
Ann. Funct. Anal. 6 (2015), no. 3, 145–154

http://doi.org/10.15352/afa/06-3-12

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

A MAX VERSION OF PERRON–FROBENIUS THEOREM FOR
NONNEGATIVE TENSOR

HAMID REZA AFSHIN∗, ALI REZA SHOJAEIFARD

Communicated by Q.-W. Wang

Abstract. In this paper we generalize the max algebra system of nonnegative
matrices to the class of nonnegative tensors and derive its fundamental proper-

ties. If A ∈ <[m,n]
+ is a nonnegative essentially positive tensor such that satisfies

the condition class NC, we prove that there exist µ (A) and a corresponding
positive vector x such that max

1≤i2···im≤n
{aii2···imxi2 · · ·xim} = µ (A)xm−1

i , i =

1, 2, · · · , n. This theorem, is well known as the max algebra version of Perron–
Frobenius theorem for this new system.

1. Introduction

The algebraic system max algebra provide an attractive way of describing a
class of non-linear problems appearing for instance in manufacturing and trans-
portation scheduling, information technology, discrete event-dynamic systems,
combinatorial optimization, mathematical physics, DNA analysis and etcetera.
The usefulness of max algebras arises from a fact that these non-linear problems
become linear when described in the max algebra language. The max eigenprob-
lem is well studied and there are important explicit applications of it in solving
the problems mentioned above. In particular, there exists significant analogy with
the usual Perron–Frobenius theory. For a recent reference focussing specifically
on the Perron–Frobenius Theorem for the max algebra, see [1], wherein several
proofs of this fundamental result were presented.

Tensors are increasingly ubiquitous in various areas of applied, computa-
tional, and industrial mathematics and have wide applications in data analysis
and mining, information science, signal/image processing, computational biology,
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and so on, see the workshop report [6] and references therein. A tensor can be
regarded as a higher order generalization of a matrix, which takes the form

A = (ai1,··· ,im) , ai1,··· ,im ∈ <, 1 ≤ i1, · · · , im ≤ n,

where < is a real field. Such a multi-array A is said to be an mth order n-
dimensional square real tensor with nm entries ai1,··· ,im . In this regard, a vector
is a first order tensor and a matrix is a second order tensor. Tensors of order
more than two are called higher order tensors. Many important ideas, notions,
and results have been successfully extended from matrices to higher order ten-
sors. Among these, in particular, are the notions and certain basic algebraic and
geometric properties of rank, eigenvalue, eigenvector, see [8]. Nonnegative ten-
sors have attracted more and more attention because they share some intrinsic
properties with those of the nonnegative matrices. One of those properties is
the Perron–Frobenius theorem on eigenvalues. In [2], Chang et al. generalized
the Perron–Frobenius theorem for nonnegative matrices to irreducible nonnega-
tive tensors. In [3], Friedland et al. generalized the Perron–Frobenius theorem
to weakly irreducible nonnegative tensors. Further generalization of the Perron–
Frobenius theorem to nonnegative tensors can be found in [10].

Now, the question arises is it possible to define max algebra system for
nonnegative tensors as a generalization of max algebra on nonnegative matrices?
Can we describe the analogue of the Perron–Frobenius theory for the system of
max algebra on nonnegative tensors, as a generalization of max version theory
which is proved in [1]?, in this paper we show the answer is affirmative.

The paper is organized as follows. In Section 2 the fundamental concept
of max algebra system and tensors are given briefly for readers. In Section 3 the
max algebra system is generalized to nonnegative tensors, also the new version
of the Perron–Frobenius theory for some class of nonnegative tensors is given.

We first add a comment on the notation that is used. Vectors are writ-
ten as (x, y, · · ·), matrices correspond to (A,B, · · · ) and tensors are written as
(A,B, · · · ). The entry with row index i and column index j in a matrix A, i.e.
(A)ij is symbolized by aij (also (A)i1i2···im = ai1i2···im). < and C represents the

real and complex field, respectively. For each nonnegative integer n, denote [n] =
{1, 2, · · · , n}. <n+

(
<n++

)
denotes the cone {x ∈ <n : xi ≥ (>) 0, i = 1, · · · , n }.

