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Abstract. We study a concept of weak external hyperconvexity in quasi-
metric setting. In this article, we generalize further well-known results about
weak external hyperconvexity from metric to quasi-metric point of view. In
particular, we show the necessary condition of a subset of q-hyperconvex T0-
quasi-metric space to be weakly externally q-hypeconvex.

1. Introduction

In previous work, we started to investigate external hyperconvexity in quasi-
pseudometric spaces, which we called external q-hyperconvexity (see [5]). In this
article, we study the concept of weak external q-hyperconvexity by generalizing
some well-known results about weak external hyperconvexity from metric setting
to quasi-pseudometric point of view. For instance, we generalize a well-known
result of Esṕınola et al.[1] which states that a subset D of a hyperconvex metric
space (M,d) is weakly externally hyperconvex if and only if D is proximinal non-
expansive retract of D ∪ {z} for any z ∈M \D.

Our investigations confirm the surprising fact that many classical results about
weak external hyperconvexity in metric spaces do not make essential use of the
symmetry of the metric and therefore still hold (sometimes in a slightly modified
form) for our concept of weak external q-hyperconvexity in quasi-pseudometric
spaces (see also [1, 3] for a more general approach).
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2. Preliminaries

This section recalls the most important definitions that we shall use in the
following.

Definition 2.1. Let X be a set and let d : X × X → [0,∞) be a function
mapping X ×X into the set [0,∞) of the nonnegative reals. Then, d is called a
quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X,
(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.
We shall say that d is a T0-quasi-metric provided that d also satisfies the fol-

lowing condition: For each x, y ∈ X,
d(x, y) = 0 = d(y, x) implies that x = y.

Remark 2.2. Let d be a quasi-pseudometric on a set X, then d−1 : X×X → [0,∞)
defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric,
called the conjugate quasi-pseudometric of d. As usual, a quasi-pseudometric d
on X such that d = d−1 is called a pseudometric. Note that for any (T0-)quasi-
pseudometric d, ds = max{d, d−1} = d ∨ d−1 is a pseudometric (metric).

Remark 2.3. We remark that for a quasi-pseudometric space (X, d):

(1) For each x ∈ X and ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) < ε} denotes the
open ε-ball at x.

(2) The collection of all “open” balls yields a base for a topology τ(d). It is
called the topology induced by d on X.

(3) Similarly we set for each x ∈ X and ε ≥ 0, Cd(x, ε) = {y ∈ X : d(x, y) ≤
ε}. Note that Cd(x, ε) is τ(d−1)-closed, but not τ(d)-closed in general.

Recall that a T0-quasi-metric space (X, d) is said to be bicomplete if the metric
space (X, ds) is complete.

The following definitions can by found in [4] (compare [6]). Note that the
weaker version of the concept of q-hyperconvexity is the concept of metrical con-
vexity. The notion of metrically convex is defined as follows.

Definition 2.4. Let (X, d) be a quasi-pseudometric space. We say that X is
metrically convex if for any points x, y ∈ X and nonnegative numbers r and s
such that d(x, y) ≤ r+s, there exists z ∈ X such that d(x, z) ≤ r and d(z, y) ≤ s.

We note that if (X, d) is a metrically convex quasi-pseudometric space, then
for any points x, y ∈ X and nonnegative numbers r and s such that

d(x, y) ≤ r + s,

we have that

Cd(x, r) ∩ Cd−1(y, s) 6= ∅.

Definition 2.5. [4, Definition 2] A quasi-pseudometric space (X, d) is called q-
hyperconvex (or Isbell-convex) provided that for each family (xi)i∈I of points in X
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and families (ri)i∈I and (si)i∈I of nonnegative real numbers satisfying d(xi, xj) ≤
ri + sj whenever i, j ∈ I, the following condition holds:⋂

i∈I

(Cd(xi, ri) ∩ Cd−1(xi, si)) 6= ∅.

Definition 2.6. ([5, Definition 5.1]) Let (X, d) be a quasi-pseudometric space.
Given a subset A of X, we define for ε1, ε2 ≥ 0 the ε1, ε2-parallel set of A as

Nε1,ε2(A) =
⋃

a∈A
(Cd(a, ε2) ∩ Cd−1(a, ε1)).

(Note that for each ε > 0 in particular Nε,ε(A) =
⋃
a∈ACds(a, ε).)

Thus x ∈ Nε1,ε2(A) if and only if there exists a ∈ A such that d(a, x) ≤ ε2 and
d−1(a, x) ≤ ε1.

Let (X, d) be a q-hyperconvex quasi-pseudometric space and let A ⊆ X. We
say that A is a q-admissible subset of X if and only if for each family (xi)i∈I of
points in X and families (ri)i∈I and (si)i∈I of nonnegative real numbers we have
that ∅ 6= A =

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)).

The following characterization will be needed.

