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Abstract. In this paper, by introducing the class of quasi hereditarily nor-
maloid polaroid operators, we obtain a theoretical and general framework from
which Weyl type theorems may be promptly established for many of these
classes of operators. This framework also entails Weyl type theorems for per-
turbations f(T + A), where A is algebraic and commutes with T, and f is an
analytic function, defined on an open neighborhood of the spectrum of T +A,
such that f is non constant on each of the components of its domain.

1. introduction

Let X (or H ) be a complex Banach (Hilbert, respectively) space and B(X )
(or B(H )) be the set of all bounded linear operators on X (H , respectively).
A part of an operator is its restriction to an invariant subspace. An operator
T ∈ B(H ) is hereditarily normaloid, denoted T ∈ HN , if every part of T is nor-
maloid. An operator T ∈ B(X ) is polaroid if the isolated points of the spectrum
of T are poles of the resolvent of T . An operator T ∈ B(H ) is hereditarily po-
laroid, denoted T ∈ HP , if every part of T is normaloid. Class HNP denote the
class of operators T ∈ B(H ) such that T ∈ HP∩HN . An operator T ∈ B(H )
is totally hereditarily normaloid, denoted T ∈ T HN , if every part of T , and (also)
invertible part of T , is normaloid. The class T HN is large: it contains a number
of the often considered classes of Hilbert space operators. The class T HN is
introduced in [12] by Duggal and Djordjevic. Evidently, (T HN ) ⊂ (HNP). In
[2], Aiena et.,al investigated Quasi− T HN operators. An operator T ∈ B(X ),
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X a Banach Space, is said to be k-Quasi totally hereditarily normaloid, k is
a nonnegative integer, if the restriction T | T k(X ) is T HN . Class T HN=⇒
Quasi− T HN [2].

If the range T (X ) of T ∈ B(X ) is closed and α(T )=dim(T−1(0)) < ∞
(resp., β(T )=dim(X \ T (X ) <∞) then T is upper semi-Fredholm (resp., lower
semi- Fredholm) operator. Let SF+(X ) (resp.,SF−(X )) denote the semigroup of
upper semi Fredholm (resp., lower semi Fredholm) operator on X . An operator
T ∈ B(H ) is said to be semi-Fredholm, T ∈ SF , if T ∈ SF+(X )∪SF−(X ) and
Fredholm if T ∈ SF+(X )∩SF−(X ). If T is semi-Fredholm then the index of T
is defined by ind(T ) = α(T ) − β(T ). The classes of upper semi-Weyl operators
W+(X ) and lower semi-Weyl operators W−(X ) are defined by

W+(X ) = {T ∈ B(X ) : T is upper semi Fredholm and ind(T ) ≤ 0},

W−(X ) = {T ∈ B(X ) : T is lower semi Fredholm and ind(T ) ≥ 0}.
Recall that the ascent of an operator T ∈ B(X ) is the smallest non negative
integer p := p(T ) such that T−p(0) = T−(p+1)(0). If such p does not exist, then
p(T ) = ∞. The descent of T is defined as the smallest non negative integer
q := q(T ) such that T q(X ) = T q+1(X ). If no such q exist, then q(T ) = ∞ . It
is well known that if p and q are both finite then they are equal [1, Theorem 3.3].

A bounded linear operator T acting on a Banach space X is Weyl, T ∈ W , if
T ∈ W+(X )∩W−(X ) and Browder, T ∈ B(X ), if T is Fredholm of finite ascent
and descent. Let C denote the set of complex numbers and let σ(T ) denote the
spectrum of T . The Wolf spectrum σSF (T ), Weyl spectrum σw(T ) and Browder
spectrum σb(T ) of T are defined by

σSF (T ) = {λ ∈ C : T − λ /∈ SF},

σw(T ) = {λ ∈ C : T − λ /∈ W}
and

σb(T ) = {λ ∈ C : T − λ /∈ B}.
Let E0(T ) = {λ ∈ isoσ(T ) : 0 < (T − λ) < ∞} and σ0(T ) denote the set
of all normal eigenvalues (Riesz points) of T . According to Coburn [9], Weyl’s
theorem holds for T if σ(T ) \ σw(T ) = E0(T ) and Browder’s theorem holds for T
if σ(T ) \ σw(T ) = σ0(T ).

Let SF−+ (X ) = {T ∈ SF+ : ind (T) ≤ 0}. The upper semi Weyl spectrum is
defined by σSF−

+
(T ) = {λ ∈ C : T −λ /∈ SF−+ (X )}. According to Rakočević [17],

an operator T ∈ B(X ) is said to satisfy a-Weyl’s theorem if σa(T ) \ σSF−
+

(T ) =

E0
a(T ), where

E0
a(T ) = {λ ∈ isoσa(T) : 0 < α(T− λI) <∞}.