2. Preliminaries

2.1. Max algebra system. In this section we give the basic definition of the
max algebra. The max algebra we consider here is the set <+ of nonnegative
real numbers, where for a, b ∈ <+ the sum a⊕ b is defined as max {a, b} and the
product is defined as the usual product ab. For vectors x = (xi), y = (yi) in
<n+ and c ∈ <+ the vectors x ⊕ y = (max {xi, yi}) and cx = (cxi) are defined
entrywise. The sum A⊕B of two matrices is defined analogously. If A = (aik) is
a nonnegative n-by-n matrix then the map

x ∈ <+ ⇒ A⊗ x ∈ <+
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where (A⊗ x)i = max
k
aikxk, i = 1, · · · , n is linear in the sense given above,

namely for all x, y ∈ <n+, c ∈ <+

A⊗ (x⊕ y) = (A⊗ x)⊕ (A⊗ y) , A⊗ (cx) = c (A⊗ x) .

The max-product C = (cil) = A⊗B of two n-by-n nonnegative matrices A = (aik)
and B = (bkl) is defined by cil = max

k
aikbkl,i, l = 1, 2, · · · , n. The weighted

directed graph G (A) associated with A has vertex set {1, 2, · · · , n} and an edge
(i, j) from vertex i to vertex j with weight aij if and only if aij > 0. A path
L (i1, i2, · · · , ik+1) of length k is a sequence of k edges

(i1, i2) , (i2, i3) , · · · , (ik, ik+1) .

The weight of a path L (i1, i2, · · · , ik+1), as denoted by w (L (i1, i2, · · · , ik+1) ) or
simply by w (L), is defined by

w (L (i1, i2, · · · , ik+1) ) = ai1i2ai2i3 · · · aikik+1
.

A circuit C of length k is a path L (i1, i2, · · · , ik+1) with ik+1 = i1, where
i1, i2, · · · , ik+1 are distinct. Associated with this circuit C is the circuit geometric

mean known as w (C) = (ai1i2ai2i3 · · · aiki1)
1
k . The maximum circuit geometric

mean in G (A) is denoted by µ (A). Note that we also consider empty circuits,
namely, circuits that consist of only one vertex and have length 0. For empty
circuits, the associated circuit geometric mean is zero. In the literature, the max-
imum circuit geometric mean µ (A) has been studied extensively, and it is known
that µ (A) is the largest max eigenvalue of A. Moreover, if A is irreducible, then
µ (A) is the unique eigenvalue and every eigenvector is positive.

Definition 2.1. [1] Let A be an n × n nonnegative matrix. We say that λ is
a max eigenvalue of A if there exists a nonzero, nonnegative vector x such that
A⊗ x = λx. We refer to x as a corresponding max eigenvector.

Theorem 2.2. Let A be an n × n nonnegative, irreducible matrix. Then there
exists a positive vector x such that A⊗ x = µ (A) x.

Proof. See [1]. �

2.2. Basic definition of tensor. In this subsection, we will cover some funda-
mental notions and properties on tensors. A tensor can be regarded as a higher
order generalization of a matrix, which takes the form

A = (ai1,··· ,im) , ai1,··· ,im ∈ <, 1 ≤ i1, · · · , im ≤ n,

where < is a real field. Such a multi-array A is said to be an mth order n-
dimensional square real tensor with nm entries ai1,··· ,im . In this regard, a vector is
a first order tensor and a matrix is a second order tensor. Tensors of order more
than two are called higher order tensors. An mth order n-dimensional tensor A
is called nonnegative if ai1i2···im ≥ 0. We denote the set of all nonnegative mth

order n-dimensional tensors by <[m,n]
+ . For a vector x = (x1, · · · , xn)T , let Axm−1
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be a vector in <n whose ith component is defined as the following:(
Axm−1

)
i

=
n∑

i2,··· ,im=1

aii2···imxi2 · · · xim , (2.1)

and let x[m] = (xm1 , · · · , xmn )T .

Definition 2.3. [8] A pair (λ, x) ∈ C × (Cn\ {0}) is called an eigenvalue and an
eigenvector of A ∈ <[m,n], if they satisfy

Axm−1 = λx[m−1]. (2.2)

Definition 2.4. [9] Let A (and B) be an order m ≥ 2 (and order k ≥ 1),
dimension n tensor, respectively. The product AB is defined to be the following
tensor C of order (m− 1) (k − 1) + 1 and dimension n:

ciα1···αm−1 =
n∑

i2,··· ,im=1

aii2···imbi2α1 · · · bimαm−1 ,

where (i ∈ [n] , α1, · · · , αm−1 ∈ [n]k−1).

