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ABSTRACT. In this paper, we introduce a type of generalized Hausdorff oper-
ators and characterize the boundedness of these operators on Lebesgue spaces
and central Morrey spaces. Moreover, we obtain the operator norms on these
spaces. We also obtain sufficient and necessary conditions which ensure the
boundedness of their commutators on Lebesgue spaces and central Morrey
spaces with symbols in central BMO spaces. As applications, we give a new
method to obtain sharp bounds for weighted Hardy operators and weighted
Cesaro operators on Lebesgue spaces and central Morrey spaces.

1. INTRODUCTION

The study of Hausdorff operators has a long history in analysis. It can go
back to the Hausdorff summability method which was introduced in 1917 in con-
necting with summability of number series. The modern (continuous) versions
of Hausdorff operators were initiated with the work of Siskakas in complex anal-
ysis setting [16] and with the work of Georgakis [13] and Liflyand-Méricz in
the Fourier transform setting [15]. Recently, an increasing attention has been
acquired on the boundedness of Hausdorff operators and their commutators on
various spaces and their sharp bounds. For an overview, we refer to [3], [5], [0],
(7], [8], [10], [12], [14], [17] and references therein. The one dimensional Hausdorff
operator is defined by

he f(x) = /000 q)i%)f(t)dt, x>0,
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GENERALIZED HAUSDORFF OPERATORS 61

where ®(t) is a locally integrable function on (0, 00). By the generalized Minkowski
inequality and the scaling property, one can easily show that he is bounded on
LP(RY),1 < p < oo, if

/ ()t Frdt < oo
0

Hausdorff operator is connected to many well known operators in real and com-
plex analysis. It is easy to verify that the Hardy operator

bie) =1 [ s 2o

mﬂ@:/wﬂmﬁ

and its adjoint

Tt
are special cases of Hausdorff operator he if one replaces ® with radial functions
D1(t) = 7' X(1,00)(t) and Po(t) = x(0,1)(t), respectively. Let ¢ : [0,1] — [0, 00)
_ ¢(1/t)

be a measurable function, if we take ®3(t) = *~X(1,00)(t), then the Hausdorff

operator he will become the weighted Hardy operator defined by

U, f(x) = /0 Ft2)b(t)dt,x € R.

In 1984, Carton-Lebrun and Fosset in [4] first introduced the weighted Hardy
operator in n-dimension. In [1], they obtained that U, is bounded from BMO
into itself under certain conditions on ¢. In [18], Xiao got the BMO-norm of
Uy, which optimizes the main results in [4]. In addition, Xiao found that U, is
bounded on LP(R"), 1 < p < oo, if and only if

1
/ trp(t)dt < 0o
0
and he showed that

1
||U¢||LP(R")%LP(R"):/ trp(t)dt.
0

In 2012, Fu, Lu and Yuan ([11]), extended the results to the central Morrey spaces
and considered the boundedness of their commutators on these spaces. By the
analogues of singular and maximal operators associated with certain submanifolds
of positive codimension in R”, in [9], Chuong and Hung extended Uy to a gener-
alized weighted Hardy-Cesaro operator Uy ;. Let ¢ : [0,1] — [0,00),s5:[0,1] = R
be measurable functions. Then the generalized weighted Hardy-Cesaro operator
Us,s, associated to the parameter curves s(x,t) := s(t)z, is defined by

%Ammzﬁfwmwww

for measurable complex-valued functions on R™. If s(t) = ¢, Uy s is reduced to U.
Let b be a locally integrable function on R”. The commutators of b and operators
Uy s is defined by

Ups(F)(@) = b(x)Us,o(f)(x) = Up,s(bf) ().
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In [9], Chuong and Hung considered Uy s and their commutators in weighted L?
spaces and BMO spaces.

