [2, Theorem 1.6.18(b)] we obtain ‖µι ∗g−µ∗g‖1 → 0
for all g ∈ L1(K). From the net (µι ∗ 1V ) we may extract a sequence (µn ∗ 1V )
converging in ‖ · ‖1 and (if necessary, passing to a subsequence thereof) also
pointwise a.e. to µ ∗ 1V . Hence

(µn ∗ 1V )1/p → (µ ∗ 1V )1/p a.e.

All these functions have absolute value ≤ 1 (see [2, 1.4.6]) and have support in the
compact set supp (µ) ∗ supp (1V ) (see [2, 1.2.12])), hence are dominated by h =

1supp (µ)∗supp (1V ). There are βk > 0 and yk ∈ K such that h ≤
∑l

k=1 βk (τyk1V )1/p,
so

‖f h‖p ≤
l∑

k=1

βk‖f ( τyk1V )1/p ‖p <∞.

By dominated convergence we obtain ‖f(µn ∗ 1V )1/p − f(µ ∗ 1V )1/p‖p → 0. Now,
since µn is a convex combination

∑m
j=1 γjεxj , we have

∥∥∥f (µn ∗ 1V )1/p
∥∥∥p
p

=

∥∥∥∥∥∥f
(

m∑
j=1

γjτx−j 1V

)1/p
∥∥∥∥∥∥
p

p

=

∫
|f |p

m∑
j=1

γjτx−j 1V dωK

=
m∑
j=1

γj

∥∥∥∥f (τx−j 1V

) 1
p

∥∥∥∥p
p

≤
m∑
j=1

γj‖f‖pp,∞,V = ‖f‖pp,∞,V .

Hence ‖f (µ ∗ 1V )1/p ‖p ≤ ‖f‖p,∞,V as asserted. �

Remark 2.17. All of the results obtained so far hold for a large class of commuta-
tive hypergroups, in particular for strong hypergroups, and hence also for those
examples to be considered below. Furthermore, much of this section extends to
some non-commutative hypergroups. A version of Lemma 2.5 holds without the
assumption that K is commutative. Instead, we assume that there is a relatively
compact neighbourhood V of the identity with the property that 1V is central
in the convolution algebra L1(K) and hence in the measure algebra on K. The
conclusion of the lemma then holds for neighbourhoods U of e that include the
support of the product 1∼V ∗ 1V . The centrality assumption implies that K is
unimodular. In particular, (1V )∗ = 1∼V (as in the commutative case). Therefore
the proof of the lemma remains almost the same (replace the sentence concern-
ing the supports of the εx− ∗ εy up to and including inequality (2.4) by “Let
h = 1∼V ∗ 1V .”). With the same modified hypothesis, Corollary 2.6 holds with
no change in its proof. For Corollary 2.8 we also require that the support of
1∼V ∗ 1V be contained in the interior of U , rather than just in U . In the proof of
Corollary 2.8 take W equal to this support. Then for such U , Theorem 2.12 and
hence Remark 2.14 as well as Corollary 2.15 for even p also hold. For p = ∞,
Corollary 2.13 and hence the corresponding part of Corollary 2.15 hold on general
hypergroups (without any centrality assumption):

Let f ∈ (L1, `∞) (K) be of positive type. If U is a relatively compact neigh-
bourhood of e and fι = kι ∗ f ∗ k−ι where the kι are as in the proof of Corollary
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2.8, take ι large enough so that supp (k∗ι ∗ kι) ⊂ U . Then (see Remark 2.11) fι is
continuous, positive definite and bounded, so by [2, Lemma 4.1.3(g)] for the first
equality and (2.2) for the third equality below, we have

‖fι‖∞ = kι ∗ f ∗ k−ι (e)

=

∫
(kι ∗ f) kι dωK

=

∫
f · (k∗ι ∗ kι) dωK

≤ ‖f1U‖∞ ‖k
∗
ι ∗ kι‖1

≤ ‖f1U‖∞ .

Since fι → f locally in L1−norm (that is, ‖(fι − f) 1C‖1 → 0 for every compact
C ⊂ K), we obtain ‖f‖∞ ≤ ‖f1U‖∞.

3. Hypergroups on R+

In this section we consider some hypergroups on R+ to which all of Section 2
applies. For one of them we show that the version of Wiener’s theorem presented
in [7] for locally compact abelian groups also holds (Theorem 3.6 below), as indeed
do other positive results about translation, convolution and Fourier transforms,
which we need for the proof of the theorem.

3.1. Bessel-Kingman hypergroups. For these hypergroups the reader is re-
ferred to [2, , Section 3.5.61], but we give here some basic properties. Let α > −1

2
.

For x, y ∈ R+ consider the convolution

εx ∗α ε0 = εx = ε0 ∗α εx
and for x, y > 0,

εx ∗α εy (f) =

∫ x+y

|x−y|
Kα (x, y, z) f (z) z2α+1 dz, f ∈ C0 (R+)

where

Kα (x, y, z) :=

(
Γ (α + 1)

Γ
(
1
2

)
Γ
(
α + 1

2

)
22α−1

) [(
z2 − (x− y)2

) (
(x+ y)2 − z2

)]α− 1
2

(xyz)2α
.

Then (R+, ∗α) is a commutative hypergroup with the identity involution and Haar
measure ωα (dz) = z2α+1dz. Its characters are given by ϕλ (x) := jα (λx), x ∈ R+

for each λ ≥ 0 where jα denotes the modified Bessel function of order α given by

jα (x) :=
∞∑
k=0

(−1)k Γ (α + 1)

22kk!Γ (α + k + 1)
x2k, x ∈ R.

Note that ϕ0 ≡ 1.
It is well known that (R+, ∗α) ∼= (R+, ∗α)∧ , where the hypergroup isomorphism

is given by λ 7−→ ϕλ (so that (R+, ∗α) is not only strong but even Pontryagin);
see [16, Example 7.2]. Wiener’s theorem as in Corollary 2.15 therefore holds for
these Bessel-Kingman hypergroups.



WIENER’S THEOREM ON HYPERGROUPS 41

For α = 1
2

(the motion hypergroup) the convolution is given by

εx ∗ 1
2
εy (f) =

1

2xy

∫ x+y

|x−y|
f (z) z dz (3.1)

in which case the characters are just

ϕλ (x) = j 1
2

(λx) =
∞∑
k=0

(−1)k Γ
(
3
2

)
22kk!Γ

(
k + 3

2

) (λx)2k =
sinλx

λx
, λ ≥ 0.