Lemma 2.7. ([5, Lemma 5.2]) Let (X, d) be a q-hyperconvex quasi-pseudometric
space and let A be a q-admissible subset of X, say ∅ 6= A =

⋂
i∈I(Cd(xi, ri) ∩

Cd−1(xi, si)) with xi ∈ X and ri, si nonnegative reals whenever i ∈ I 6= ∅. Then
for each ε1, ε2 ≥ 0,

Nε1,ε2(A) =
⋂

i∈I
(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)).

We observe that for any subset A of a q-hyperconvex quasi-pseudometric space
(X, d), we have

Nε1,ε2(Nδ1,δ2(A)) = Nε1+δ1,ε2+δ2(A).

3. External q-hyperconvexity

Next we recall some results mainly from [5] belonging to the theory of the
external q-hyperconvex spaces which are important in order to understand the
weaker version of external q-hyperconvex spaces that we are going to introduce
in Section 4.

Definition 3.1. Let (X, d) be a quasi-pseudometric space. A subspace E of
(X, d) is said to be externally q-hyperconvex (relative to X) if given any family
(xi)i∈I of points in X and families of nonnegative real numbers (ri)i∈I and (si)i∈I
the following condition holds:

If d(xi, xj) ≤ ri + sj whenever i, j ∈ I and dist(xi, E) ≤ ri and dist(E, xi) ≤ si
whenever i ∈ I, then

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ E 6= ∅.

Example 3.2. ([5, Example 6.2]) Let E be a nonempty externally q-hyperconvex
subset in a quasi-pseudometric space (X, d) and let x be any point of X. Set
dist(x,E) = r and dist(E, x) = s. Then by applying external q-hyperconvexity of
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E to the double ball (Cd(x, r);Cd−1(x, s)), we conclude that there is p ∈ Cd(x, r)∩
Cd−1(x, s) ∩ E. Thus d(x, p) = dist(x,E) and d(p, x) = dist(E, x).

Lemma 3.3. (compare [5, Lemma 6.3]) Let (X, d) be a q-hyperconvex space
and let x ∈ X. Furthermore let ∅ 6= A =

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) where

(xi)i∈I is a nonempty family of points in X and (ri)i∈I and (si)i∈I are families
of nonnegative reals. Then there is p ∈ A such that dist(x,A) = d(x, p) and
dist(A, x) = d(p, x).

4. Weak external q-hyperconvexity

In [1], Esṕınola et al. showed that a subset D of a hyperconvex metric space
(M,d) is weakly externally hyperconvex relative to (M,d) if and only if D is
a proximinal nonexpansive retract of D ∪ F for any finite set F ⊆ M \ D. In
this section, we extend this result in the framework of quasi-pseudometric spaces.
Therefore, it seems natural to introduce the concept of weakly externally hy-
perconvex relative to a quasi-pseudometric space that we call weaky externally
q-hyperconvex.

Definition 4.1. Let (X, d) be a quasi-pseudometric space. A subspace E of
(X, d) is said to be weakly externally q-hyperconvex (relative to X) if E is ex-
ternally q-hyperconvex relative to E ∪ {z} for each z ∈ X. Precisely, given any
family (xi)i∈I of points in X all but at most one of which lies in E, and families
of nonnegative real numbers (ri)i∈I and (si)i∈I satisfying

d(xi, xj) ≤ ri + sj, with dist(xi, E) ≤ ri and dist(E, xi) ≤ si if xi /∈ E, it
follows that

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ E 6= ∅.

In Definition 4.1, if (X, d) is a metric space and ri = si for all i ∈ I, then
we have the definition of weakly external hyperconvexity in the metric sense (see
definition [1, Definition 1.3].

Example 4.2. Let X = [0,∞) the set of nonnegative reals equipped with the
T0-quasi-metric space u(x, y) = max{x − y, 0}. Then D = [0, 1] ⊆ X is weakly
externally q-hyperconvex relative to X.

Proof. From [4, Corollary 1], it is known that (X, u) is q-hyperconvex space.
Note that Cu(x, δ) = [x − δ,∞) ∩ [0,∞) and Cu−1(x, δ) = (∞, x + δ] ∩ [0,∞)
whenever x ∈ [0,∞) and δ ≥ 0.

For any x ∈ X, consider rx and sx be nonnegative real numbers such that
u(x, y) ≤ rx + ry whenever x, y ∈ X and dist(x,D) ≤ rx and dist(D, x) ≤ sx
whenever x > 1.