Motivated by [9], in this paper, we consider a kind of generalized Hausdorff
operators. Let ® be a locally integrable function, s be a measurable function on
R*. Then the generalized Hausdorff operator, associated to the parameter curves
s(x,t) := s(t)z, is defined by

Houf (@) = [ T fs(lu)ody

In addition, its commutator is defined as
®(y)

HE f(x) = b(x)Ho o f () —Has(bf)(x) = /R Tl

If s(t) = %, then Ho s is reduce to Hg defined by

Oy) 2
Hofe) = [ TR,
which is one of the extensions to high dimensional spaces, see [2]. There are other
ways to extend hg, see [3], [5], [17] and the references therein for details. If ®(¢) =
td(t)x(0,1)(t), then He s will be equivalent to Uy,. If ®(t) = " (1) x(1,00)(1),
then Hq s will be equivalent to Vy ¢, which is defined as

Voud @) = [ B p(s( 1

Moreover, let s(tf) = t, then it is the weighted Cesaro operator V,,, which is
defined as follows .
o) , @

Vofw) = [ S25G

It is adjoint with the weighted Hardy operator Us.

In what follows, we introduce some more definitions and notations. Let B(0,r)
denote the ball centered at 0 and with radius r. In [l], Alvararez, Guzman—
Partida and Lakey introduced the central Morrey spaces.

Definition 1.1. Let _zlv <A< 0and 1 <p < o0.A function f € LY (R") is said
to belong to the central Morrey spaces BPA(R") if and only if

1

f (s(lyDz) [b(x) = b (s(|yl)x)] dy.

).

1 P
oA (pny = SUP | ——————— z)Pdx | < oo.
s = 209 (s L, V@)
When A = — 7, then BPAR™) = LP(R™). One can easily check that BPA(R")
reduces to {0} when A < —1/p.
Definition 1.2. Let 1 < ¢ < oo. A function b € L] (R™) will be called in
CMO’(R™) if and only if

1 q
1llessorn = sup (— / Ib(x)—bB|qu) “ .
cno'@) =3P\ B0 oo

where bp = m fB(O,r) b(x)dzx.
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Further more, we can show that
BMO(R") ¢ CMO*(R"),1 < ¢ < o0,
CMO™(R") ¢ CMO®(R"),1< ¢, < q1 < 0.

When ¢ > 1, spaces CM Oq(]R”) become Banach spaces after identifying the
functions with differ by a constant almost everywhere. We refer for more details
to [1].

The main purpose of this article is to establish some boundedness properties
of the generalized Hausdorff operators and their commutators in central Morrey
spaces. The motivations of our results are the works in [9], [11] and [18]. More
precisely, in Section 2, we devoted to the sharp estimates of Hg 5 on the Lebesgue
spaces and the central Morrey spaces BP’A(R”). In Section 3, we establish the
sufficient and necessary conditions on the function ® which ensure the commu-
tators 7—[%75 with symbols in CMO" (R™) are bounded from one central Morrey

spaces BP1A(R™) to another central Morrey spaces BP*(R") and p, py, po satisfy
the equality % = pil + p%. These results extend the theorems in [11] and [18]. As
applications, we give a new method to obtain sharp bounds for weighted Hardy
operators and weighted Cesaro operators on central Morrey spaces. Instead of
standard methods in study of commutators of singular integrals by using sharp
maximal functions to control commutators, the key of our methods is to get a
pointwise estimate by using the boundedness of Hausdorff operators.

Throughout this paper, we write A < B to mean that A < C'B with some
positive constant C independent of appropriate quantities.

2. SHARP BOUNDEDNESS OF GENERALIZED HAUSDORFF OPERATORS

In this section, we discuss the sharp boundedness of generalized Hausdorff
operators Hg s on Lebesgue spaces and central Morrey spaces. Our theorems are
stated as follows.