The term ‘motion hypergroup’ is justified by the fact that
(
R+, ∗ 1

2

)
is isomorphic

to the double coset space M(3) //SO(3) .
For f ∈ L1 (R+, ∗α) , α > −1

2
, its Fourier transform is defined by

∧
f (ϕλ) :=

∫
R+

f ϕλ dωα

and the convolution of two functions f, g is given by

f ∗α g (x) :=

∫
R+

f (x ∗α y) g (y) ωα (dy) .

Recall that

(f ∗α g)∧ =
∧
f
∧
g.

When α = 1
2

we have

∧
f (ϕλ) =


1

λ

∫
R+

f (x) (sinλx)x dx, λ 6= 0,

∫
R+
f (x)x2 dx, λ = 0.

and, in particular,

(
1[0,ε)

)∧
(ϕλ) =


1

λ3
(sinλε− λε cosλε) , λ 6= 0,

ε3

3
, λ = 0.

(3.2)

3.2. The amalgam spaces (Lp, `q) (R+, ∗α) for 1 ≤ p, q ≤ ∞. In preparation
for Theorem 3.6 in Section 3.4, we need to develop some properties of certain
discrete amalgam spaces. We define them so that the norms ‖·‖p,∞ used in this

section are equivalent to the corresponding continuous norms ‖ · ‖p,∞,U used in
Section 2, and we prove this equivalence in Section 3.3. At the end of the current
subsection, we consider other families of discrete amalgam norms, in particular
those introduced in [3], and show that they are mostly not equivalent to the
norms that we use.

For each n ∈ N write In := [n− 1, n) and for 1 ≤ p, q ≤ ∞ define

‖f‖p,q :=

(
∞∑
n=1

ωα (In)

(
1

ωα (In)

∫ n

n−1
|f |p dωα

) q
p

) 1
q

(3.3)
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with the usual convention when one or both of p, q is ∞, that is

‖f‖∞,q =

(
∞∑
n=1

ωα (In) sup
x∈In
|f (x)|q

) 1
q

‖f‖p,∞ = sup
n

(
1

ωα (In)

∫ n

n−1
|f |p dωα

) 1
p

and ‖f‖∞,∞ = sup
n

sup
x∈In
|f (x)| = ‖f‖∞ .

The (p, q)−amalgam space is defined as the subspace of all measurable functions
f given by

(Lp, `q) (R+, ∗α) =
{
f : ‖f‖p,q <∞

}
.

We have the following result.

Proposition 3.1. Let f be a measurable function. Then

‖f‖p1,q ≤ ‖f‖p2,q for p1 ≤ p2

and ‖f‖p,q1 ≤ C ‖f‖p,q2 for q1 ≥ q2,

where C is a constant. In particular, for p1 ≤ p2 and q1 ≥ q2

(Lp2 , `q2) (R+, ∗α) ⊂ (Lp1 , `q1) (R+, ∗α) ,

so that (Lp, `q) (R+, ∗α) ⊂ Lp (R+, ∗α) ∩ Lq (R+, ∗α) for p ≥ q

and Lp (R+, ∗α) ∪ Lq (R+, ∗α) ⊂ (Lp, `q) (R+, ∗α) for p ≤ q.

Proof. This is straightforward using Hölder’s inequality together with the prop-
erty that ωα (In) ≥ C > 0 for all n. �

Note that (L∞, `1) (R+, ∗α) is the smallest amalgam space and (L1, `∞) (R+, ∗α)
is the largest.

Remark 3.2. We now use indicator functions on subintervals of In to show that for
p 6= q our amalgam norms are not equivalent to the discrete amalgam norms in [3],
which are computed on sets with measures uniformly bounded away from 0 and
∞. There is no division or multiplication by measures of tiles in the computation
of those norms. In the present case we obtain norms equivalent to those in [3]
by splitting R+ into disjoint intervals of Haar measure 1; at least ωα (In) − 2 of
these subintervals are included in In. Let f be the indicator function of one such

subinterval. Then the norm of f in our space (Lp, `q) (R+, ∗α) is ωα (In)1/q−1/p,
while its norm in the corresponding space in [3] is 1. Since ωα (In) → ∞ as
n→∞, these norms are not equivalent unless p = q.

Both families of discrete amalgams on Bessel-Kingman hypergroups are con-
structed in such a way as to have norms equal to the usual Lp norm, and hence to
each other when p = q. In the examples above, the functions f are not positive
definite, and we do not know whether there are corresponding examples involv-
ing positive definite functions. Finally, most other choices give amalgam norms
that are not equivalent to ours, for example the partition choice having the In
without normalization, and the continuous amalgam norm as in Definition 2.9
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but without the 1/p power. The only cases where our discrete amalgam norm is
equivalent to the one without weights are those where p = q, and the only case
where the two kinds of continuous amalgam norms are equivalent is that where
p = 1 (see the end of Remark 3.4).

3.3. Equivalence of the discrete amalgam norm ‖·‖p,∞ with the contin-

uous amalgam norm defined by translations in the case α = 1
2
. For the

following subsections of Section 3 we only consider the Bessel-Kingman hyper-

group
(
R+, ∗ 1

2

)
(and to simplify the notation we write ω in place of ω 1

2
). Values

of α > 1
2

are treated in [9].

Proposition 3.3. For p ∈ [1,∞) ,

‖f‖p,∞ ≤ C sup
y∈[0,∞)

(∫
|f |p τy1[0,1] dω

)1/p

.

Proof. We have using (3.1)

τy1[0,1] (x) = 1[0,1]

(
y ∗ 1

2
x
)

= εy ∗ 1
2
εx
(
1[0,1]

)
=

1

2xy

∫
[|x−y|,x+y]∩[0,1]

t dt

=


1, x+ y ≤ 1,

1
4xy

(
1− (x− y)2

)
, x+ y > 1 and |x− y| < 1,

0, |x− y| ≥ 1.

(3.4)

For y = n+ 1
2
, n ∈ N, we obtain

τn+ 1
2
1[0,1] (x) =


1−(n+ 1

2
−x)

2

4x(n+ 1
2)

,
∣∣n+ 1

2
− x
∣∣ < 1,

0,
∣∣n+ 1

2
− x
∣∣ ≥ 1.

On the interval In+1 this is larger than

3/4

4
(
n+ 1

2

)
(n+ 1)

≥ 3/16

2ω (In+1)

which holds for all n ∈ N. On I1 we have the trivial estimate τ01[0,1] ≥ 1 = 1
3

1
ω(I1)

,

and putting these together gives

sup
y∈[0,∞)

(∫
|f |p τy1[0,1] dω

)1/p

≥ 3

32
sup
n∈N

(∫
In

1

ω (In)
|f |p dω

)1/p

. �
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Remark 3.4. In Proposition 3.3 we compared the norm ‖f‖p,∞ with the contin-

uous amalgam norm ‖f‖p,∞,[0,1] = supy∈[0,∞)

∥∥∥f (τy1[0,1]

) 1
p

∥∥∥
p

for p ∈ [1,∞). We

consider the same comparison with p =∞. Letting

A (y) =
{
t ∈ [0,∞) : τy1[0,1] (t) > 0

}
we have ‖f‖∞,∞,[0,1] = supy∈[0,∞)

∥∥f1A(y)
∥∥
∞. Clearly A (y) is an open neighbour-

hood of y and hence

sup
y∈[0,∞)

∥∥f1A(y)
∥∥
∞ = ‖f‖∞ = ‖f‖∞,∞ .