Suppose that
⋂
x∈F (Cu(x, rx) ∩ Cu−1(x, sx)) ∩ D = ∅ for some finite subset F

of X. We assume that F is nonempty. Then we have that

max{x− rx : x ∈ F} > min{x+ rx : x ∈ F}.
It follows that there are x, y ∈ F such that x − rx > y + sy, that is Cu(x, rx) ∩
Cu−1(y, sx) ∩ D = ∅. Moreover x > y. Hence u(x, y) = x − y > rx + sy–a
contradiction. Furthermore

⋂
x∈F (Cu(x, rx)∩Cu−1(x, sx))∩D 6= ∅ whenever F is

a finite nonempty subset of X. Since for any x ∈ X, Cu(x, rx) ∩ Cu−1(x, sx) ∩D
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is compact with respect to the topology τ(us) of R (note that us is the restriction
the usual metric of reals to X). Therefore

⋂
x∈X(Cu(x, rx)∩Cu−1(x, sx))∩D 6= ∅.�

Example 4.3. Consider the q-hyperconvex T0-quasi-metric space (R, u) in [4,
Example 1] where u(x, y) = max{x− y, 0} whenever x, y ∈ R. Then A = {2} is
not weakly externally q-hyperconvex relative to [0,∞).

Proof. We observe first that A = Cu(2, 0) ∩ Cu−1(2, 0). One can easily check
that A is externally q-hyperconvex relative to X.

Moreover, for any x ∈ R with x 6= 2, set rx = 1
4

and sx = 3
4
. Then u(x, y) ≤

1 = 1
4

+ 3
4

and dist(x, {2}) ≤ rx and dist({2}, x) ≤ sx whenever x ∈ R with x 6= 2.
But⋂

x∈R,x 6=2
(Cu(x, rx) ∩ Cu−1(x, sx)) ∩ A ⊆ Cu(−

7

4
,
1

4
) ∩ Cu−1(−9

4
,
3

4
) ∩ A = ∅,

since

Cu(−
7

4
,
1

4
) ∩ Cu−1(−9

4
,
3

4
) ∩A = [−2,∞) ∩ (−∞,−3

2
] ∩A = [−2,−3

2
] ∩ {2} 6= ∅.

Therefore A = {2} is not weakly externally q-hyperconvex relative to R. �

Definition 4.4. (compare [2, Definition 2.5.]) Let (X, d) be a quasi-pseudometric
space and E ⊆ X. We say that E is a proximinal nonexpansive retract of X if
there exists a nonexpansive retraction R of X onto E for which d(x,R(x)) =
dist(x,E) and d(R(x), x) = dist(E, x) for each x ∈ X. Thus d(R(x), R(y)) ≤
d(x, y) whenever x, y ∈ X.

Lemma 4.5. Suppose D is a weakly externally q-hyperconvex subset of a quasi-
pseudometric space (X, d), and let z ∈ X \D. Then there exists a nonexpansive
retraction r of D ∪ {z} onto D for which d(z, r(z)) = dist(z,D) and d(r(z), z) =
dist(D, z).

Proof. For each x, y ∈ D, d(x, y) ≤ d(x, z)+d(z, y) and dist(z,D) ≤ d(z, y) and
dist(D, z) ≤ d(x, z). Therefore by the definition of weak external q-hyperconvexity
of D we have

J = (
⋂

x∈D
Cd(x, d(x, z)) ∩ Cd−1(x, d(z, x)))∩

(Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))) ∩D 6= ∅.
It suffices to take r(x) = x for x ∈ D and r(z) to be any point in J . �

The next result is a consequence of the previous lemma.

Lemma 4.6. Suppose D is weakly externally q-hyperonvex subset of a quasi-
pseudometric space (X, d), and let F be a finite subset of X \D. Then there exists
a nonexpansive retraction r of D ∪ {z} onto D for which d(z, r(z)) = dist(z,D)
and d(r(z), z) = dist(D, z) for each z ∈ F .

Proof. Let F = {x1, · · · , xn} and suppose the points of F are ordered so that

i < j =⇒ dist(xi, D) ≤ dist(xj, D) and dist(D, xi) ≤ dist(D, xj).
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By Lemma 4.5 there exists a nonexpansive retraction r of D ∪ {x1} onto D with
d(x1, r(x1)) = dist(x1, D) and d(r(x1), x1) = dist(D, x1). Let µ = dist(x2, D)
and ν = dist(D, x2) and set

A(x2) = (
⋂

x∈D
Cd(x, d(x, x2)) ∩ Cd−1(x, d(x2, x)))∩

(Cd(r(x1), d(x1, x2)) ∩ Cd−1(r(x1), d(x2, x1))) ∩ (Cd(x2, µ) ∩ Cd−1(x2, ν)) ∩D.
On can check that the family
[(Cd(x, d(x, x2)))x∈D, (Cd(r(x1), d(x1, x2)), (Cd(x2, µ)); (Cd−1(x, d(x2, x)))x∈D,
(Cd−1(r(x1), d(x2, x1))), (Cd−1(x2, ν))] of double balls,
only (Cd(x2, µ)) and (Cd−1(x2, ν)) are not centered in D, and for which the con-
ditions of Definition 4.1 are satisfied. Since A(x2) 6= ∅, it is possible to choose
r(x2) ∈ A(x2) and conclude the lemma holds for n = 2. The full conclusion
follows by finite induction. �

From Lemma 2.7, we know that if (X, d) is a q-hyperconvex quasi-pseudometric
space and A is a subset of X which is q-admissible. Then for any ε1, ε2 ≥ 0 we
have that

Nε1,ε2(A) =
⋂

i∈I
(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)).