It is easy to check from the definition that InA = A = AIn, where In is the
identity matrix of order n. When k = 1 and B = x ∈ Cn is a vector of dimension
n, then (m− 1) (k − 1) + 1 = 1. Thus AB = Ax is still a vector of dimension n,
and we have

(Ax)i = (AB)i = ci =
n∑

i2···im=1

aii2···imxi2 · · ·xim =
(
Axm−1

)
i
,

thus we have Axm−1 = Ax. So the first application of the tensor product defined
above is that now Axm−1 can be simply written as Ax.

Definition 2.5. [5] A tensor A ∈ <[m,n] is called reducible, if there exists a
nonempty proper index subset I ⊂ {1, · · · , n} such that

ai1,··· ,im = 0, ∀i1 ∈ I, ∀i2, · · · , im /∈ I,

If A is not reducible, then we call A irreducible.

The following definition was first introduced by Friedland et. al. [3].

Lemma 2.6. Let A ∈ <[m,n]
+ be an irreducible tensor. Then for every 1 ≤ i ≤ n

n∑
i2···im=1

aii2···im > 0.

3. Main results

In this section we define the max algebra system on tensors and our interest
will be in describing the analogue of the Perron–Frobenius theory for this new
system, referred to as the max version of the theory.
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Definition 3.1. The max algebraic addition (⊕) and multiplication (⊗) are
defined as follows:
(i) Suppose that A,B ∈ <[m,n]

+ then we have A⊕ B ∈ <[m,n]
+ and

(A⊕ B)i1···im = ai1···im ⊕ bi1···im = max (ai1···im , bi1···im) . (3.1)

(ii) Suppose that A ∈ <[m,n]
+ and B ∈ <[k,n]

+ where m ≥ 2 , k ≥ 1 then we have

A⊗ B ∈ <[(m−1)(k−1)+1,n]
+ and

(A⊗ B)iα1···αm−1
=

n
⊕

i2···im=1
aii2···imbi2α1 · · · bimαm−1

= max
1≤i2···im≤n

{
aii2···imbi2α1 · · · bimαm−1

}
,

(3.2)

where i ∈ {1, · · · , n}, α1, · · · , αm−1 ∈ [n]k−1. In particular for x ∈ <n+ we have

(A⊗ x)i = max
1≤i2···im≤n

{aii2···imxi2 · · ·xim} .

Example 3.2. Let A and B be third-order two-dimensional tensors of the fol-
lowing form:

a111 = 1 a121 = 2 a112 = 1 a122 = 2
a211 = 2 a221 = 1 a212 = 2 a222 = 1,

b111 = 2 b121 = 0 b112 = 4 b122 = 1
b211 = 0 b221 = 3 b212 = 1 b222 = 0,

if C = A⊗ B, then for example c12112 = 24.

If x =

(
4
5

)
then (A⊗ x) =

(
50
40

)
.

Theorem 3.3. The max algebraic addition (⊕) and multiplication (⊗) have the
following properties:

(i)Let A ∈ <[m,n]
+ then In ⊗ A = A = A⊗ In where In is a identity matrix.

(ii)(λA)⊗ B = λ (A⊗ B) where λ be a nonnegative number.
(iii)A⊗ (λB) = λm−1 (A⊗ B) where λ be a nonnegative number.

(iv) Let A1, A2 ∈ <[m,n]
+ and B ∈ <[k,n]

+ then (A1 ⊕ A2)⊗B = (A1 ⊗ B)⊕(A2 ⊗ B).

(v) Let A be an n×n matrix and B1,B2 ∈ <[k,n]
+ then A⊗(B1 ⊕ B2) = (A⊗ B1)⊕

(A⊗ B2). (Note that in general when A is not a matrix, then the right distribu-
tivity doesn’t hold.)

Proof. The proof of (i), (ii) and (iii) is trivial. We also have

((A1 ⊕ A2)⊗ B)iα1···αm−1
= max

1≤i2,··· ,im≤n

(
(A1 ⊕ A2)ii2···imbi2α1 · · · bimαm−1

)
= max

1≤i2,··· ,im≤n

(
max

(
(A1)ii2···im , (A2)ii2···im

)
bi2α1 · · · bimαm−1

)
= max

1≤i2,··· ,im≤n

(
max

(
(A1)ii2···imbi2α1 · · · bimαm−1 , (A2)ii2···imbi2α1 · · · bimαm−1

))
= max

(
max

1≤i2,··· ,im≤n

(
(A1)ii2···imbi2α1 · · · bimαm−1 , (A2)ii2···imbi2α1 · · · bimαm−1

))
= max

(
max

1≤i2,··· ,im≤n
(A1)ii2···imbi2α1 · · · bimαm−1 , max

1≤i2,··· ,im≤n
(A2)ii2···imbi2α1 · · · bimαm−1

)
= ((A1 ⊗ B)⊕ (A2 ⊗ B))iα1···αm−1

.