This means that for p = ∞ we have C = 1 and in fact equality in Proposition
3.3.

We warn the reader that for every p ∈ (1,∞] the seemingly similar (and, in the
group case, identical) norm supy∈[0,∞)

∥∥fτy1[0,1]

∥∥
p

is smaller and not equivalent to

supy∈[0,∞)

∥∥∥f (τy1[0,1]

) 1
p

∥∥∥
p
. In fact, for this smaller norm, Proposition 3.3 fails for

all choices of the constant C. The reason for this is that the sup-norm of τy1[0,1]

tends to zero as y →∞.

Proposition 3.5. For p ∈ [1,∞) ,

‖f‖p,∞ ≥ C sup
y∈[0,∞)

(∫
|f |p τy1[0,1] dω

)1/p

.

Proof. (i) For y ∈ [0, 1) the expression in (3.4) takes the simpler form

τy1[0,1] (x) =


1, x ≤ 1− y,

1
4xy

(
1− (x− y)2

)
≤ 1, 1− y < x < 1 + y,

0, x ≥ 1 + y.

Since τy1[0,1] ≤ 1[0,2) this gives∫
|f |p τy1[0,1] dω ≤

∫
|f |p 1[0,1) dω +

∫
|f |p 1[1,2) dω

≤ 1

ω (I1)

∫
|f |p 1[0,1) dω +

3

ω (I2)

∫
|f |p 1[1,2) dω

=

∫
I1

1

ω (I1)
|f |p dω + 3

∫
I2

1

ω (I2)
|f |p dω

the second inequality holding since ω (I1) = 1
3
< 1 and ω (I2) = 7

3
< 3. Hence(∫

|f |p τy1[0,1] dω

)1/p

≤
(∫

I1

1

ω (I1)
|f |p dω

)1/p

+ 31/p

(∫
I2

1

ω (I2)
|f |p dω

)1/p

≤
(
1 + 31/p

)
‖f‖p,∞
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(ii) For y ∈ [1, 2) we have τy1[0,1] ≤ 1[0,3) which leads to∫
|f |p τy1[0,1] dω

≤
∫
I1

|f |p dω +

∫
I2

|f |p dω +

∫
I3

|f |p dω

≤
∫
I1

1

ω (I1)
|f |p dω + 3

∫
I2

1

ω (I2)
|f |p dω + 7

∫
I3

1

ω (I3)
|f |p dω

since ω (I3) < 7, and hence(∫
|f |p τy1[0,1] dω

)1/p

≤
(∫

I1

1

ω (I1)
|f |p dω

)1/p

+ 31/p

(∫
I2

1

ω (I2)
|f |p dω

)1/p

+ 71/p

(∫
I3

1

ω (I3)
|f |p dω

)1/p

≤
(
1 + 31/p + 71/p

)
‖f‖p,∞ .

(iii) For y ≥ 2 we have

τy1[0,1] (x) =


1

4xy

(
1− (x− y)2

)
, y − 1 < x < y + 1,

0, otherwise.

If y ∈ Ik, then k ≥ 3 and (y − 1, y + 1) intersects at most Ik−1, Ik, Ik+1. For
x ∈ (y − 1, y + 1) we have

4xy > 4 (y − 1) y > 4 (k − 2) (k − 1) .

Now k ≥ 3 implies 4 (k − 2) ≥ k and 3 (k − 1) ≥ k + 2 so that

4xy ≥ 1

3
k (k + 2) ≥ 1

3

(
k2 + k +

1

3

)
=

1

3
ω (Ik+1) ≥

1

3
ω (Ik) ≥

1

3
ω (Ik−1)

Thus we obtain for j = k − 1, k, k + 1∫
Ij

|f |p τy1[0,1] dω =

∫
Ij

|f |p 1

4xy

(
1− (x− y)2

)
1(y−1,y+1) dω

≤ 3

∫
Ij

1

ω (Ij)
|f |p dω

and(∫
|f |p τy1[0,1] dω

)1/p

≤ 31/p

k+1∑
j=k−1

(∫
Ij

1

ω (Ij)
|f |p dω

)1/p

≤ 31+1/p ‖f‖p,∞ .
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(iv) Taking C to be the maximum of the constants in (i)-(iii) we have(∫
|f |p τy1[0,1] dω

)1/p

≤ C ‖f‖p,∞

for all y ∈ [0,∞) and hence

sup
y∈[0,∞)

(∫
|f |p τy1[0,1] dω

)1/p

≤ C ‖f‖p,∞ . �

3.4. Functions that are square integrable on a neighbourhood of the
identity. For p = 2 we have the following characterisation along the lines of [7],
Theorem 3.1.

Theorem 3.6. For f ∈ L1
(
R+, ∗ 1

2

)
with

∧
f ≥ 0 the following are equivalent:

(1) f is square integrable in a neighbourhood of the identity;

(2)
∧
f ∈ (L1, `2)

(
R+, ∗ 1

2

)
;

(3) f ∈ (L2, `∞)
(
R+, ∗ 1

2

)
.

Proof. The proof of Theorem 3.1 in [7] applies, but we need to check that the
results used there are still valid in our setting. This requires the equivalence of the
continuous and the discrete amalgam norms, which we showed in Propositions
3.3 and 3.5, together with uniform boundedness of translation along with the
Hausdorff-Young theorem for these amalgam spaces. We prove the latter two
properties in the next three sections. �

3.5. Translation in (L∞, `1)(R+, ∗ 1
2
). In this section we show that translation

is uniformly bounded on the amalgam space (L∞, `1)(R+, ∗ 1
2
). Denote the Haar

measure ω (In) of the interval In by ωn. It is easily checked that ωn = n2−n+ 1
3
.

Given a locally integrable function f on R+ let Pnf := f1In and consider

τyf (x) = f
(
x ∗ 1

2
y
)

=
1

2xy

∫
[|x−y|,x+y]

f(t)t dt.

Note that |τyf | ≤ τy(|f |) pointwise, and that τy(|f |) ≤ τyg if |f | ≤ g almost
everywhere. We want to show uniform boundedness of the translation operators
τy on (L∞, `1)(R+, ∗ 1

2
).