Moreover, for any subset A of a q-hyperconvex quasi-pseudometric space (X, d),
we have

Nε1,ε2(Nδ1,δ2(A)) = Nε1+δ1,ε2+δ2(A).

Theorem 4.7. Let (X, d) be a q-hyperconvex quasi-pseudometric space and D ⊆
X. Then D is weakly externally q-hyperconvex if and only if D is a proximinal
nonexpansive retract of D ∪ F for any finite F ⊆ X \D.

Proof. The necessary condition follows from Lemma 4.5 and Lemma 4.6.
To prove the converse, it suffices to show that if D is not weakly externally

q-hyperconvex then there exists z ∈ X \D such that

[Cd(z, dist(z,D))∩Cd−1(z, dist(D, z))]∩(
⋂
x∈X

(Cd(x, d(x, z))∩Cd−1(x, d(z, x)))) = ∅.

This clearly implies the non existence of a nonexpansive retraction of D∪{z} onto
D which satisfies the condition of Lemma 4.5. If D is not weakly externally q-
hyperconvex then by definition there exists z ∈ X, a family (xi)i∈I of points in X
and families of nonnegative real numbers (ri)i∈I and (si)i∈I for which d(xi, xj) ≤
ri + sj, d(xi, z) ≤ ri + dist(z,D) and d(z, xi) ≤ si + dist(D, z), and for which

[Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩ [
⋂
i∈I

(Cd(xi, ri) ∩ Cdt(xi, si))] ∩D = ∅.

However, since (X, d) is q-hyperconvex it must be the case that

D1 = [Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩ [
⋂
i∈I

(Cd(xi, ri) ∩ Cdt(xi, si))] 6= ∅.

If

[Cd(z, dist(z,D))∩Cd−1(z, dist(D, z))]∩(
⋂
x∈X

(Cd(x, d(x, z))∩Cd−1(x, d(z, x)))) = ∅
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we are done. Moreover we proceed as follows. Since D1 ∩D = ∅ we may assume

dist([Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩D,D1) = d1 > 0

and

dist(D1, [Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩D) = d2 > 0.

Then it is possible to choose w1 ∈ D1 and

w ∈ [Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩D
such that d(w1, w) = d2+ε2 and d(w,w1) = d1+ε1 for sufficiently small ε1, ε2 ≥ 0.
By q-hyperconvexity of X we have

I = [Cd(z, dist(z,D)− d2 + ε2
2

) ∩ Cd−1(z, dist(D, z)− d1 + ε1
2

)]

∩[
⋂
i∈I

(Cd(xi, ri) ∩ Cdt(xi, si))] ∩D 6= ∅.

Let z1 ∈ I and observe that if d(z1, p) ≤ d2+ε2
2

, for any p ∈ D we have that

d(z, p) ≤ d(z, z1) + d(z1, p) < dist(z,D)− d2 + ε2
2

+
d2 + ε2

2
= dist(z,D)

which is a contradiction. Since dist(z1, D) ≤ d(z1, w) ≤ d2+ε2
2
, we conclude

dist(z1, D) = [Cd(z, dist(z,D))∩Cd−1(z, dist(D, z))]∩[
⋂
i∈I(Cd(xi, ri)∩Cdt(xi, si))]

∩D. Similarly if for any p ∈ D, d(p, z1) <
d1+ε1

2
we have

dist(D, z1) =
d1 + ε1

2
.

By the assumption of the theorem, the set

[Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩ [
⋂
i∈I

(Cd(xi, ri) ∩ Cdt(xi, si))] ∩D

would have to be nonempty. Furthermore, since d(z1, xi) ≤ r1 + d2+ε2
2

, for each
i ∈ I, we have

[Cd(z1, dist(z1, D)) ∩ Cd−1(z1, dist(D, z1))] ∩ (
⋂
i∈I

(Cd(xi, d(x1, z1))∩

Cd−1(x1, d(z1, xi)))) ⊆ [Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))]

∩[
⋂
i∈I

(Cd(xi, ri +
d2 + ε2

2
) ∩ Cd−1(xi, si +

d1 + ε1
2

))]

and by Lemma 2.7,

[Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))]

∩[
⋂
i∈I

(Cd(xi, ri +
d2 + ε2

2
) ∩ Cd−1(xi, si +

d1 + ε1
2

))] ⊆ N d1+ε1
2

,
d2+ε2

2

(D1).

Clearly this neighborhood of D1 connot intersect

[Cd(z, dist(z,D)) ∩ Cd−1(z, dist(D, z))] ∩D
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for ε1, ε2 ≥ 0 sufficiently small, so we conclude

[Cd(z1, dist(z1, D))∩Cd−1(z1, dist(D, z1))]∩[
⋂
i∈I

(Cd(xi, d(xi, z1)∩Cd−1(xi, d(z1, xi))]

∩D = ∅.
�

Corollary 4.8. Let (X, d) be a q-hyperconvex T0-quasi-metric space and D ⊆
X. Then D is weakly externally q-hyperconvex if and only if D is proximinal
nonexpansive retract of D ∪ {z} for any finite set {z} ⊆ X \D.