Thus the proof of (iv) is complete. The proof of (v) is similar. �
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Now we use a method similar with the proof of Theorem 1.1 in [9] to show the
associative law.

Theorem 3.4. Let A (and B, C) be an order m + 1 (and order k + 1, order
r + 1), dimension n tensor, respectively. Then we have

A ⊗ (B⊗ C) = (A⊗ B)⊗ C.

Proof. For β1, · · · , βm ∈ ([n]r)
k
, we write:

β1 = θ11 · · · θ1k, · · · , βm = θm1 · · · θmk (θij ∈ [n]r, i = 1, · · · ,m ; j = 1, · · · , k) .

Then we have:

(A⊗ (B⊗ C))iβ1···βm = max
1≤i1,··· ,im≤n

aii1···im

(
m∏
j=1

(B⊗ C)ijβj

)

= max
1≤i1,··· ,im≤n

aii1···im

(
m∏
j=1

(B⊗ C)ijθj1···θjk

)

= max
1≤i1,··· ,im≤n

aii1···im

(
m∏
j=1

max
1≤tj1,··· ,tjk≤n

bijtj1···tjk
(
ctj1θj1 · · · ctjkθjk

))
= max

1≤i1,··· ,im≤n
aii1···im max

1≤tjh≤n(1≤j≤m;1≤h≤k)

(
m∏
j=1

bijtj1···tjk
(
ctj1θj1 · · · ctjkθjk

))
.

On the other hand, for α1, · · · , αm ∈ [n]k, we write:

α1 = t11 · · · t1k, · · · , αm = tm1 · · · tmk (tij ∈ [n] , i = 1, · · · ,m; j = 1 · · · , k) .

Then we also have:

((A⊗ B)⊗ C)iβ1···βm = max
α1,··· ,αm∈[n]k

(A⊗ B)iα1···αm

(
n∏
j=1

(
ctj1θj1 · · · ctjkθjk

))

= max
1≤tjh≤n(1≤j≤m;1≤h≤k)

max
1≤i1,··· ,im≤n

aii1···im

(
m∏
j=1

bijαj

)(
m∏
j=1

ctj1θj1 · · · ctjkθjk

)

= max
1≤i1,··· ,im≤n

aii1···im max
1≤tjh≤n(1≤j≤m;1≤h≤k)

(
m∏
j=1

bijtj1···tjk
(
ctj1θj1 · · · ctjkθjk

))
.

Thus the proof is complete. �

Theorem 3.5. Let A,B,∈ <[m,n]
+ and T, S are both matrices. Then

T ⊗ (A⊕ B)⊗ S = (T ⊗ A⊗ S)⊕ (T ⊗ B⊗ S) .

Proof. By the left distributive law and right distributive, the proof is clear. �

Lemma 3.6. Let A,B,∈ <[m,n]
+ and y ∈ <n. Then

(i) (A⊕ B)⊗ y = (A⊗ y)⊕ (B⊗ y) .
(ii)I⊗ y = Iy = y[m−1].

Proof. By Definition 3.1 the assertion is clear. �
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Lemma 3.7. Suppose that A ∈ <[m,n]
+ and P be an n × n permutation matrix.

Then
PAP T = P ⊗ A⊗ P T (3.3)

Proof. Let σ ∈ Sn be a permutation on the set {1, · · · , n}, P = Pσ = (pij) be the
corresponding permutation matrix of σ where pij = 1 iff σ (i) = j. Then

(PA)i1···im = aσ(i1)i2···im = (P ⊗ A)i1···im = max
j1

aj1i2···impi1j1 .

Similarly AP = A⊗ P . Thus by Theorem 3.4 we have

P ⊗ A⊗ P T = (P ⊗ A)⊗ P T = (PA)⊗ P T = PAP T

�

Lemma 3.8. Let A ∈ <[m,n] be a reducible and P be an n×n permutation matrix.
Then PAP T ∈ <[m,n] is a reducible tensor.