Consider an index n and a positive number y, and write fn := 1In . It will be
enough to show that

‖τyfn‖(L∞,`1) ≤ C‖fn‖(L∞,`1)
for a number C that is independent of y and n. Indeed, letting cn = ‖Pnf‖∞
and g =

∑
n cnfn, we then have that |f | ≤ g pointwise, and thus ‖τyf‖(L∞,`1) ≤
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‖τyg‖(L∞,`1). But also τyg ≤
∑

n cnτy(fn) pointwise so that

‖τyf‖(L∞,`1) ≤ ‖τyg‖(L∞,`1) ≤
∑
n

cn‖τyfn‖(L∞,`1)

≤
∑
n

cnC‖fn‖(L∞,`1) = C‖f‖(L∞,`1).

Fix y and n, and call a non-negative integer k exceptional if k = 1 or if there is
some number x in the interval Ik such that |x− y| or x+ y lies in In. Denote the
set of exceptional indices by E, and let G be the set of generic indices forming
the complement of E in Z+.

If k is generic, then the intersection of the interval [|x − y|, x + y] with In is
either empty for all x in Ik, or this intersection is all of In for all such x. Then
τyfn either vanishes on the whole interval Ik or it coincides on Ik with

1

2xy

∫ n

n−1
t dt. (3.5)

Since k ≥ 2, the expression above does not change by more than a factor of 2 as
x runs through the interval Ik.

So for each generic index k there is a non-negative constant dk with dk ≤
τyfn(x) ≤ 2dk for all x in Ik. Then

ωk‖Pk(τyfn)‖∞ ≤ ωk2dk ≤ 2‖Pk(τyfn)‖1.

Note too that ωn‖fn‖∞ = ‖fn‖1 since fn is constant (= 1) on its support In.
Therefore,∑

k∈G

ωk‖Pk(τyfn)‖∞ ≤
∑
k∈G

2‖Pk(τyfn)‖1 ≤
∑
k∈Z+

2‖Pk(τyfn)‖1

= 2‖τy(fn)‖1 ≤ 2‖fn‖1 = 2ωn‖fn‖∞ = 2‖fn‖(L∞,`1),
the last inequality holding since the norm of any translation on L1(R+, ∗ 1

2
) is 1.

One way for k to be exceptional is to have x+ y belong to In for some x in Ik,
that is, the sets y + Ik and In have non-empty intersection; equivalently, the set
In−y overlaps Ik. There are at most two such values of k, and none when y > n.
Any other exceptional indices k come from cases where In + y or y − In overlap
Ik, or k = 1. It follows easily that there are at most seven exceptional indices,
and in fact there are at most five of them.

It remains to estimate ωk‖Pk(τyfn)‖∞ for each exceptional index k. When
k ≤ 3n use the estimate

τyfn (x) ≤ 1

2xy

∫
[|x−y|,x+y]

t dt =
1

4xy
{(x+ y)2 − |x− y|2} = 1

to see that

ωk‖Pk(τyfn)‖∞ ≤ ωk ≤ ω3n ≤ 19ωn = 19‖fn‖(L∞,`1).

When k is exceptional and k > 3n, one of the sets y ± In must overlap Ik.
The smallest value that y could take would then satisfy y + n = k − 1, making
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y + 1
3
k > k − 1 and y > 2

3
k − 1 > 1

3
k since k > 3. In particular, y > 1

3
x for all x

in Ik in these cases. For this k and such x use the upper bound

τyfn (x) ≤ 1

2xy

∫ n

n−1
t dt =

1

4xy
{n2 − (n− 1)2} < 2n

x2
≤ 2n

(k − 1)2

where the first inequality follows from (3.5), to see that

ωk‖Pk(τyfn)‖∞ ≤
k2(2n)

(k − 1)2
≤ 8n ≤ 24ωn ≤ 24‖fn‖(L∞,`1).

3.6. Translation and convolution on (Lp, `q)(R+, ∗ 1
2
). In this section we de-

duce that translation is uniformly bounded on (Lp, `q)(R+, ∗ 1
2
) and note that

Young’s inequality for convolution also holds for the amalgam spaces on (R+, ∗ 1
2
).

The uniform boundedness of translation on (L∞, `1)(R+, ∗ 1
2
) implies by duality

that it also holds on (L1, `∞)(R+, ∗ 1
2
). To confirm this, first note that matters

reduce to the case of a non-negative function, g say, in (L1, `∞)(R+, ∗ 1
2
), and that

τyg is then also non-negative. This translate belongs to (L1, `∞)(R+, ∗ 1
2
) if and

only if ∫
R+

(τyg(x)) f(x) dω(x) <∞

for all non-negative functions f in the unit ball of (L∞, `1)(R+, ∗ 1
2
). In this case,

the norm of τyg in (L1, `∞)(R+, ∗ 1
2
) is equal to the supremum of these integrals

over all such functions f . By [2, Theorem 1.3.21], and the fact that y− = y, these
integrals are equal to∫

R+

g(z) (τyf(z)) dω(z) ≤ ‖g‖(L1,`∞)‖τyf‖|(L∞,`1) ≤ C‖g‖(L1,`∞).

We thus have uniform boundedness of translation on (Lp, `q)(R+, ∗ 1
2
) when the

reciprocal indices (1/p, 1/q) sit at any of the four corners of the unit square in the
first quadrant. As in [8], complex interpolation then yields uniform boundedness
of translation whenever (1/p, 1/q) lies in this unit square, that is whenever 1 ≤
p, q ≤ ∞. This also follows in a more elementary way from Hölder’s inequality.

As in the case of locally compact abelian groups, Young’s inequality for convo-
lution of Lp-functions extends to these amalgams. The general statement is that
if reciprocal indices in the unit square satisfy the condition(

1

p
,
1

q

)
=

(
1

p1
,

1

q1

)
+

(
1

p2
,

1

q2

)
− (1, 1)

and if functions f1 and f2 belong to the respective amalgams (Lp1 , `q1)(R+, ∗ 1
2
)

and (Lp2 , `q2)(R+, ∗ 1
2
), then the convolution of f1 and f2 is defined and belongs

to (Lp, `q)(R+, ∗ 1
2
). Moreover, we have

‖f1 ∗ 1
2
f2‖(Lp,`q) ≤ C‖f1‖(Lp1 ,`q1 )‖f2‖(Lp2 ,`q2 ).

In fact, the inclusions between amalgams then imply that these statements still
hold, usually with a different constant C, provided that 1/p ≤ 1/p1+1/p2−1 and



WIENER’S THEOREM ON HYPERGROUPS 49

1/q ≥ 1/q1+1/q2−1. Another way to state this is that (1/p, 1/q) can be any point
in the unit square lying northwest of the point (1/p1 + 1/p2− 1, 1/q1 + 1/q2− 1),
which is also required to lie in the unit square. Again the general case follows
from a few extreme cases by complex interpolation or by repeated use of Hölder’s
inequality.