It is known [17] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s the-
orem, but the converse does not hold in general.

An operator T ∈ B(X ) is called B-Fredholm, T ∈ BF , if there exist a natural
number n, for which the induced operator Tn = T | T n(X ), T0 = T is Fredholm
in the usual sense [7]. The class of B-Weyl operator T ∈ B(X ) is defined by
BW = {T ∈ BF : ind(Tn) = 0}. The B-Weyl spectrum σBW (T ) is defined by
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σBW (T ) = {λ ∈ C : T − λ /∈ BW} [7]. As a stronger version of Weyl’s theorem,
generalized Weyl’s theorem was introduced by Berkani [8]. Let E(T ) is the set of
all eigenvalues of T which are isolated in σ(T ). We say that T satisfies generalized
Weyl’s theorem if σBW (T ) = σ(T ) \ E(T ).

Following [7], we say that T satisfies generalized Browders’s theorem, if σ(T ) \
σBW (T ) = π(T ), where π(T ) is the set of poles of T.

Let SBF−+ (X ) denote the class of all is upper B-Fredholm operators such that
ind (T) ≤ 0. The upper B-Weyl spectrum σSBF−

+
(T ) of T is defined by

σSBF−
+

(T ) = {λ ∈ C : T − λ /∈ SBF−+ (X )}.
Following [5], we say that generalized a-Weyl’s theorem holds for T ∈ B(X ) if

∆g
a(S) = σa(T ) \ σSBF−

+
(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λ) >

0} is the set of all eigenvalues of T which are isolated in σa(T ) and that T ∈ B(X )
obeys generalized a-Browder’s theorem if ∆g

a(T ) = πa(T ). It is proved in [4,
Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s
theorem, and it is known from [5, Theorem 3.11] that an operator satisfying gen-
eralized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse does not
hold in general and under the assumption Ea(T ) = πa(T ) it is proved in [6, The-
orem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s theorem.

Weyl type theorems have been studied in the last two decades by several au-
thors and most of them have essentially proved that such theorems hold for
special classes of operators. Many times the arguments used, to prove Weyl type
theorems for each one of these classes of operators, are rather similar. In this
paper we show that it is possible to bring back up these theorems from some gen-
eral common ideas. Actually, we determine a very useful and unique theoretical
framework, from which we can deduce that Weyl type theorems hold for all these
classes of operators. This framework is created by introducing the class of quasi
hereditarily normaloid polaroid operators and by proving that these operators are
hereditarily polaroid. Many classes of operators T on Hilbert spaces are quasi
hereditarily normaloid polaroid, and this fact, together with SVEP, permits to
us to extend all Weyl type theorems to the perturbations f(T + A), where A is
algebraic and commutes with T, f is an analytic function, defined on an open
neighborhood of the spectrum of T +A, such that f is nonconstant on each of the
components of its domain. Consequently, our results subsume and extend many
results existing in literature.

2. Hereditarily Normaloid Polaroid Operators

A bounded operator T ∈ B(X ) is said to be polaroid if every isolated point
of the spectrum σ(T ) is a pole of the resolvent. An operator T ∈ B(X ) is said
to be hereditarily polaroid, i.e. any restriction to an invariant closed subspace
is polaroid. An example of polaroid operator which is not hereditarily polaroid
may be found in [11, Example 2.6]. An operator T ∈ B(X ) is said to be
normaloid if ‖T‖ = r(T ), r(T ) the spectral radius of T. An operator T ∈ B(X )
is said to be hereditarily normaloid, T ∈ HN , if the restriction T |M of T , to
any closed T -invariant subspace M , is normaloid. An operator T ∈ B(X ) is
said to be totally hereditarily normaloid, T ∈ T HN , if T ∈ HN and every
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invertible restriction T |M has a normaloid inverse. Totally hereditarily operators
were introduced in [12]. Finally, T ∈ B(X ) is said to be hereditarily normaloid
polaroid, T ∈ HNP , if T ∈ HP ∩HN .

Two important subspaces in local spectral theory and Fredholm theory are
defined in the sequel. The quasi-nilpotent part of an operator T ∈ B(X ) is the
set

H0(T ) = {x ∈ X : lim
n−→∞

‖T nx‖
1
n = 0}.