Proof. It follows from Lemma 4.5 and Theorem 4.7. �

Example 4.9. Consider the q-hyperconvex T0-quasi-metric space ([0,∞), u) where
u(x, y) = max{x − y, 0}. We define a map R : ([0,∞) → ([0, 1], u) by R(x) = x
if x ∈ [0, 1] and R(x) = 1 if x > 1.

If x ∈ [0, 1], then we have that

u(R(x), x) = u(x, x) = 0 = dist([0, 1], x)

and

u(x,R(x)) = u(x, x) = 0 = dist(x, [0, 1]).

If x > 1, then

u(R(x), x) = u(1, x) = max{1−x, 0} = 0 = inft∈[0,1] max{t−x, 0} = dist([0, 1], x)

and

u(x,R(x)) = u(x, 1) = x− 1 = inft∈[0,1] max{x− t} = dist(x, [0, 1]).

Hence, u(R(x), x) = dist([0, 1], x) and u(x,R(x)) = dist(x, [0, 1]) whenever x ∈
[0,∞).

Moreover, we show that R is a nonexpansive map. We have four cases.

Case 1. If x, y ∈ [0, 1], it follows that

u(R(x), R(x)) = u(x, y).

Case 2. If x ∈ [0, 1] and y > 1, then

u(R(x), R(y)) = u(x, 1) = 0 = u(x, y)

and

u(R(y), R(x)) = u(1, x) = 1− x ≤ y − x = u(y, x).

Case 3. If x > 1 and y ∈ [0, 1] is similar to Case 2.
Case 4. If x > 1 and y > 1, then

u(R(x), R(y)) = u(1, 1) = 0 ≤ u(x, y).

Therefore, the interval [0, 1] is a proximinal nonexpansive retract of [0,∞). Fur-
thermore, in light of Theorem 4.7, one can define a proximinal nonexpansive re-
tract from of [0, 1]∪{2} to confirm that [0, 1] is a weakly externally q-hyperconvex
relative to [0,∞) as well as we proved in Example 4.2.
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5. Nonexpansive retractions

This section deals with externally q-hyperconvex subset of a quasi-metrically
convex quasi-pseudometric space and nonexpansive retraction maps. We shall
prove analogue theorems due to Esṕınola et al. [1].

Let us first recall the definition of a T0-quasi-metric injective space.

Definition 5.1. (compare [4, Definition 8]) Let (Y, dY ) be a T0-quasi-metric
space. Then it is called T0-quasi-metric injective provided that for any T0-quasi-
metric space (X, dX), any subspace A of (X, dX) and any nonexpansive map
f : A→ (Y, dY ), f can be extended to a nonexpansive map g : (X, dX)→ (Y, dY ).

It is well-known that any q-hyperconvex T0-quasi-metric space is T0-quasi-
metric injective (see [4, Theorem 1 ]).

Theorem 5.2. (compare [1, Theorem 3.1]) Let (X, d) be a metrically convex
T0-quasi-metric space. Consider a weakly externally q-hyperconvex subset A of
(X, d). Then for each ε1, ε2 > 0 there exists a nonexpansive retraction R from X
onto A which has property that if u ∈ X\A there exists v ∈ X\A with d(v,R(v)) =
dist(v, A) and d(R(v), v) = dist(A, v) and d(u, v) ≤ ε1 and d(v, u) ≤ ε2.

Proof. Let ε1, ε2 > 0 and we set

Sε1,ε2 = {u ∈ X : dist(u,A) = ε2 and dist(A, u) = ε1}.
Consider the family
Tε1,ε2 : {(Hε1,ε2 , r) : Hε1,ε2 ⊆ Sε1,ε2 and r : Hε1,ε2 ∪A→ A proximinal nonexpan-

sive retraction}. So Tε1,ε2 6= ∅, since from Lemma 4.5, there exists a proximinal
nonexpansive retract r with r : A ∪ {z} → A. If one partially orders Tε1,ε2 in
the usual way (Hε1,ε2 , r1) � (Kε1,ε2 , r2) if and only if Hε1,ε2 ⊆ Kε1,ε2 and r2 is an
extension of r1), then each chain in (Tε1,ε2 ,�) is bounded above. So by Zorn’s
Lemma (Tε1,ε2 ,�) has a maximal element which we denote by (Hε1,ε2 , r). We
want to show that Hε1,ε2 = Sε1,ε2 . Suppose that there exists v ∈ Sε1,ε2 such that
v /∈ Hε1,ε2 , and consider the set

P (v) = [∩x∈A(Cd(x, d(x, v)) ∩ (Cd−1(x, d(v, x)))]∩

[∩u∈Hε1,ε2 (Cd(r(u), d(u, v)) ∩ Cd−1(r(u), d(v, u)))] ∩ [Cd(v, ε2) ∩ Cd−1(v, ε1)] ∩ A.
We first want to show that P (v) 6= ∅, and in order to do this we need only to
show that the family [(Cd(r(u), d(u, v))u∈Hε1,ε2

, (Cd(x, d(x, v)))x∈A, Cd(v, ε2);

(Cd−1(r(u), d(v, u))u∈Hε1,ε2
, (Cd−1(x, d(v, x)))x∈A, Cd−1(v, ε1)] of double balls has

the mixed binary intersection property.
First note that if u1, u2 ∈ A, then

d(r(u1), r(u2)) ≤ d(u1, u2) ≤ d(u1, v) + d(v, u2).