Proof. (
PAP T

)
i1···im

=
n∑

j1,··· ,jm=1

aj1···jmpi1j1

((
P T
)
j2i2
· · ·
(
P T
)
jmim

)
=

n∑
j1,··· ,jm=1

aj1···jmpi1j1pi2j2 · · · pimjm = aσ(i1)···σ(im).

Where σ is defined in pervious lemma. Therefore by Definition 2.5 the proof is
complete. �

Theorem 3.9. Suppose that A ∈ <[m,n]
+ , n ≥ 2, irreducible, and y is a nonnega-

tive n-tuple with exactly k positive coordinates, 1 ≤ k ≤ n − 1, then (I⊕ A) ⊗ y
has more than k positive coordinates.

Proof. Suppose that k coordinates of y are positive and the others are zero. Let P
be a permutation matrix such that the first k coordinates of x = P⊗y are positive
and the others are zero. Since A is a nonnegative tensor hence the number of
zero coordinates in (I⊕ A) ⊗ y cannot be greater than n − k. Because if yi > 0
then

((I⊕ A)⊗ y)i = ((I⊗ y)⊕ (A⊗ y))i = max
i

{
ym−1i , (A⊗ y)i

}
≥ ym−1i > 0.

Suppose it is n− k. That is if yi = 0 then

0 = ((I⊕ A)⊗ y)i = max
i

{
ym−1i , (A⊗ y)i

}
= (A⊗ y)i.

Therefore (P ⊗ y)i = 0 then (P ⊗ (A⊗ y))i = 0. But x = P⊗y and therefore the
assumption that (I⊕ A) ⊗ y has as many 0’s as y is equivalent to the assertion
that

((
P ⊗ A⊗ P T

)
⊗ x
)
i

= 0 for i = k + 1, k + 2, · · · , n. By relation 3.3((
PAP T

)
⊗ x
)
i

= 0 for i = k + 1, k + 2, · · · , n. Let B = (bi1···im) = PAP T Then

0 = (B⊗ x)i = max
1≤i2,··· ,im≤n

{bii2···imyi2 · · · yim} ,

for i = k + 1, k + 2, · · · , n. Therefore max
1≤i2,··· ,im≤k

{bii2···imyi2 · · · yim} = 0 for i =

k + 1, k + 2, · · · , n. Since for i2, · · · , im ∈ {1, · · · , k} we have yi2 , · · · , yim are
positive thus bii2···im = 0 for i ∈ {k + 1, · · · , n} and i2, · · · , im ∈ {1, · · · , k}.
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This means that B is reducible thus by Lemma 3.8 A is reducible. and this is a
contradiction. �

Definition 3.10. Let A ∈ <[m,n]
+ . We say that λ is a max eigenvalue of A if there

exists a nonzero, nonnegative vector x such that A⊗ x = λx[m−1]. We refer to x
as a corresponding max eigenvector.

Definition 3.11. For a given A = (ai1···im) ∈ <[m,n]
+ , it is associated to a directed

graph G (A) = (V,E (A)), where V = {1, 2, · · · , n} and a directed edge (i, j) ∈
E (A) if there exists indices {i2, · · · , im} such that j ∈ { i2, · · · , im} and aii2···im >

0. In particular, we have
∑

j∈{ i2,··· ,im}
aii2···im > 0. A graph is strongly connected if

it contains a directed path from i to j and a directed path from j to i for every
pair of vertices i, j.

Definition 3.12. ([7]) Suppose that A is a nonnegative tensor of order m and
dimension n. A is called essentially positive if Ax ∈ <n++ for any nonzero x ∈ <n+.

It is clear that A is essentially positive iff for any i, j ∈ [n] , aij···j > 0 holds.
Also a nonnegative essentially positive tensor is irreducible (see Theorem (3.2) in
[7]).

Definition 3.13. Let A ∈ <[m,n]
+ be an essentially positive tensor. Consider the

directed graph G (A) = (V,E (A)). In this directed graph, k is a simple cycle
of length q described by a sequence of distinct integers i1, · · · , iq ∈ {1, · · · , n}.
Then with |k| = q,

µ (A) = max
k

{(
ai1i2···i2 ai2i3···i3 · · · aiqi1···i1

) 1
|k|
}
.

The following result plays a central role in the proof of the main result of this
section.

Lemma 3.14. Let A ∈ <[m,n]
+ be irreducible tensor and x ∈ <n, x ≥ 0, x 6= 0,

λ > 0 such that A⊗ x = λx[m−1]. Then x is positive.