Clearly, kerT n ⊆ H0(T ) for every n ∈ N. If T ∈ B(X), the analytic core K(T )
is the set of all x ∈ X such that there exists a constant c > 0 and a sequence
of elements xn ∈ X such that x0 = x, Txn = xn−1, and ‖xn‖ ≤ cn ‖x‖ for
all n ∈ N. It is known that T ∈ B(X ) is polaroid if and only if there exists
p := p(λ− T ) ∈ N such that

H0(λ− T ) = ker(λ− T )p for all λ ∈ isoσ(T ), (2.1)

where isoσ(T ) denotes the set of all isolated points of σ(T ). A very important class
of hereditarily polaroid operators is the class of H(p) operators, where T ∈ B(X )
is said to belong to the class H(p) if there exists a natural p := p(λ) such that:

H0(λI − T ) = ker(λI − T )p for all λ ∈ C
The class H(p) has been introduced by Oudghiri in [16]. Property H(p) is satis-
fied by every generalized scalar operator, and in particular for p-hyponormal, log-
hyponormal or M -hyponormal operators on Hilbert spaces, see [16]. Therefore,
algebraically p-hyponormal or algebraically w-hyponormal operators are H(p),
see [18]. we know that every operator T which belongs to the class H(p) has
SVEP. Moreover, from (2.1) it follows that every H(p) operator T is polaroid.
The restriction to closed invariant subspaces of any H(p) operator is also H(p),
see [16], so every H(p) is hereditarily polaroid.

We start below by listing some examples of HNP operators.

Example 2.1. T ∈ B(X ) is completely hereditarily normaloid, T ∈ CHN ,
if either T ∈ HNP or T − λ is normaloid for every λ ∈ C. CHN operators
are simply hereditarily polaroid, i.e., the poles of every part of the operator are
simple (or order one) [11, Proposition 2.1]. In particular, paranormal operators
(i.e., operators T ∈ B(X ) such that ‖T 2x‖ ≥ ‖Tx‖2 for every unit vector x ∈X
are HNP operators.

Example 2.2. T ∈ B(H ) is a 2-isometry (or, a 2-isometric operator) if T ∗2T 2−
2T ∗T + I = 0. Every 2-isometric operator is left invertible; if T is not invertible,
then σ(T ) is the closed unit disc (isoσ(T ) = ∅), and if T is invertible, then it is
a unitary [1]. Evidently, the restriction of a 2-isometry to an invariant subspace
is a 2-isometry. Hence, 2-isometric operators are HNP operators.

Example 2.3. An operator T ∈ B(X ) is polynomially HP if there exists a
non-trivial polynomial g such that g(T ) ∈ HN . Polynomially HP operators are
HP , as the following argument shows. Let A = T |M, where M is an invariant
subspace of T ; let A0 = A|H0(A − λ) and A1 = A|K(A − λ). If λ ∈ isoσ(A),
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then M = H0(A− λ)⊕K(A− λ), σ(A0) = {λ} and A1 is invertible. Evidently,
σ(g(A0)) and (since g(A) is polaroid) there exists a positive integer n such that
H0(g(A) − g(λ)) = ker(g(A) − g(λ))n if and only if g(A) − g(λ)n = 0. Letting

g(A)−g(λ)n = c0(A0−λ)t
s∏
i=1

(A0 − λi) for some scalars c0 and λi (1 ≤ i ≤ s), and

positive integers s and t , it follows that (A0−λ)t = 0 then H0(A0−λ) = ker(A−
λ)t. Hence M = ker(A− λ)t ⊕K(A− λ) and so, M = ker(A− λ)t ⊕ (A− λ)tM
i.e., λ is a pole of the resolvent of A.

We define k-Quasi HNP Operators as follows.

Definition 2.4. An operator T ∈ B(H ) is said to be k-Quasi HNP , k a

nonnegative integer, if the restriction T | T k(H ) is HNP .

Clearly,

HNP ⊂ k−Quasi−HNP and k−Quasi−T HN ⊂ k−Quasi−HNP .

Remark 2.5. It is rather simple to see that if T ∈ B(X ) is HNP and M is a
T -invariant closed subspace of X then the restriction T |M is also HNP .