Therefore Cd(r(u1), d(u1, v)) and Cd−1(r(u2), d(v, u2)) intersect by the metric con-
vexity of (X, d).

Furthermore, for each x, y ∈ A, d(x, y) ≤ d(x, v)+d(v, y) then metric convexity
of (X, d), we have that Cd(x, d(x, v)) and Cd−1(x, d(v, x)) intersect.

Of course , Cd(v, ε2) and Cd−1(v, ε1) intersect.
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Moreover, since d(u, r(u)) = ε2 and d(r(u), u) = ε1. Thus

d(r(u), v) ≤ d(r(u), u) + d(u, v) ≤ ε1 + d(u, v)

and
d(v, r(u)) ≤ d(v, u) + d(u, r(u)) ≤ d(v, u) + ε2.

Hence, Cd(r(u), d(u, v)) and Cd−1(v, ε1) intersect by metric convexity of (X, d) as
well as Cd−1(r(u), d(v, u)) and Cd(v, ε2) intersect.

Also, for x ∈ A,

d(r(u), x) ≤ d(r(u), r(v)) + d(r(v), x) ≤ d(u, v) + d(v, x)

and
d(x, r(u)) ≤ d(x, r(v)) + d(r(v), r(u)) ≤ d(x, v) + d(v, u).

By metric convexity of (X, d), we have that Cd(r(u), d(u, v)) and Cd−1(x, d(v, x))
intersect and Cd−1(r(u), d(v, u)) and Cd(x, d(x, v)) intersect too.

We have shown that the family
[(Cd(r(u), d(u, v))u∈Hε1,ε2

, (Cd(x, d(x, v)))x∈A, Cd(v, ε2);

(Cd−1(r(u), d(v, u))u∈Hε1,ε2
, (Cd−1(x, d(v, x)))x∈A, Cd−1(v, ε1)] of double balls has

the mixed binary intersection property.
Hence ∅ 6= P (v) ⊆ A. Now, let t ∈ P (v) and define r

′
: Hε1,ε2 ∪ {v} → A by

setting r
′
(v) = t and r

′
(z) = r(z) if z ∈ Hε1,ε2 ∪ {v}. Then for each u ∈ Hε1,ε2 ,

we have
d(r

′
(v), r

′
(u)) = d(t, r(u)) ≤ d(v, u)

and
d(r

′
(u), r

′
(v)) = d(r(u), t) ≤ d(u, v).

Moreover,

ε1 = infx∈A(d(x, v)) ≤ d(r
′
(v), v) = d(t, v) ≤ ε1,

so dist(D, v) = ε1. Similarly, we have dist(v,D) = ε2. Therefore, we conclude
that the pair (Hε1,ε2∪{v}, r

′
) contradicts the maximality of (Hε1,ε2 , r) in (Tε1,ε2 ,�).

Consequently, Hε1,ε2 = Sε1,ε2 . Therefore, we conclude that there exists a retraction
rε1,ε2 of Sε1,ε2 onto A with the property for each x ∈ Sε1,ε2 , rε1,ε2 ∈ P (x).

We next observe that if v ∈ S2ε1,2ε2 , then the set

P
′
(v) = [∩x∈A(Cd(x, d(x, v)) ∩ (Cd−1(x, d(v, x)))]∩

[∩u∈Sε1,ε2 (Cd(r(u), d(u, v))∩Cd−1(r(u), d(v, u)))]∩[Cd(v, 2ε2)∩Cd−1(v, 2ε1)]∩A 6= ∅.
To see that this, for any u ∈ S2ε1,2ε2 ,

d(v, r(u)) ≤ d(v, u) + d(u, r(u)) = d(u, v) + ε1 < d(v, u) + 2ε1

and
d(r(u), v) ≤ d(r(u), u) + d(u, v) = ε2 + d(u, v) < d(u, v) + 2ε2.