Theorem 2.1. Let 1 < p < o0, —% < A\ < 0. Assume that ® is a non-negative
function. Let s : RT — R be a measurable function such that |s(t)| > 0 a.e.
t € R*. Denote

A= [ 29 ynmay.

re |yl

Then
HH‘P,SfHBPv\(]R") < AHfHBp,/\(Rn)
if and only if A < co. Moreover, we have

||/H(P,5 ||BF7>\(R"')_)BTJ,>\(RW,) - A'

Corollary 2.2. Let 1 < p < o0, —% < A < 0. Assume that ¢ is a non-negative

function. Let s : Rt — R be a measurable function such that |s(t)] > 0 a.e.
t € RY. Then

1)
1
1 oy < / O(0) (1) "] [ oo
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of and only iof
1
/¢@Mmmﬁ<w
0
Moreover, we have
1
ni
sl sy = | 00l

2)

to(t)
tn

1 n.
WoaFllonsen < [ SE1GIPE gpren
0

if and only if

20 D < oo
TR

Moreover, we have
Lo(t)

1 n.
HV¢>,sHBM(RnHBM(Rn) = o |3(¥)’ Adt.
0

Proof. 1) Taking ®(y) = |y|o(|y|)x{y<13(y), then by the polar decomposition, we
obtain

%szwlmwmmw:%%mn

where w,, denotes the Lebesgue measure of the unit sphere in R".
2) Taking ®(y) = o(1/|y])|y|" *x{u>13(y), then by the polar decomposition,
we obtain

Lo(t 1
o f ) = [ 2D p(s(Dyayit = ¥y f ().
0
Then the corollary is followed by Theorem 2.1. 0

Remark 2.3. If we take s(t) = % in Theorem 2.1, then by an easy calculation, we
get

A= [ @(y)lyl™" " dy.
Rn

Therefore, Hg is bounded on BP*(R") if and only if

[ ey < o

where —% < A<0.
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Proof of Theorem 2.1 By Minkowski’s inequality and a change of variables,

we have
o P oN\»
Mo fllirisom — (/ / ) ¢ (s 1))y das)
B(0,r) |JR? |y

< [SE(LL o)
LS nrs ([ ipa)”an

=

We obtain
[ Has fll gorgn)

1

! LI A\
< s s L e SO ([ )
[ s

Thus, He . maps BP*(R™) into itself and

P (y) n
[Pl aoysoaieny < [ RISy 2.1)

Conversely, to see the necessity, we prove it in two cases. '
Case 1. If —> <A <0, let fo(x) = [z[*". Tt is easy to check that fo € BP*(R")

and | foll g gy = wi*n? ™ (nAp +n) 5. Then,

. d(y n ey n
Howful) = 1ol [ DsDdy = o) [ T s(abIay
So,
D(y n
[Pl sy 2 [ S50y (22)

It follows that A < oco. Therefore, combining (2.1) and (2.2), we get

d(y) n
[ P / sl

Case 2. If A = —=, then for any € > 0, we take fl( ) = |x|7%7€)({|x|>1}( ).

By an elementary calculatlon, we have || fi||zorny = w,fj( ) . Denote S(z,y) =
{ylls(ly)x| > 1}, then

Hosfi(x) = |xy—n/p—e/s d(y)

(z,y) |y‘n

[s(ly))I~"P<dy.
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For any € > 0, if |z| > %, then S(,y) C S(z,y). Thus, we have

¢ —n/p—e g —n—pe %
(Moo fillosn — ( / / W) 1y r<dy| 12l pdas)
R™ S

(z,y) |y|n
, :
|a:|_”_p€dx)

| Dty eay
S(s,
= ket [ SWsqupay

Vv
-7 N
g\
¥

Y) |y|n
(L) ly|™

€ (I)(y) —n/p—e
= I ullran / D) s(lyl) 7 ~<dy.
S(Ly) Y|

Letting € — O(noticing €© — 1), then

d(y) n
[T P—— / Tls(l) 1y (2.3)
So, by (2.1) and (2.3), we obtain
d(y) n
YR —— / TRl

This completes the proof of Theorem 2.1.