Theorem 2.6. Let T ∈ B(X ) is Quasi HNP operator and M be an invariant
subspace of T . Then the restriction T | M is Quasi HNP

Proof. Let k a nonnegative integer such that Tk := T |Tk(X ) is HNP . Let TM
denote the restriction T |M. Clearly, T kM(M) ⊂ T k(X ) , so T kM(M) is Tk-invariant

subspace of T k(X ). By Remark 2.5 it then follows that TM |T kM(M) = Tk|T kM(M)
is HNP . �

We recall now some elementary algebraic facts. Suppose that T ∈ B(X ) and
X = M ⊕N , with M and N closed subspace of X , M invariant under T. With
respect to this decomposition of X it is known that T may be represented by

a upper triangular operator matrix

(
A B
0 C

)
, where A ∈ B(M), C ∈ B(N)

and B ∈ B(M,N). It is easily seen that for every x =

(
x
0

)
∈ M we have

Tx = Ax, so A = T |M. Let us consider now the case of operators T acting on a
Hilbert space H , and suppose that T k(H ) is not dense in H . In this case we
can consider the nontrivial orthogonal decomposition

H = T k(H )⊕ T k(H )
⊥
, (2.2)

where T k(H )
⊥

= ker(T ∗)k, T ∗ the adjoint of T . Note that the subspace T k(H )
is T -invariant, since

T (T k(H )) ⊆ T (T k(H ) = T k+1(H ) ⊆ T k(H ).

Thus we can represent, with respect the decomposition (2.2), T as an upper
triangular operator matrix

T =

(
T1 T2
0 T3

)
,
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where T1 = T |T k(H ). Moreover, T3 is nilpotent. Indeed, if x ∈ T k(H )
⊥

, an

easy computation yields T kx =

(
T1 T2
0 T3

)k (
0
x

)
= T k3 x. Hence T k3 x = 0, since

T kx ∈ T k(H ) ∪ T k(H )
⊥

= {0}. Therefore we have:

Theorem 2.7. Suppose that T ∈ B(H ) and T k(H ) non dense in H . Then,

according the decomposition (2.2),T =

(
T1 T2
0 T3

)
is quasi-HNP if and only if

T1 is HNP. Furthermore,

σ(T ) = σ(T1) ∪ σ(T3) = σ(T1) ∪ {0}.

Proof. The first assertion is clear, since T1 = T | T k(H ). The second assertion

follows from the following general result: if T :=

(
A B
0 C

)
is an upper triangular

operator matrix acting on some direct sum of Banach spaces and σ(A) ∩ σ(C)
has no interior points, then σ(T ) = σ(A) ∪ σ(C); see [14]. �

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an open
neighborhood of σ(T ), such that f is non constant on each of the components
of its domain. Define, by the classical functional calculus, f(T ) for every f ∈
Hnc(σ(T )).
The following result has been proved in [3, Theorem 2.4].

Theorem 2.8. For an operator T ∈ B(X ) the following statements are equiva-
lent:

(i) T is polaroid;
(ii) there exists f ∈ Hnc(σ(T )) such that f(T ) is polaroid;
(iii) f(T ) is polaroid for every f ∈ Hnc(σ(T )).

An operator T ∈ B(X ) is said to have the single valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0), if for every open neighborhood U of λ0, the
only analytic function f : U −→X which satisfies the equation (λ−T )f(λ) = 0
for all λ ∈ U is the function f ≡ 0. The operator T is said to have SVEP if it has
SVEP at every λ ∈ C. It follows from the identity theorem for analytic functions
that T has SVEP at every point of the boundary of the spectrum. In particular,
T and its dual T ∗ have SVEP at every isolated point of σ(T ).

Theorem 2.9. Let T ∈ B(X ) is k-Quasi HNP operator. Then T satisfies
SVEP.

Proof. Suppose T ∈ B(X ) be a k-Quasi-HNP operator. If T k(X ) is dense, T
is HNP , so T has Bishop’s property (β). Suppose that T k(X ) is not dense and

write T as matrix representation on X = T k(X )⊕ T k(X )
⊥

,

T =

(
T1 T2
0 T3

)
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. where T1 = T
overlinemidT k(X ) is HNP and T3 is nilpotent. Since HNP satisfies SVEP,
from [2, theorem 4.3], T has SVEP. �

An operator T ∈ B(H ) is algebraically Quasi-HNP operator if there exist a
non-constant complex polynomial p such that p(T ) ∈ Quasi−HNP

Lemma 2.10. Let T ∈ B(H ) be an algebraically Quasi-HNP operator and
σ(T ) = {µ}. Then T − µI is nilpotent.

Proof. Suppose that T ∈ B(H ) be an algebraically Quasi-HNP operator. Then
p(T) is of Quasi-HNP for some non constant polynomial p . If σ(T ) = {λ}, then
σ{p(T )} = p(λ) and so p(T ) = p(λ)I . Let

p(T )− p(λ0) = c(T − λ0)k0(T − λ1)k1(T − λ2)k1 .....(T − λn)kn

where λi 6= λj for i 6= j. Then

0 = p(T )− p(λ0)
m = cm(T − λ0)mk0(T − λ1)mk1(T − λ2)mk2 .....(T − λn)mkn

we must have (T − λ0)mk0 = 0. �

Theorem 2.11. If T ∈ B(X ) is an analytically quasi-HNP operator, then T
is polaroid.