By selecting a point in P
′
(v) it is possible to extend rε1,ε2 nonexpansively from

Sε1,ε2 to Sε1,ε2 ∪ {v}. The previous argument tells how to extend rε1,ε2 to a non-
expansive retraction A ∪ Sε1,ε2 ∪ S2ε1,2ε2 onto A with the property that for each
x ∈ Sε1,ε2 ∪ S2ε1,2ε2 ,

r2ε1,2ε2(x) ∈ Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A.
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If we let S = ∪∞n=1Snε1,nε2 . By using induction and proceeding as above, one sees
that there exists a nonexpansive retraction r of A ∪ S onto A with the property
that for each x ∈ S,

r(x) ∈ Cd(x, dist(x,A)) ∩ Cd−1(x, dist(A, x)) ∩ A.
Therefore since A is itself q-hyperconvex (injective), we can extend r to a non-
expansive mapping R : M → A (by Definition 5.1). The conclusion follows from
the fact that if x ∈ X \ A then there exists u ∈ S such that d(x, u) ≤ ε1 and
d(u, x) ≤ ε2; thus d(R(x), R(u)) ≤ ε1 and d(R(u), R(x)) ≤ ε2. �

Remark 5.3. Note that metrical convexity assumption of (X, d) in Theorem 5.2
is very important, otherwise the result can not hold.

The following lemma is needed to prove that Nδ,ε(A) is weakly externally q-
hyperconvex when A is weakly externally q-hyperconvex.

Lemma 5.4. (compare [1, Lemma 3.1]) Let (X, d) be a q-hyperconvex T0-quasi-
metric space and A ⊆ X. Suppose that for any x ∈ X \ A and any δ ∈
(0, dist(x,A)) and ε ∈ (0, dist(A, x)) there exists a nonexpansive map

R : A ∪ {x} → Nδ,ε(A) such that R(u) = u, for all u ∈ A
and

R(x) ∈ [Cd(x, dist(x,Nδ,ε(A))) ∩ Cd−1(x, dist(Nδ,ε(A), x))] ∩Nδ,ε(A).

Then A is weakly externally q-hyperconvex.

Proof. Consider x ∈ X \ A, We need only to show that there exists a non-
expansive retraction r : A ∪ {x} → A such that d(r(x), x) = dist(A, x) and
d(x, r(x)) = dist(x,A), according to Corollary 4.8.

In order to obtain such retraction, we choose two families of nonnegative real
numbers {δn} ⊆ (0, dist(x,Nδ,ε(A))) and {εn} ⊆ (0, dist(Nδ,ε(A), x)) so that {δn}
and {εn} are decreasing sequences for which

∑∞
n=1δn < ∞ and

∑∞
n=1εn < ∞.

From the assumption, there exists a nonexpansive map

R1 : A ∪ {x} → Nδ1,ε1(A) such that R1(u) = u, for all u ∈ A
and

R1(x) = [Cd(x, dist(x,Nδ1,ε1(A))) ∩ Cd−1(x, dist(Nδ1,ε1(A), x))] ∩Nδ1,ε1(A).

By analogue arguments, there exists a nonexpansive map

R2 : A ∪ {R1(x)} → Nδ2,ε2(A) such that R2(u) = u, for all u ∈ A
and

R2(R1(x)) = [Cd(R1(x), dist(R1(x), Nδ2,ε2(A)))∩
Cd−1(R1(x), dist(Nδ2,ε2(A), R1(x)))] ∩Nδ2,ε2(A).

By setting R2(x) = (R2 ◦ R1)(x). Hence by induction for each n ∈ N, we define
a nonexpansive map

Rn : A ∪ {Rn−1(x)} → Nδn,εn(A) such that Rn(u) = u, for all u ∈ A
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and
Rn(Rn−1(x)) ∈ [Cd(Rn−1(x), dist(Rn−1(x), Nδ2,ε2(A)))∩
Cd−1(Rn−1(x), dist(Nδ2,ε2(A), Rn−1(x)))] ∩Nδ2,ε2(A).

One shows that {Rn(x) := Rn(Rn−1(x))} is a ds-Cauchy sequence and, thus
{Rn(x) is convergent. We obtain the desired retraction r by taking r(x) =
limn→∞Rn(x) and r(u) = u, for all u ∈ A. �

Theorem 5.5. Let (X, d) be a q-hyperconvex T0-quasi-metric space and A ⊆ X.
If A is a weakly externally q-hyperconvex, then for any ε1, ε2 > 0, Nε1,ε2(A) is also
weakly externally q-hyperconvex.

proof. Consider x ∈ X \Nε1,ε2(A) and let

δ1 ∈ (0, dist(x,Nε1,ε2(A)))

and
δ2 ∈ (0, dist(Nε1,ε2(A), x)).

To show that Nε1,ε2(A) is weakly externally q-hyperconvex, it is sufficient to show
that there exists a nonexpansive map R

′
: Nε1,ε2(A) ∪ {x} → Nε1,ε2(A) such that

R
′
(y) = y for all y ∈ Nε1,ε2(A)

and

R
′
(x) ∈ [Cd(x, dist(x,Nε1+δ1,ε2+δ2(A))) ∩ Cd−1(x, dist(Nε1+δ1,ε2+δ2(A), x))]∩

Nε1+δ1,ε2+δ2(A).