Proof. Suppose that A ⊗ x = λx[m−1] where A ≥ 0 is irreducible, x ≥ 0, and
x 6= 0. Clearly, λ must be nonnegative. Now

(I⊕ A)⊗ x = (I⊗ x)⊕ (A⊗ x) = x[m−1] ⊕ (A⊗ x) = (1⊕ λ)x[m−1],

thus (I⊕ A) ⊗ x = (1⊕ λ)x[m−1]. If x had k zero coordinates, 1 ≤ k < n, then
(1⊕ λ)x[m−1] would have k zeros as well, whereas by Theorem 3.9, (I⊕ A) ⊗ x
would have less than k zeros. Hence x must be positive. �

Definition 3.15. We define NC to be the set of all A ∈ <[m,n]
+ such that for

it, there exist x 6= 0, x ∈ <n+ and λ > 0 such that A ⊗ x = λx[m−1] and{
(i, j) : aij···jx

m−1
j = λxm−1i , 1 ≤ i, j ≤ n

}
has at least a circuit.

Lemma 3.16. Let A be essentially positive tensor such that belong to NC, Then
λ = µ (A).
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Proof. Since A is an essentially positive tensor thus it is irreducible and therefore
by lemma 3.14, x > 0. We then have

(A⊗ x)i = max
1≤i2···im≤n

{aii2···imxi2 · · ·xim} = λxm−1i , i = 1, 2, · · · , n. (3.4)

If (i1, i2) , (i2, i3) , · · · , (ik, i1) is a circuit in G (A), then by (3.4),

aitit+1···it+1x
m−1
it+1
≤ λxm−1it

, t = 1, 2, · · · , k, (3.5)

where k + 1 is taken to be 1. It follows that k
√
ai1i2···i2 ai2i3···i3 · · · aiki1···i1 ≤ λ,

and thus we have shown that µ (A) ≤ λ because the circuit is arbitrary. Since A
belong to NC, thus we conclude that λ ≤ µ (A). therefore the proof is complete.

�

Lemma 3.17. Let A ∈ <[m,n]
+ be essentially positive tensor and suppose x ∈ <n,

x ≥ 0, x 6= 0, λ > 0 such that A⊗ x = λx[m−1]. Then µ (A) ≤ λ.

The following result, extends the Perron–Frobenius theorem to essentially pos-
itive nonnegative tensors over the max algebra.

Theorem 3.18. Let A be essentially positive tensor such that belong to NC. Then
there exists a positive vector x such that A⊗ x = µ (A) x[m−1].

Proof. Suppose that E = {x ∈ <n : x ≥ 0 , ‖x‖1 = 1} which is a nonempty,
compact, and convex set. Now we define the map f : E → E as

f (x) =
(A⊗ x)

1
m−1(

n∑
i=1

(A⊗ x)i

) 1
m−1

if x ∈ E. Since A is irreducible thus by Lemma 2.6, f (x) well defined on E. Also
f is continuous. By Brouwer’s fixed-point theorem, there exists x0 ∈ E such that
f (x0) = x0. Therefore

(A⊗ x0)
1

m−1 =

(
n∑
i=1

(A⊗ x0)i

) 1
m−1

x0

hence

(A⊗ x0) =

(
n∑
i=1

(A⊗ x0)i

)
x0

[m−1].

By Lemma 3.14 and Lemma 3.16 we have µ (A) =

(
n∑
i=1

(A⊗ x0)i
)

and x0 > 0

thus the proof is complete. �

Example 3.19. Consider the positive order 3, dimension 2 tensor given by a122 =
a211 = t > 0, aijk = z > 0 otherwise, and let t > z. Then λ = t and x1 = x2
satisfy in A⊗ x = λx[2], thus we have µ (A) = t.

Example 3.20. Consider the positive order 3, dimension 2 tensor given by a121 =
a221 = 1 and aijk = 0.1 otherwise. Then λ = 1 and x1 = x2 satisfy in A⊗x = λx[2],
but we have µ (A) = 0.1.
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Remark 3.21. By Theorem 2 in [4], if the function f : <n+ → <n+ is homogeneous,
monotone and G (A) is strongly connected then f has an eigenvector in <n+. In
case m = 2 Theorem 3.18 is a result of this theorem.

Theorem 3.18 is right for the class of weakly positive tensors which satisfy
in definition NC, since for a tensor A belong to this class we have aij···j is positive
for all i 6= j. Now it is very nice if one could generalize Theorem 3.18 to other
classes of tensors, it is an unsolved problem.
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