Proof. We show that for every isolated point λ of σ(T ) we have p(λ − T ) =
q(λ− T ) <∞. Let λ be an isolated point of σ(T ), and denote by Pλ denote the
spectral projection associated with {λ}. Then M := K(λ−T ) = kerPλ and N :=
H0(λ−T ) = Pλ(X ), see [1, Theorem 3.74]. Therefore, H = H0(λ−T )⊕K(λ−T ).
Furthermore, since σ(T |N) = {λ}, while σ(T |M) = σ(T ) \{λ}, so the restriction
λ−T |N is quasi-nilpotent and λ−T |N is invertible. Since λ−T |N is analytically
quasi T HN , then Lemma 2.10 implies that λ−T |N is nilpotent. In other words,
λ− T |N is an operator of Kato Type.
Now, both T and the dual T ∗ have SVEP at λ, since λ is isolated in σ(T ) = σ(T ∗),
and this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both p(λ − T )
and q(λ− T ) are finite. Therefore, λ is a pole of the resolvent. �

Let C be any class of operators. We say that T is an analytically C-operator if
there exists some analytic function f ∈ Hnc(σ(T )) such that f(T ) ∈ C.

Recall that an invertible operator T ∈ B(X ) is said to be doubly power-
bounded if sup{‖T n‖ : n ∈ Z} <∞.

Theorem 2.12. Suppose that T ∈ B(X ) is quasi-nilpotent. If T is an analyti-
cally HNP operator, then T is nilpotent.

Proof. Let T ∈ B(X ) and suppose that f(T ) is a HNP-operator for some
f ∈ Hnc(σ(T )). From the spectral mapping theorem we have

σ(f(T )) = f(σ(T )) = {f(0)}.
We claim that f(T ) = f(0)I. To see this, let us consider the two possibilities:
f(0) = 0 or f(0) 6= 0.
If f(0) = 0 then f(T ) is quasi-nilpotent and f(T ) is normaloid, and hence f(T ) =
0. The equality f(T ) = f(0)I then trivially holds.
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Suppose the other case f(0) 6= 0, and set f1(T ) := 1
f(0)

f(T ). Clearly,σ(f1(T )) =

{1} and ‖f1(T )‖ = 1. Further, f1(T ) is invertible and is HNP . This easily
implies that its inverse f1(T )−1 has norm 1. The operator f1(T ) is then doubly
power-bounded and, by a classical theorem due to Gelfand, it then follows that
f1(T ) = I, and consequently f(T ) = f(0)I, as claimed.

Now, let g(λ) := f(0)− f(λ). Clearly, g(0) = 0 , and g may have only a finite
number of zeros in σ(T ). Let {0, λ1, · · · , λn} be the set of all zeros of g, where
λi 6= λj , for all i 6= j, and λi has multiplicity ni ∈ N. We have

g(λ) = µλn
n∏
i=1

(λiI − T )nih(λ),

where h(λ) has no zeros in σ(T ). From the equality g(T ) = f(0)I − f(T ) = 0 it
then follows that

0 = g(T ) = µT n
n∏
i=1

(λiI − T )nih(λ) with λi 6= 0,

where all the operators λiI − T and h(T ) are invertible. This, obviously, implies
that Tm = 0, i.e. T is nilpotent. �

Theorem 2.13. Suppose that T ∈ B(H ), is analytically k-quasi-HNP and
quasi-nilpotent. Then T is nilpotent.

Proof. Suppose first that T is quasi-nilpotent and k-quasi-HNP . If T k(H ) is
dense then T is HNP , so T is nilpotent by Theorem 2.12. Suppose that T k(H)

is not dense and write T =

(
T1 T2
0 T3

)
, where T1 is HNP , T k3 = 0, and σ(T ) =

σ(T1) ∪ {0}. Since σ(T ) = {0} and σ(T1) is not empty, we then have σ(T1) =
{0}, thus T1 is a quasi-nilpotent HNP operator and hence T1 = 0. Therefore