3. COMMUTATORS OF GENERALIZED HAUSDORFF OPERATORS

Recently, in [9], the authors obtained a necessary and sufficient condition on
the function ¢, which ensures the boundedness of the generalized Hardy-Cesaro
operators and its commutators on weighted LP spaces and BMO spaces. The
purpose of this section is to establish a necessary and sufficient condition on the
function ®, which ensures the boundedness of the commutators with symbols in
CcM OP(R”) on central Morrey spaces. Our results extend the main theorems in
[11].

The main theorems in this section are formulated as follows.

Theorem 3.1. Let 1 < p < p; < oo,% = ;%+7%2’_% <A <0, let b(x) €

CMO™(R") and s : Rt — R be a measurable function such that |s(t)| > 0.
Denote

5 - [ 'Q)(y)'rsuyr)r”*logmax{2|s<ry\>|,m}dy.

oyl
If B < oo, then HY , is bounded from BPYA(R™) to BPA(R™). That is
||Hg>,sf||BPv\(R") = BHbHcMom(Rn)HfHBPM(Rn)-

Define new types of commutators generated by Hausdorff operators as follows.

: = o) s x) |b(x) — b(s x
He 1 f(2) _/|yg1 " f(s(lyDz) [b(z) = b(s([yl)=)] dy,
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’pr,zf(af)Z/l 2o) s Fs(yhz) [b(z) = bls(Jyl)=)] dy

y|>1 |y|n

Then, we can obtain the following sufficient and necessary conditions on ® which
ensure the boundedness of the commutators on BPA(R™).

Theorem 3.2. Let 1 <p<p < oo,% = + = —% <A<0,be C’MOPZ(]R")
Assume that ® is a non-negative integrable functzon

1) Let s : RY — R be a measurable function such that t* < |s(t)] < t7 a.e.
t € R™ for some constants 3,7 > 0. If we denote

&= [ T2l o2/l
lyl<1

Yl

then HY , is bounded from BPrAR™) to BPAR™) if and only if C; < oo.
2) Let s : Rt — R be a measurable function such that |s(t)| > t7 a.e. t € RT
for some constant v > 0. If we denote

I
cz—/ym o DI 10g 2}l

then M5, is bounded from BPYA(R™) to BPA(R™) if and only if Cy < co.

Corollary 3.3. Let1<p<p1<oo —1+——1<)\<O be CMO™ (R").

1) Let s : RT = R be a measumble function such that t* < |s(t ) <t ae.
t € RY for some constants 3,y > 0. Then Ugs is bounded from BPYR") to
BPA(R™) if and only if

2
/ B(t)]s(t)|" log ——dt < oo.
s

2) Let s : R™ — R be a measurable function such that |s(t)| > 7 a.e. t € RT
for some constant v > 0. Then V_ is bounded from BP**(R") to BP*(R") if and
only if

! 1 1
@b(;ﬂ”/\ log 2|s(z)|dt < 00.

0

The proof of this corollary is as similar as the proof of Corollary 2.2, we omit
the details here.

Remark 3.4. If we assume s(t) = ¢, then we get the following results for the
commutators of weighted Hardy operator U} f(z) 1= b(z)Uy(f)(x) — Us(bf)(x).
Namely, if p,p1, p2 and A satisfy the conditions as in Theorem 3.2, then for any
be CMO™ (R™), U} is bounded from BPA(R™) to BPA(R™) if and only if

1
2
/ o(t)t" log —dt < oo,
0

Under the same conditions on p, p1, po and A, the result for the commutators of

weighted Cesaro operator V) f(x) := b(x)Vy(f)(x)—Vs(bf)(z) is stated as follows.
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V is bounded from BPA(R™) to BPA(R™) if and only if
20

0 thrn)\

2
log Zdt < 00.
This is one of the main results in [11].