3.7. Fourier transforms on (Lp, `q)(R+, ∗ 1
2
). Our goal in this section is to prove

that if f ∈ (Lp, `q)(R+, ∗ 1
2
) with 1 ≤ p, q ≤ 2, then

∧
f ∈ (Lq

′
, `p
′
)(R+, ∗ 1

2
). The

cases where p = q are already known (see [4]) with the same proof as for locally
compact abelian groups, but if p 6= q, then this property of the Fourier transform
requires some work. These cases will follow by complex interpolation from those
where p = q and the special ones where (p, q) = (2, 1) or (1, 2). (The latter is
the one that arises in the proof of Theorem 3.6.) We show below that the two
special cases are equivalent by duality, and we prove the first case using some
easily-checked properties of transforms of the indicator functions 1In .

From (3.2) we find that the Fourier transform of 1I1 belongs to (L∞, `q) (R+, ∗ 1
2
)

for all q > 3
2
, but does not belong to (Lp, `1)(R+, ∗ 1

2
) for any value of p. Let

g1 = 3 1I1 ∗ 1
2

1[0,2) and gn = 3 1I1 ∗ 1
2

1[n−2,n+1) when n > 1. We can check that

gn(x) = 1 for all x in In. When n > 1, Hölder’s inequality gives

‖ ∧gn‖(L2,`1) = 3
∥∥∥1̂I1 (1̂In−1 + 1̂In + 1̂In+1

)∥∥∥
(L2,`1)

≤ 3
∥∥∥1̂I1∥∥∥

(L∞,`2)

∥∥∥1̂In−1 + 1̂In + 1̂In+1

∥∥∥
(L2,`2)

= C
∥∥∥1̂In−1 + 1̂In + 1̂In+1

∥∥∥
2

= C
∥∥1In−1 + 1In + 1In+1

∥∥
2

= C(ωn−1 + ωn + ωn+1)
1/2

≤ C ′
√
ωn.

By formula (3.3), if f ∈ L2(R+, ∗ 1
2
) and f vanishes outside In, then ‖f‖(L2,`1) =

√
ωn‖f‖2. Moreover, in this case f = fgn and it follows by Young’s inequality for

convolution of amalgams that∥∥∥∥∧f∥∥∥∥
(L∞,`2)

=
∥∥∥f̂ gn∥∥∥

(L∞,`2)
=

∥∥∥∥∧f ∗ 1
2

∧
gn

∥∥∥∥
(L∞,`2)

≤
∥∥∥∥∧f∥∥∥∥

(L2,`2)

∥∥∥ ∧gn∥∥∥
(L2,`1)

≤
∥∥∥∥∧f∥∥∥∥

2

C
√
ωn = C

√
ωn‖f‖2 = C‖f‖(L2,`1).

For a general function f in (L2, `1)(R+, ), applying the inequalities above to

Pnf := f1In yields that
∥∥∥P̂nf∥∥∥

(L∞,`2)
≤ C
√
ωn ‖Pnf‖2. Since for (p, q) = (2, 1),

formula (3.3) takes the special form ‖f‖(L2,`1) =
∑∞

n=1

√
ωα (In) ‖Pnf‖2 , it fol-

lows that

∥∥∥∥∧f∥∥∥∥
(L∞,`2)

≤ C ‖f‖(L2,`1).
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Suppose next that g ∈ L1(R+, ∗ 1
2
). Then

∧
g belongs to (L2, `∞)(R+, ∗ 1

2
) if and

only if
∧
gf ∈ L1(R+, ∗ 1

2
) for all functions f in the unit ball of (L2, `1)(R+, ∗ 1

2
). In

this case, ‖∧g‖(L2,`1) is equal to the supremum over all such functions f of the num-

bers |
∫ ∧
g(t)f(t)ω(t) dt|. But each of these integrals is equal to

∫
g(x)

∧
f(x)ω(x) dx

and so has absolute value less than or equal to

‖g‖(L1,`2)

∥∥∥∥∧f∥∥∥∥
(L∞,`2)

≤ ‖g‖(L1,`2)C‖f‖(L2,`1) = C‖g‖(L1,`2).

In other words, the Fourier transform is a bounded operator from L1(R+, ∗ 1
2
) to

(L2, `∞)(R+, ∗ 1
2
) when L1(R+, ∗ 1

2
) is viewed as a dense subspace of (L1, `2)(R+, ∗ 1

2
)

with the norm ‖ · ‖(L1,`2). Extend this operator to all of (L1, `2)(R+, ∗ 1
2
).

This includes the usual extension of the Fourier transform operator from the
intersection of the spaces L1(R+, ∗ 1

2
) and L2(R+, ∗ 1

2
) to an isometry from the

space L2(R+, ∗ 1
2
) to a dual copy of L2(R+, ∗ 1

2
). It also includes the transform

originally defined as a mapping of L1(R+, ∗ 1
2
) to L∞(R+, ∗ 1

2
) and shown above

to map the smaller space (L2, `1)(R+, ∗ 1
2
) to (L∞, `2)(R+, ∗ 1

2
). So, the Hausdorff-

Young theorem holds for amalgams in the four extreme cases where the indices
(p, q) are (1, 1), (2, 2), (2, 1) and (1, 2), and the other cases then follow by complex
interpolation.

4. Some countable non-discrete hypergroups

The positive conclusion in Wiener’s theorem also holds for non-even exponents
in the interval [1,∞) on some countable compact hypergroups Ha considered in
[5] and [14], and on the countable locally compact hypergroup H below. Here a
is a parameter in the interval (0, 1/2]. We let a = 1/2 and leave the other cases
for the reader.

4.1. Compact countable commutative hypergroups.

Example 4.1. The one-point compactification Z+ ∪ {∞} of the non-negative

integers is a compact commutative hypergroup
(
H 1

2
, ∗
)

with convolution given

by

εm ∗ εn =



∑∞
k=1

1
2k
εk+n, m = n ∈ Z+,

ε∞, m = n =∞,

εmin{m,n}, m 6= n ∈ Z+∪{∞},
so that ε∞ is the identity element. The Haar measure ω is given by ω (n) = 1

2n+1

for n <∞ and ω (∞) = 0. The characters χn are given by

χn (m) =

 0, m ≤ n− 2,
−1, m = n− 1,
1, m ≥ n
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where n ∈ Z+, and the Plancherel measure π is just

π(χn) =
1

‖χn‖22
=

{
2n−1, if n≥ 1,

1, if n= 0.
(4.1)

We observe that the set of continuous positive definite functions is given by

P
(
H 1

2

)
=

{
f : f =

∞∑
i=0

αiχi : αi ≥ 0,
∞∑
i=0

αi <∞

}
(4.2)

(indeed, in [5], equation (4.2) is the definition of P
(
H 1

2

)
). It is a consequence of

Bochner’s theorem ([2, Theorems 4.1.15 and 4.1.16]) that (4.2) holds if and only

if f ∈ Pb
(
H 1

2

)
, and this space coincides with P

(
H 1

2

)
because H 1

2
is compact.