T =

(
0 T2
0 T3

)
. An easy computation yields that

T k+1 =

(
0 T2
0 T3

)k+1

=

(
0 T2T

k
3

0 T k+1
3

)
= 0,

so that T is nilpotent.
Finally, suppose that T is quasi-nilpotent and analytically k-quasi HNP . Let

h ∈ Hnc(σ(T )) be such that h(T ) is quasi-HNP . We claim that h(T ) is nilpotent.
If h(T )k has dense range then h(T ) is HNP and hence, by Theorem 2.12, h(T )
is nilpotent. Suppose that h(T )k has not dense range. Then with respect the de-

composition X = h(T )k(H )⊕h(T )k(H )
⊥

, the operator h(T ) has a triangulation

h(T ) =

(
A B
0 C

)
, such that A = h(T )|h(T )k(H ) is HNP and

σ(h(T )) = σ(A) ∪ {0},

By the spectral mapping theorem we have σ(h(T )) = h(σ(T )) = {h(0)}. Conse-
quently, 0 ∈ {h(0)}, i.e. h(0) = 0, and therefore h(T ) is quasi-nilpotent. Since
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h(T ) is quasi-HNP , by the first part of proof it then follows that h(T ) is nilpo-
tent. Now, h(0) = 0 so we can write

h(λ) = µλn
n∏
i=1

(λiI − T )nig(λ),

where g(λ) has no zeros in σ(T ) and λi 6= 0 are the other zeros of g with multi-
plicity ni. Hence

h(T ) = µT n
n∏
i=1

(λiI − T )nig(T ),

where all λiI − T and g(T ) are invertible. Since h(T ) is nilpotent then also T is
nilpotent. �

Theorem 2.14. If T ∈ B(H ) is analytically quasi HNP, then T is hereditarily
polaroid.

Proof. Let f ∈ Hnc(σ(T )) such that f(T ) is quasi-HNP . If M is a closed T -
invariant subspace of X, we know that f(T )|M is quasi-HNP , by Theorem 2.6,
and f(T )|M = f(T |M), so f(T |M) is polaroid, by Theorem 2.11, and conse-
quently, T |M is polaroid, by Theorem 2.8. �

Upper triangular operator matrices have been studied by many authors, see
for instance [14]. In the sequel we give some examples of operators which are
quasi-hereditarily normaloid polaroid.

Example 2.15. The class of quasi-paranormal operators may be extended as
follows: T ∈ B(H ) is said to be (n, k)-quasiparanormal if∥∥T k+1x

∥∥ ≤ ∥∥T n+1(T kx)
∥∥ 1

n+1
∥∥T kx∥∥ n

n+1 for all x ∈H .

The class of (1, k)-quasiparanormal operators has been studied in [15]. If T k(H )

is not dense then, in the triangulation T =

(
T1 T2
0 T3

)
, T1 = T |T k(H ) is n-

quasiparanormal, and hence HNP , see [21].

Example 2.16. An extension of class A operators is given by the class of all
k-quasiclass A operators, where T ∈ B(H ), H a separable infinite dimensional
Hilbert space, is said to be a k-quasiclass A operator if

T ∗k(|T 2| − |T |2)T k ≥ 0.

Every k-quasiclass A operator is quasi-HNP . Indeed, if T has dense range then T
is a class A operator and hence paranormal. If T does not have dense range then
T with respect the decomposition H = ker(T ∗k) ⊕ T k(H ) may be represented

as a matrix T =

(
T1 T2
0 T3

)
, T1 = T |T k(H ) is a class A operator, and hence

HNP , see [19]. As it has been observed in [10, Example 0.2], a quasi-class A
operator (i.e. k = 1), need not to be normaloid. This shows that, in general,
a quasi-HNP operator is not normaloid, so the class of quasi-HNP operators
properly contains the class of HNP operators.
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Example 2.17. An operator T ∈ B(H ), H a separable infinite dimensional
Hilbert space, is said to be k-quasi ∗-paranormal, k ∈ N, if∥∥T ∗T kx∥∥2 ≤ ∥∥T k+2x

∥∥∥∥T kx∥∥ for all unit vectorsx ∈H .

This class of operators contains the class of all quasi-∗-paranormal operators
(which corresponds to the value k = 1). Every k-quasi-∗-paranormal operator is
quasi-HNP . Indeed, if T k has dense range then T is ∗-paranormal and hence
HNP . If T k does not have dense range then T , may be decomposed, according
the decomposition H = ker(T ∗k)⊕ T k(H ) may be represented as a matrix T =(
T1 T2
0 T3

)
, T1 = T |T k(H ) is ∗-paranormal, hence HNP , see [15, Proposition

2.3].

Example 2.18. An extension of p-quasihyponormal operators is defined as fol-
lows: an operator T ∈ B(H ) is said to be (p, k)-quasihyponormal for some
0 < p ≤ 1 and k ∈ N, if

T ∗k(|T |2p − |T ∗|2p)T k ≥ 0.