Now we are in a position to prove the theorems.
Proof of Theorem 3.1 Following, we will show that 7-[%73 is a bounded oper-

ator from BP**(R™) to BP*(R™). For any ball B(0,r) in R”, one has

[ e
su ) Py ) - ’ x);
<awplBO A ([ ][ TR0 )~ b |
dm)p

+sup B(0,1)| 5 ( / y / 2W) 1 (s(1yl)e) [b — Bgois]
/]R (I)(y)f(SOnyE) [brsqunis — b(s(lyl))] dy

n ylm
+sup | B0, )5 ( / !
r>0 B(0,r) n |?J|

=+ 11+ 111,

where bg = m fB(O " f(x)dx. First, let us estimate I. Since % = i = by
Holder’s inequality and Theorem 2.1, we have

I = sup ]B(O,r)]_%_)‘ (/ |Hosf(x)|P|b(z) — bB]pdx)
B(0,r)

r>0

< sup|BO,1)[ (/ |H¢,Sf<x>|mdx)“ (/ |b<x>—bB|p2dx)”
>0 B(0,r) B(0,r)

(b n.
< /R |‘(’n)‘| (lyDI™ dyl1bl] ¢ iror2 ny 1L | or s )

For II, we divide it into two parts as follows. Using Minkowski’s inequality, one
has

17

1 (I) p
< f,}i%|B(0,r)|7*A /R ’;‘Zi) (/B(O )\f(8(|y|)w) [b5 = bisyi8] | dff) dy

su r)| " ()] S z) |bg — b sl dx %d
< T>IOD|B(0, )| /|< (/B(Om)\f( (lyh) [ (i) | > y

s(uhi<t |y[™

1
P(y P
—i—sup]B(O,r) P A/ | (n)l </ ‘f(8(|y’):l:) [bB—b|5(|y|)B”pd2}) dy
r>0 sluhi=1 1Yl B(0)
= Ill +]]2

3=

First, we estimate II;. For any 0 < |s(|y|)| < 1, there exists a k € ZT, such
that 281 < |s(|y|)|~' < 2*. Then due to Holder’s inequality and changing of
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variables, we get

@ n
11 < 1 o o / N PWL ) *(sz 5= by + b kB—bs<|y>B|> dy.

<1yl =

Using Holder’s inequality, for any ¢ € Z,q > 1, then in the inside integral, we
obtain

1
271 B|

 (b(@) — byp)dn

/zi—lB(b(x) — byip)dr| =

1

1 7
< . b(x) — byip|d < |1bll 1o mn -
= (|QzB| 2iB| (x) = baip x) < [[bllcsiror @y

|b2iB - b2i—13|

It follows that

1L
= [®(y)] n

= Z/ Zs(lyD 1™ (k + Dyl1bll cxrorz @ || o1 ny
= Jo-r1ggs(ypi<a—+ 1Yl
= 12 (y)] n

<>/ DL (1)1 10 2% + 1)y lbll sz o | gmv e
= Jo-rrggs(yhi<a—+ 1Yl

B s i
<§:/}1qhm9% (Dl ( %awm*”)

dy“b”cMo”?(Rn)||fHBmA(JRn)

D (y)] \ 1
< QDI (108 o + 1) dylblcsors a1l e
/IS(y|)<1 [yl Is(|y])] cyoP? () 1/ 11 BP1A (RR)

|D(y)| N )
< |s(jy])|™ ( log Ay 1]l 072
/|s<y|>g1 [yl [s(ly])] CIO" (R

Using an argument similar to the proof of /1, we have

|f||Bp17A(Rn)-

[2(y)] n
I, < /( |> |s(lyD ™ (log 2[s([y) ) dyl1bll cxror2 ey | F | 5oror gny -
s(ly

|>1 ly|"

Finally, we estimate III. By Minkowski’s inequality and Holder’s inequality, we
have

3=

r>0 |y|n

HTSWMB@ﬂ|;A/n@@N<Aw)U@WWU@MWB_M (1) }Vm>(@
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_1_ d(y )
< sup B0.1)| + [2(v) (/ ! <<ry|>:c>|mdx)
>0 |yl B(0,r)
(/ b8 — b(s(ly])z)[” dﬁf)
B(0,r
<sup (0.1 4 [ Wl (] s
>0 re Y| B(O,r|s(|y])))

1

: (/ D1s(yhiB — b($)|p2d$) dy
BOss(lD))

[2(y)] n
S/R W|S(Iy|)| 2dy1bll osrorz o 1F | oo n)-

Combining I, IT and III, we have proved Theorem 3.1.