Since (X, d) is q-hyperconvex hence metrically convex and by Theorem 5.2,there
exists a nonexpansive retraction R from X onto A such that

d(u,R(u)) = dist(u,A) and d(R(u), u) = dist(A, u) for all u ∈ X.
Furthermore,

d(u,R(u)) ≤ dist(u,A) + δ1 and d(R(u), u) ≤ dist(A, u) + δ2

for all u ∈ X. Moreover, the retraction R may be defined so that

d(x,R(x)) = dist(x,A) and d(R(x), x) = dist(A, x).

If, we consider S such that

S = [Cd(R(x), δ2 + ε2) ∩ Cd−1(R(x), δ1 + ε1)]∩
[Cd(x, dist(x,A)− (δ1 + ε1)) ∩ Cd−1(x, dist(A, x)− (δ2 + ε2))]∩

[∩u∈Nε1,ε2 (Cd(u, d(u, x)) ∩ Cd−1(u, d(x, u)))].

To show that S 6= ∅, it suffices to show that the family

[Cd(R(x), δ2 + ε2), Cd(x, dist(x,A)− (δ2 + ε2)), (Cd(u, d(u, x))u∈Nε1,ε2
;

Cd−1(R(x), δ1 + ε1), Cd−1(x, dist(A, x)− (δ1 + ε1)), (Cd−1(u, d(x, u))u∈Nε1,ε2
]

double balls has the mixed binary intersection property.
We first note that, for x ∈ X \Nε1,ε2(A),

d(R(x), x) = dist(A, x) = ε2 + δ2 + dist(A, x)− (ε2 + δ2)



108 O. OLELA OTAFUDU

and

d(x,R(x)) = dist(x,A) = ε1 + δ1 + dist(x,A)− (ε1 + δ1).

Therefore Cd(R(x), δ2 + ε2) and Cd−1(x, dist(A, x)− (δ2 + ε2)) intersect by metric
convexity of (X, d) and Cd(x, dist(x,A)−(δ1+ε1)) and Cd−1(R(x), δ1+ε1) intersect
too.

Moreover, suppose u ∈ A. Then d(R(x), u) = d(R(x), R(u)) ≤ d(x, u) and
d(u,R(x)) = d(R(u), R(x)) ≤ d(u, x) since R is nonexpansive. On the other
hand, if u ∈ Nε1,ε2(A) \ A, then

d(R(x), u) ≤ d(R(x), R(u)) + d(R(u), u) ≤ d(x, u) + ε2 + δ2 = ε2 + δ2 + d(x, u)

and

d(u,R(x)) ≤ d(u,R(u)) + d(R(u), R(x)) ≤ ε1 + δ1 + d(u, x).

Thus Cd(R(x), δ2 + ε2) and Cd−1(u, d−1(x, u)) intersect by metric convexity on
(X, d) and Cd−1(R(x), δ1 + ε1) and Cd(u, d(u, x)) intersect by metric convexity of
(X, d).

We observe that Cd(R(x), δ2 + ε2) and Cd−1(R(x), δ1 + ε1) intersect and
Cd(u, d(u, x)) and Cd−1(u, d−1(x, u)) intersect too.

We have shown that the family

[Cd(R(x), δ2 + ε2), Cd(x, dist(x,A)− (δ2 + ε2)), (Cd(u, d(u, x))u∈Nε1,ε2
;

Cd−1(R(x), δ1 + ε1), Cd−1(x, dist(A, x)− (δ1 + ε1)), (Cd−1(u, d(x, u))u∈Nε1,ε2
]

of double balls has the mixed binary intersection property. Therefore S 6= ∅.
We note that if y ∈ S, then d(R(x), y) ≤ δ2 + ε2 and d(y,R(x)) ≤ δ1 + ε1

therefore y ∈ Nε1+δ1,ε2+δ2(A) = Nε1,ε2(Nδ1,δ2(A)).
Now, let t ∈ S and define R

′
: Nε1,ε2(A)∪{x} → Nε1,ε2(A) by setting R

′
(x) = t

and R
′
(u) = u if u ∈ Nε1,ε2(A). Then for each u ∈ Nε1,ε2(A), we have

d(R
′
(x), R

′
(u)) = d(t, u) ≤ d(x, u)

and

d(R
′
(u), R

′
(x)) = d(u, t) ≤ d(u, x),

so R
′

is nonexpansive map such that R
′
(u) = u for all u ∈ Nε1,ε2(A) and

R
′
(x) ∈ [Cd(x, dist(x,Nε1+δ1,ε2+δ2(A))) ∩ Cd−1(x, dist(Nε1+δ1,ε2+δ2(A), x))]∩

Nε1+δ1,ε2+δ2(A).

So Nε1,ε2(A) is weakly externally q-hyperconvex by Lemma 5.4. �
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1. R. Esṕınola, W.A. Kirk and G. López, Nonexpansive retraction in hyperconvex spaces, J.
Math. Anal. Appl. 251 (2000), 557–570.
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