Every (p, k)-quasihyponormal operator T with respect to the decomposition H =

ker(T ∗k) ⊕ T k(H ) may be represented as a matrix T =

(
T1 T2
0 T3

)
, T1 =

T |T k(H ) is is k-hyponormal (hence paranormal) and consequently HNP , see
[20].

Theorem 2.19. Let T ∈ B(H ) is algebraically Quasi-HNP operator. Then T
is polaroid.

Proof. Suppose that p(T) is of Quasi HNP for some non constant polynomial p
and λ is an isolated point of σ(T ). To prove λ is simple pole of resolvent of T it
is enough to show that T − λI has finite ascent and descent. Let Pλ denote the
spectral projection associated with λ. We can represent T as

T =

(
T1 0
0 T2

)
,

where σ(T1) = {λ} and σ(T2) = σ(T ) | {λ} From Lemma 2.10 it follows that
T1−λI is nilpotent and so T1−λI has finite ascent and descent. The invertibility
of T2 − λI implies that T2 − λI has finite ascent and descent and so T − λI has
finite ascent and descent. This completes the proof. �

Theorem 2.20. Let T be algebraically Quasi-HNP operator. Then the general-
ized Weyl’s theorem holds for both T and T ∗

Proof. Since T is algebraically Quasi-HNP , T is polaroid and T has SVEP. Then
result follows from [2, theorem 4.1]. �

Theorem 2.21. Let T is algebraically Quasi-HNP operator. Then the equality
σBW (f(T )) = f(σBW (T )) holds for every f ∈ Hol(σ(T ))
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Proof. Suppose T is algebraically Quasi-HNP . Then T has SVEP. Since T has
SVEP, f(T ) has SVEP. Thus, f(T ) satisfies the generalized Browder’s theorem
and hence σBW (f(T )) = σD(f(T )). Since σD(f(T )) = f(σD(T )), σBW (f(T )) =
f(σD(T )). From Theorem 2.20 T satisfies the generalized Weyl’s theorem and
so T satisfies the generalized Browder’s theorem. Thus we have f(σD(T )) =
f(σBW (T )). Hence,σBW (f(T )) = f(σBW (T )). �

The following theorem is immediate consequence of the above theorem.

Theorem 2.22. Let T is Algebraically Quasi-HNP operator. Then f(T ) satis-
fies generalized Weyl’s theorem for every f ∈ Hol(σ(T ))

3. Perturbations

An operator R ∈ B(X ) is a Riesz operator if R − λ is Fredholm for every
non-zero λ ∈ C. Since operators of Algebraically k-Quasi-HNP have SVEP, we
have immediately

Proposition 3.1. Let T ∈ B(H ) be algebraically k-quasi-HNP operator and
R ∈ B(H ) be a Riesz operator which commutes with T , then f(T +R) satisfies
generalized a-Browder’s theorem for every f ∈ Hnc(σ(T +R)).

Recall that T ∈ B(H ) is finitely isoloid if isolated points of σ(T ) are eigen-
values of finite multiplicity.

Definition 3.2. Let T ∈ B(H ). We say that T satisfies

(i) property (t) if σ(T ) \ σSF+
−

= E0(T ).

(ii) property (gt) if σ(T ) \ σSBF+
−

= E(T ).

Proposition 3.3. If T ∈ B(H ) is an algebraically k-quasi-HNP operator and
commutes with an injective quasi-nilpotent Q ∈ B(H ), then T + Q satisfies
property (t). Furthermore, if T is finitely isoloid, then T ∗ +Q∗ satisfies property
(gt).

Proof. T and T +Q being quasi-nilpotent equivalent, T +Q has SVEP and this
implies that σ(T+Q) = σ(T ∗+Q∗) = σa(T

∗+Q∗) and σw(T+Q) = σSF+
−

(T+Q).

The commutativity of T and Q implies that if (0 6=)x ∈ ker(T +Q− λ) for some
λ ∈ σ(T + Q), then Qmx ∈ ker(T + Q − λ) for all non-negative integers m.