If f is as in (4.2) then

f (n) =

(
n∑
i=0

αi

)
− αn+1 (4.3)

for n ∈ Z+ and (because of continuity)

f (∞) =
∞∑
i=0

αi. (4.4)

Remark 4.2. For f ∈ P
(
H 1

2

)
we have ‖f‖∞ = f (∞), as seen from (4.3) and

(4.4) (or from [2, Lemma 4.1.3(g)]).

4.2. Operations on P
(
H 1

2

)
. By (4.2) the function f is the inverse Fourier

transform of

i 7−→ αi/π (χi)

and the latter function (on
∧
H 1

2
) belongs to L1 (π). The set of inverse transforms of

functions in L1 (π) is called the Fourier algebra of H 1
2
, and is denoted by A

(
H 1

2

)
.

It is shown in [5] that Lipschitz functions operate on A
(
H 1

2

)
; in particular, if

f ∈ A
(
H 1

2

)
and 1 ≤ p < ∞, then |f |p ∈ A

(
H 1

2

)
as well. We prove the

corresponding statement for P
(
H 1

2

)
and apply it in Section 4.7.

Proposition 4.3. Let 1 ≤ p < ∞. Suppose that f : H 1
2
→ C is p-integrable in

a neighbourhood U of the identity e. If f is of positive type then so is |f |p. In

particular, if f ∈ P
(
H 1

2

)
then |f |p ∈ P

(
H 1

2

)
.

Proof. The p-integrability of f near e implies global p-integrability, because the
complement of U is finite. Since the Plancherel measure has full support, Remark
2.4 then reduces matters to checking that the Fourier coefficients of |f |p are non-
negative if those of f are.
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When p = 1, let r(n) = f (n)ω (n) for each n; then r ∈ `1 since f is integrable.

We claim that
∧
f ≥ 0 if and only if r is real-valued and

|r(n)| ≤ r(n+ 1) + r(n+ 2) + · · · for all n (4.5)

If these inequalities hold for f , then they also hold when all negative values r(m)
are replaced by |r(m)|, that is when f is replaced by |f |. So the case of the
proposition where p = 1 follows from our claim.

The conditions above on r are equivalent to requiring for all n that

r(n) + r(n+ 1) + r(n+ 2) + · · · ≥ 0 (4.6)

and − r(n) + r(n+ 1) + r(n+ 2) + · · · ≥ 0. (4.7)

Indeed, subtracting the two inequalities for the same value of n shows that r(n)
is real, and then inequality (4.5) follows since |r(n)| = max{r(n),−r(n)}. The
converse is obvious.

Condition (4.7) is equivalent to requiring that
∧
f(n+ 1) ≥ 0, while the 0th case

of condition (4.6) is equivalent to requiring that
∧
f(0) ≥ 0. If condition (4.7)

holds for all n, and condition (4.6) holds for some value of n, then adding the
corresponding case of condition (4.7) shows that condition (4.6) also holds for the
next value of n. So the two conditions hold of all values of n if and only if f is of
positive type.

To deal with exponents p in the interval (1,∞), consider the n-th instance of
condition (4.5) with f replaced by |f |p, that is

|f(n)|pω(n) ≤ |f(n+ 1)|pω(n+ 1) + |f(n+ 2)|pω(n+ 2) + · · · .

Let ωn(n + k) = ω(n + k)/ω(n) when k = 1, 2 · · · . The inequality above is
equivalent to requiring that

|f(n)| ≤

[
∞∑
k=1

|f(n+ k)|pωn(n+ k)

]1/p
. (4.8)

The expression on the right above is the Lp norm of the restriction of f to the
set {n + 1, n + 2, · · · } with respect to the measure ωn, which has total mass 1.
By Hölder’s inequality, that Lp norm majorizes the corresponding L1 norm. So
it is enough the prove inequality (4.8) when p = 1, and that was done in the first
part of the proof. �

4.3. A locally compact example. We now analyse a non-compact example
presented in [14]. For N > 0 the set UN defined by

UN := {N,N + 1, N + 2, · · · ,∞} (4.9)

is a proper subhypergroup of H 1
2

and is isomorphic to H 1
2
, but with a scaled Haar

measure. Define similar hypergroups UN when N ≤ 0 (U0 = H 1
2
), and let H be

the union of these nested compact hypergroups. Then H is a locally compact
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commutative hypergroup with convolution given by

εm ∗ εn =



∑∞
k=1

1
2k
εk+n, m = n ∈ Z,

ε∞, m = n =∞,

εmin{m,n}, m 6= n ∈ Z ∪ {∞},

(4.10)

so that ε∞ is the identity element, but H is not compact.
The functions χn in Example 4.1, with n now allowed to be any integer, com-

prise all the characters on H except for the character χ−∞ ≡ 1, which has
Plancherel measure 0. The first case of formula (4.1) for the Plancherel mea-
sure of χn extends to all indices n ≤ 0 (in particular we now have π (χ0) = 1

2
).

Note that H is Pontryagin since (up to the different parametrization of H∧) it
is self-dual via the mapping n→ χ−n. In fact it is straightforward to see that

χmχn =



∑∞
k=1

1
2k
χn−k, m = n ∈ Z,

χ−∞, m = n = −∞,

χmax{m,n}, m 6= n ∈ Z ∪ {−∞}.

Remark 4.4. By [2, Corollary 2.4.20(ii)], H 1
2

is also Pontryagin. In particular,

H and H 1
2

are strong hypergroups (that is, their canonical duals are also hyper-

groups). Now use Remark 2.7 to obtain

Pb(H 1
2
) · Pb(H 1

2
) ⊂ Pb(H 1

2
) and Pb(H) · Pb(H) ⊂ Pb(H),

so that all the results of Section 2 apply to both H 1
2

and H. In particular the

conclusion of Wiener’s theorem holds on H, and again on H 1
2
, for all even p ≥ 1.

In Section 4.7 we will show that the same conclusion holds on both H 1
2

and H

for all p ∈ [1,∞].