Proof of Theorem 3.2 1) The sufficient part is similar to the proof of Theorem
3.1. We only need to give the proof of the necessary part.

Case 1. If —}D <\ <0, we take fo(x) = |z[*. A routine computation by the

3 _a
polar transformation shows that || fol| gri.»gn) = W, At P Apin+n) 7 < co. So

fo € BPA(R™). Let by(z) = log|z|, = € R", then by € BMO(R") ¢ CMO"™ (R")

and

D (y) 1
H fola) = o] / Is(ly])|™ log ———dy.
® wi<1 1yl" s(ly])]
Since 0 < [s(|y|)| < |y|” < 1, we have
(y) . 1
IHD foll gy = / Y s(|y)) ™ log Ayl foll oy
o [s(1y])]
— wg’\n?“ (Apn—i—n)_zl’/ (n)] (Jy))|™ log L dy.
ly|<1 Y| s(lyl)]
So,
(y) \ 1
I Lo oy = / s(ly])|™ log ———dy.
BLIBAEDSEAED = [ <t Tyl s(yD)]
Therefore, we obtain
(I)(?J) A 1
|s(ly])[™ log dy < . (3.1)
/|y|<1 " S|

For |s(ly])| < |y|7, it follows that

®(y) A o(y . N
[ = [ o <o 02

1 1
2 2
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On the other hand, for ®(y) is an integral function and |s(|y|)| > |y|?(8 > 0) and
A < 0, we know that

Y]
According to (3.2) and (3.3), we have

[
y)

@(y) A P A 1
C :10g2/ "y +/ s(ly))|** log dy.
1 e o 2D e Topr PDT s s

Then, combining (3.1) and (3.4), we have C; < c©.
Case 2. If A = —113, then for any 0 < e < 1, let fi(2) = |#|"» “X{z>1}(z). By a

. Let by(z) = log |z|,z € R™,

[ sy < oo 33

s(ly)["dy < oo. (3.4)

Noticing that

1
routine calculation, we have || fi||zr@n) = wi (€p)
then by € CMO™(R") and we have

d(y
H £ (2) = || /P / (n)
wllvl<1y N Sy Yl

where S(z,y) = {y||s(|y|)z| > 1}.Thus, for any € > 0, we have
”%%),Jl”L"(R")

1
[s(lyDI~™/"~log dy,
[s(ly])]

=

(I) n € P —n—pe
([ Wy~ 1og | Jaf
21> 2 | i<y sy VI |s (| I)I
v -1 € CI) n 6 1
> wier) b [ sl =~ log L dy
wlvl<1} N Sew) Y 1s(ly])]
€ CI)( ) n e 1
— e illen [ 9| (yl) < log ———dy.
fwlvl<13 N S(ew) Y Is(ly])]
It follows that
o (y) |
I |l oo @) Lo 266/ Is(|y)| ="~ log ———
Pl wlvl<y NSy 91" \(Iyl)\
Letting € — O(using €¢ — 1), then we obtain
a(y) 1
I | oo ooy > / W) D10 a.
PHEEREED = e Tyl 15y

So, combining the boundedness of Hq) 1, We obtain

D) gy ] N
/| DI g forrdy < oo

By a similar proof as that for Case 1, we get

‘I)<3/>S “n/p ~ 5o
/Iylél sl < o
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This completes the proof of part 1).

2) The proof for 2) is similar to that of 1), except replacing the function by(x)

by log ﬁ We omit the details.
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