Let p(t) =
n∑
i=1

cit
i = ci

n∏
i=1

(t− λi) be a polynomial such that p(Q) = 0. Then

the injectivity of Q implies that cn = 0; hence, by a finite induction argument,
ci = 0 for all 0 ≤ i ≤ n. Since this implies that {Qnx} is a linearly independent
set of vectors in ker(T + Q − λ), eigenvalues of T + Q, hence also of T since
T = (T+Q)−Q, have infinite multiplicity. In particular, E0(T+Q) = ∅. Clearly,
T +Q satisfies generalized a-Browder’s theorem; hence T +Q satisfies Browder’s
theorem, i.e., σ(T+Q)\σw(T+Q) = σ0(T+Q). Since σ0(T+Q) ⊆ E0(T+Q) = ∅
and σ(T + Q) \ σSF+

−
(T + Q) = E0(T + Q) and so T + Q satisfies property

(t). Assume now that T is finitely isoloid. Then it follows from the above that
isoσ(T ) = iso(T +Q) = ∅. By [11, Proposition 3.2], T ∗ +Q∗ satisfies generalized
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a-Browder’s theorem and this implies that σa(T
∗ + Q∗) \ σSBF+

−
(T ∗ + Q∗) =

πa(T
∗ + Q∗) ⊆ Ea(T ∗ + Q∗) = E(T ∗ + Q∗). Since λ ∈ E(T ∗ + Q∗) implies

λ ∈ isoσ(T +Q) = ∅, it follows that σ(T ∗+Q∗) \σSBF+
−

(T ∗+Q∗) = E(T ∗+Q∗),

so that T ∗ +Q∗ satisfies property (gt). �

An operator K ∈ B(X ) is an algebraic operator if there exists a non-trivial
polynomial q(.) such that q(A) = 0. Operators F ∈ B(X ) such that F n is finite
dimensional for some n ∈ N are algebraic.

Theorem 3.4. Let T ∈ B(X ) be an algebraically k-quasi-HNP operator and
let A ∈ B(X ) be an algebraic operator which commutes with T . Then f(T ∗+A∗)
satisfies property (gt) for every f ∈ Hnc(σ(T + A)).

Proof. The operator A being algebraic, σ(A) = {µ1, · · · , µn} for some scalars
µi, 1 ≤ i ≤ n. Let Ai = A|H0(A − µi) and Ti = T |H0(A − µi), 1 ≤ i ≤ n.
The commutativity of A with T then implies that Ai commutes with Ti for all
1 ≤ i ≤ n (for the reason that the projection H0(A − µi) corresponding to µi

commutes with T for all 1 ≤ i ≤ n), T =
n⊕
i=1

Ti and T + A =
n⊕
i=1

Ti + Ai. Since

Ai − µi is nilpotent for all 1 ≤ i ≤ n by [13, Lemma 3.5], the upper triangular

operator
n⊕
i=1

(Ti + Ai − µi) =
n⊕
i=1

Ti, with entries Ai−µi along the main diagonal,

is nilpotent. Hence T +A− µ and T are quasi-nilpotent equivalent. Since T has
SVEP; hence T + A − µ, equivalently T + A, has SVEP (so that both T + A
and T ∗ + A∗ satisfy generalized a-Browder’s theorem). Arguing as in the proof
of [13, Lemma 6] it is now seen that H0(T +A− λ) = ker(T +A− λ)m, for some
m ∈ N, at every λ ∈ isoσ(T + A). Hence T + A is polaroid and so it satisfies
the generalized Weyl’s theorem, i.e., σ(T + A) \ E(T + A) = σBW (T + W )(=
σ(T +A) \ π(T +A)). The operator T +A being isoloid, a familiar argument [1,
Lemma 3.89] shows that f(σ(T +A) \ E(T +A)) = σ(f(T +A)) \ E(f(T +A))
for every f ∈ Hnc(σ(T + A)). Since f(σBW (T + A)) = σBW (f(T + A)) for every
f ∈ Hnc(σ(T+A)), σ(f(T+A))\E(f(T+A)) = f(σBW (T+A)) = σBW (f(T+A))
, i.e., f(T + A) satisfies the generalized Weyl’s theorem. Observe that SVEP
implies σ(T + A) = σ(T ∗ + A∗) = σa(T

∗ + A∗), Ea(T
∗ + A∗) = E(T ∗ + A∗)

and the polaroid property of T + A, and therefore of T ∗ + A∗, implies that
E(T ∗ + A∗) = π(T ∗ + A∗) = π(T + A) = E(T + A). Recall from the proof of
Proposition 3.2 of [11]that σSBF+

−
(T ∗ + A∗) = σBW (T ∗ + A∗) = σBW (T + A).

Hence

σ(T+A)\E(T+A) = σBW (T+A) =⇒ σ(T ∗+A∗)\E(T ∗+A∗) = σSBF+
−

(T ∗+A∗),

i.e., T ∗+A∗ satisfies property (gt). Since T ∗+A∗ is (evidently) a-isoloid, f(T ∗+
A∗) satisfies property (gt) for every f ∈ Hnc(σ(T + A)). �
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