4.4. Localizing properties of functions. Functions on H are positive definite
if and only if their restrictions to each subhypergroup UN are positive definite.
The same is true for continuity of functions on H. If g ∈ Cc(K) then the convo-
lution g∗ ∗ g vanishes outside UN for some integer N . It follows that a (locally
integrable) function is of positive type on H if and only if the restriction of that
function to each UN is of positive type. Lemma 4.6 below provides a converse to
this.

It is again clear that every `1 sum of characters (including χ−∞) with non-
negative coefficients is continuous, bounded and positive definite. Conversely,
given a function f in P (H), denote its restriction to the subhypergroup UN by
f |UN

. Then f |UN
is bounded as UN is compact, and by [2, Lemma 4.1.3g],

‖f |UN
‖∞ = f |UN

(∞) = f (∞)

for all N ∈ Z. It follows that f is bounded on H, so then by Bochner’s theorem
again there exist non-negative α−∞ and αj, j ∈ Z with

∑
j αj < ∞ such that

f = α−∞χ−∞ +
∑

j αjχj, and hence ‖f‖∞ = f(∞) and P (H) = Pb(H).
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The following proposition is a corollary of Proposition 4.3, using localization
and the lines after (4.9), and will prove useful in Section 4.7.

Proposition 4.5. Let 1 ≤ p < ∞. Suppose that f : H → C is p-integrable in a
neighbourhood of the identity. If f is of positive type then so is |f |p. In particular,
if f ∈ P (H) then |f |p ∈ P (H).

Lemma 4.6. Extend a function of positive type on the hypergroup UN to all of
H by making it vanish outside UN . That extension is of positive type on H. In
particular, the extension by zero of a function in P (UN) is in P (H).

Proof. Denote the original function by fN and its extension by f . Since fN is
locally integrable and UN is compact, fN ∈ L1(UN) and f ∈ L1(H).

To apply Remark 2.4, let χ be a character on H. Then its restriction χ|UN
to

UN is a character on UN , and
∧
f(χ) =

∧
fN(χ|UN

). Since every character on UN has

positive Plancherel measure,
∧
fN(χ|UN

) ≥ 0, and
∧
f(χ) is nonnegative too. �

4.5. Discrete amalgam norms. We used the amalgam norm

‖f‖p,∞ = sup
n

(
1

ωα (In)

∫ n

n−1
|f |p dωα

) 1
p

to state Theorem 3.6 for Bessel-Kingman hypergroups. Consider the correspond-
ing norm on H. Given the division by the mass ωα(In) here, the integral above
should run over the interval In. In H that coincides with the set {n − 1}, with
the curious outcome that

‖f‖p,∞ = sup
n
|f(n− 1)| = sup

n
|f(n)| = ‖f‖∞ (4.11)

no matter what p is.
When p <∞, there are compactly supported functions in Lp(H) that tend to

∞ at ∞. Any such function f has the property that

sup
n

(∫
|f |p τn1U dω

) 1
p

<∞ (4.12)

for each compact neighbourhood U of ∞ even though ‖f‖p,∞ =∞. So the norm
‖ · ‖p,∞ is not equivalent to the one given in (4.12). We show below that the
modified norm

‖f‖∗p,∞ = max
{∥∥f1H\U0

∥∥
p,∞ , ‖f1U0‖p

}
, (4.13)

where U0 can be replaced by any compact neighbourhood of ∞, is equivalent to
the norm in (4.12).

Different choices of U in (4.12) give norms that are equivalent to each other,
by the argument just after Corollary 2.15. Similar reasoning applies to (4.13),
and it suffices to prove the equivalence between the latter and the norm in (4.12)
when U = U0. Split the calculation of the supremum in (4.12) into two cases cor-
responding to different instances of (4.10). For n < 0 we have τn1U0 = 2n+11{n},
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so that (∫
|f |p τn1U0 dω

) 1
p

= |f (n)| .

For n ≥ 0 we obtain τn1U0 = 1U0 , and this gives(∫
|f |p τn1U0 dω

) 1
p

= ‖f1U0‖p .

By formula (4.11), the norms in (4.12) and (4.13) coincide when U = U0.
When 1 ≤ q <∞, let

‖f‖∗p,q =
{∥∥f1H\U0

∥∥q
p,q

+ ‖f1U0‖
q
p

}1/q

(4.14)

where ∥∥f1H\U0

∥∥
p,q
≡

{∑
n<0

ω({n})|f(n)|q
}1/q

actually doesn’t depend on p. Whenever 1 ≤ p, q ≤ ∞, denote the space of
functions f on H for which ‖f‖∗p,q <∞ by (Lp, `q)(H).

On H, the structure of these spaces is simpler than it is on the real line or on
the Bessel-Kingman hypergroups. A function belongs to (Lp, `q)(H) if and only
if its restriction to the set U0 belongs to Lp and its restriction to the complement
of U0 belongs to Lq.

Since ω(U0) = 1, the restriction to U0 then belongs to Lr for all r ≤ p. Since
each point in the complement of U0 has mass at least 1, the restriction to the
complement then belongs to Lr for all r ≥ q. Extend those restrictions by 0 to
see that (Lp, `q)(H) contains the same functions as Lp(H) + Lq(H) when p ≤ q,
and the same functions as Lp(H) ∩ Lq(H) when p ≥ q.

4.6. Fourier transforms. The norms ‖ · ‖∗p,q have good properties relative to

Fourier transforms (see below). Define ‖ · ‖p,q on
∧
H as for H just by replacing ω

by π. Let

U⊥0 ≡
{
n ∈

∧
H : n ≤ 0

}
and use U⊥0 and its complement in

∧
H to define ‖ · ‖∗p,q as in equations (4.13) and

(4.14). We have the following counterpart of Theorem 3.6.

Theorem 4.7. The following statements are equivalent for a (locally integrable)
function f of positive type on the hypergroup H:

(1) f is square integrable in a neighbourhood of the identity;

(2) f is the (inverse) transform of a function in the space (L1, `2) (
∧
H);

(3) f ∈ (L2, `∞) (H) .
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Proof. Again this follows if the Fourier transform extends from L1(H) ∩ L2(H)
to have appropriate mapping properties between suitable amalgam spaces, that
is,

if ‖f‖∗p,q <∞, where 1 ≤ p, q ≤ 2, then

∥∥∥∥∧f∥∥∥∥∗
q′,p′

<∞.

By the observations at the end of Section 4.5, this is equivalent to checking, when

1 ≤ p, q ≤ 2, that if f ∈ Lp(H) + Lq(H) then
∧
f ∈ Lq′

(
∧
H

)
+ Lp

′
(
∧
H

)
, and the

same for Lp(H)∩Lq(H) and Lq
′
(
∧
H

)
∩Lp′

(
∧
H

)
. Both parts follow immediately

from the Hausdorff-Young theorem [4] for hypergroups. �

Remark 4.8. In fact,

∥∥∥∥∧f∥∥∥∥∗
q′,p′
≤ ‖f‖∗p,q in all these cases. Complex interpolation

again reduces matters to proving this in the extreme cases where (p, q) is one of
(1, 1), (2, 2), (1, 2) and (2, 1). The first two cases are true because∥∥∥∥∧f∥∥∥∥

∞
≤ ‖f‖1 and

∥∥∥∥∧f∥∥∥∥
2

= ‖f‖2.

The corresponding estimates in the other two extreme cases follow from each
other by duality as in Section 3.7.

We elect to confirm the case where (p, q) = (2, 1) and (q′, p′) = (∞, 2). Split f
as f1 + f2, where f2 = f1U0 and f1 vanishes on U0. Since ‖f‖∗2,1 = ‖f1‖1 + ‖f2‖2,

it suffices to show that

∥∥∥∥ ∧f1∥∥∥∥∗
∞,2
≤ ‖f1‖1 and

∥∥∥∥ ∧f2∥∥∥∥∗
∞,2
≤ ‖f2‖2.

Note that
∧
f1(n) = 0 for all n > 0, since the support of f1 is disjoint from that

of χn when n > 0. So

∥∥∥∥ ∧f1∥∥∥∥∗
∞,2

simplifies to become

∥∥∥∥ ∧f11U⊥0
∥∥∥∥
∞

, and

∥∥∥∥ ∧f1∥∥∥∥∗
∞,2
≤
∥∥∥∥ ∧f1∥∥∥∥

∞
≤ ‖f1‖1 as required.

Note also that the characters χn with n ≤ 0 are all equal to 1 on the set U0, making
∧
f2 constant on the set U⊥0 . Then

∥∥∥∥ ∧f21U⊥0
∥∥∥∥
∞

=

∥∥∥∥ ∧f21U⊥0
∥∥∥∥
2

since π
(
U⊥0
)

= 1. So

∥∥∥∥ ∧f2∥∥∥∥∗
∞,2

=

{(∥∥∥∥ ∧f21U⊥0
∥∥∥∥
∞

)2

+
∑
n>0

π({n})
∣∣∣∣ ∧f2(n)

∣∣∣∣2
} 1

2

=

{(∥∥∥∥ ∧f21U⊥0
∥∥∥∥
2

)2

+
∑
n>0

π({n})
∣∣∣∣ ∧f2(n)

∣∣∣∣2
} 1

2

=

∥∥∥∥ ∧f2∥∥∥∥
2

= ‖f2‖2 as required.
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4.7. Wiener’s theorem for all exponents. We will show that versions of
Wiener’s theorem hold on H for all exponents in the interval [1,∞], but we
first note that Lemma 2.5 can be sharpened in the case of this hypergroup:

Remark 4.9. For U = UN we may choose the neighbourhood V in the proof of
Lemma 2.5 to be UN as well. Instead of inequality (2.4) we obtain

h := 1∼V ∗ 1V = ω(UN)1UN
.

The next step in that proof then works with the singleton x1 = {e}, the parameter
λ1 = 1/ω(UN) and the measure ν = λ1εe. The long chain of equalities and
inequalities there ends with the quantity ‖ν‖

∫
hg dωK . For the special choice of

h above, this is

‖ν‖
{
ω(UN)

∫
UN

g dωK

}
which gives the conclusion of Lemma 2.5 with

CUN
= ‖ν‖ω(UN) = 1.

It follows that Corollary 2.6 holds with CU = 1 when U = UN . Since the
proof of that corollary only requires that |f |p ∈ Pb(K), Proposition 4.5 yields
the conclusion of the corollary for all exponents p in the interval [1,∞), again
with CU = 1 if U = UN for some N . The proof of Corollary 2.8 shows, for such
exponents p, that if inequality (2.5) holds for all functions f in Pb(K), then the
inequality holds with the same constant CU for all integrable functions f that are
of positive type.

Theorem 4.10. Let p ∈ [1,∞] and f be a function of positive type on H. Then

‖f‖∗p,∞ = ‖f‖p,∞,U0 = ‖f1U0‖p . (4.15)

For a general relatively compact neighbourhood U of the identity there are con-
stants CU and C ′U (independent of p) such that

‖f‖p,∞,U ≤ CU ‖f1U‖p and ‖f‖∗p,∞ ≤ C ′U ‖f1U‖p (4.16)

for all (locally integrable) functions f of positive type.

Corollary 4.11. Let p ∈ [1,∞]. For every relatively compact neighbourhood U
of the identity in H and every compact subset V of H there is a constant CU,V
(independent of p) such that

‖f1V ‖p ≤ CU,V ‖f1U‖p
for all (locally integrable) functions f of positive type.

Corollary 4.12. Let p ∈ [1,∞]. For every neighbourhood U of the identity in
the compact hypergroup H 1

2
there is a constant CU (independent of p) such that

‖f‖p ≤ CU ‖f1U‖p
for all functions f of positive type.
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Proofs. As in Corollary 2.13, the cases where p = ∞ follow from those where
p < ∞. In the latter cases, there is nothing to prove unless ‖f1U‖p < ∞.
Restricting f to various subhypergroups UN and extending those restrictions by
0 then reduces matters to cases where f has compact support and is therefore
p-integrable, hence integrable.

The first equality in (4.15) was shown, when 1 ≤ p <∞, in the lines following
(4.13). For the second equality, it is clear from the definition of ‖f‖p,∞,U0 that it
is no smaller than ‖f1U0‖p. The opposite inequality ‖f‖p,∞,U0 ≤ ‖f1U0‖p holds
because of the discussion after Remark 4.9. The same discussion yields the first
inequality in line (4.16). The second inequality then follows by the equivalence
of the norms ‖ · ‖p,∞,U and ‖ · ‖∗p,∞. This completes the proof of Theorem 4.10.

For Corollary 4.11, use the chain of inequalities

‖f1V ‖p ≤ ‖f‖p,∞,V ≤ C ′U,V ‖f‖p,∞,U ≤ C ′U,VCU ‖f1U‖p ,

where the first step uses the definition of ‖ · ‖p,∞,V , the second step uses the
equivalence of that norm with ‖ · ‖p,∞,U and the last step uses the first inequality
in (4.16). Corollary 4.12 follows because extending f by 0 gives a function of
positive type on H. �

Remark 4.13. The first inequality in (4.16) provides an upper bound for ‖f‖p,∞,U
in terms of ‖f1U‖p. When p < ∞, there is no such general bound for ‖f‖p.
Indeed, since

∑∞
n=−∞ ω(n) =∞, the constant function 1 trivially belongs to the

set P (H) but to none of the spaces Lp(H) with 0 < p <∞.
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