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NECESSARY AND SUFFICIENT CONDITIONS FOR
GENERALIZED HAUSDORFF OPERATORS AND

COMMUTATORS
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Abstract. In this paper, we introduce a type of generalized Hausdorff oper-
ators and characterize the boundedness of these operators on Lebesgue spaces
and central Morrey spaces. Moreover, we obtain the operator norms on these
spaces. We also obtain sufficient and necessary conditions which ensure the
boundedness of their commutators on Lebesgue spaces and central Morrey
spaces with symbols in central BMO spaces. As applications, we give a new
method to obtain sharp bounds for weighted Hardy operators and weighted
Cesàro operators on Lebesgue spaces and central Morrey spaces.

1. Introduction

The study of Hausdorff operators has a long history in analysis. It can go
back to the Hausdorff summability method which was introduced in 1917 in con-
necting with summability of number series. The modern (continuous) versions
of Hausdorff operators were initiated with the work of Siskakas in complex anal-
ysis setting [16] and with the work of Georgakis [13] and Liflyand–Móricz in
the Fourier transform setting [15]. Recently, an increasing attention has been
acquired on the boundedness of Hausdorff operators and their commutators on
various spaces and their sharp bounds. For an overview, we refer to [3], [5], [6],
[7], [8], [10], [12], [14], [17] and references therein. The one dimensional Hausdorff
operator is defined by

hΦf(x) =

∫ ∞
0

Φ(x
t
)

t
f(t)dt, x > 0,
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GENERALIZED HAUSDORFF OPERATORS 61

where Φ(t) is a locally integrable function on (0,∞). By the generalized Minkowski
inequality and the scaling property, one can easily show that hΦ is bounded on
Lp(R+), 1 ≤ p ≤ ∞, if ∫ ∞

0

|Φ(t)|t−1+ 1
pdt <∞.

Hausdorff operator is connected to many well known operators in real and com-
plex analysis. It is easy to verify that the Hardy operator

hf(x) =
1

x

∫ x

0

f(t)dt, x 6= 0,

and its adjoint

h∗f(x) =

∫ +∞

x

f(t)

t
dt

are special cases of Hausdorff operator hΦ if one replaces Φ with radial functions
Φ1(t) = t−1χ(1,∞)(t) and Φ2(t) = χ(0,1)(t), respectively. Let φ : [0, 1] → [0,∞)

be a measurable function, if we take Φ3(t) = φ(1/t)
t
χ(1,∞)(t), then the Hausdorff

operator hΦ will become the weighted Hardy operator defined by

Uφf(x) =

∫ 1

0

f(tx)φ(t)dt, x ∈ R.

In 1984, Carton-Lebrun and Fosset in [4] first introduced the weighted Hardy
operator in n-dimension. In [4], they obtained that Uφ is bounded from BMO
into itself under certain conditions on φ. In [18], Xiao got the BMO-norm of
Uφ, which optimizes the main results in [4]. In addition, Xiao found that Uφ is
bounded on Lp(Rn), 1 ≤ p ≤ ∞, if and only if∫ 1

0

t−
n
pφ(t)dt <∞

and he showed that

‖Uφ‖Lp(Rn)→Lp(Rn) =

∫ 1

0

t−
n
pφ(t)dt.

In 2012, Fu, Lu and Yuan ([11]), extended the results to the central Morrey spaces
and considered the boundedness of their commutators on these spaces. By the
analogues of singular and maximal operators associated with certain submanifolds
of positive codimension in Rn, in [9], Chuong and Hung extended Uφ to a gener-
alized weighted Hardy-Cesàro operator Uφ,s. Let φ : [0, 1]→ [0,∞), s : [0, 1]→ R
be measurable functions. Then the generalized weighted Hardy-Cesáro operator
Uφ,s, associated to the parameter curves s(x, t) := s(t)x, is defined by

Uφ,s(f)(x) =

∫ 1

0

f(s(t)x)φ(t)dt,

for measurable complex-valued functions on Rn. If s(t) = t, Uφ,s is reduced to Uφ.
Let b be a locally integrable function on Rn. The commutators of b and operators
Uφ,s is defined by

U b
φ,s(f)(x) = b(x)Uφ,s(f)(x)− Uφ,s(bf)(x).
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In [9], Chuong and Hung considered Uφ,s and their commutators in weighted Lp

spaces and BMO spaces.
Motivated by [9], in this paper, we consider a kind of generalized Hausdorff

operators. Let Φ be a locally integrable function, s be a measurable function on
R+. Then the generalized Hausdorff operator, associated to the parameter curves
s(x, t) := s(t)x, is defined by

HΦ,sf(x) =

∫
Rn

Φ(y)

|y|n
f(s(|y|)x)dy.

In addition, its commutator is defined as

Hb
Φ,sf(x) = b(x)HΦ,sf(x)−HΦ,s(bf)(x) =

∫
Rn

Φ(y)

|y|n
f (s(|y|)x) [b(x)− b (s(|y|)x)] dy.

If s(t) = 1
t
, then HΦ,s is reduce to HΦ defined by

HΦf(x) =

∫
Rn

Φ(y)

|y|n
f(

x

|y|
)dy,

which is one of the extensions to high dimensional spaces, see [2]. There are other
ways to extend hΦ, see [3], [5], [17] and the references therein for details. If Φ(t) =
tφ(t)χ(0,1)(t), then HΦ,s will be equivalent to Uφ,s. If Φ(t) = tn−1φ(1

t
)χ(1,∞)(t),

then HΦ,s will be equivalent to Vφ,s, which is defined as

Vφ,sf(x) =

∫ 1

0

φ(t)

tn
f(s(

1

t
)x)dt.

Moreover, let s(t) = t, then it is the weighted Cesàro operator Vφ, which is
defined as follows

Vφf(x) =

∫ 1

0

φ(t)

tn
f(
x

t
)dt.

It is adjoint with the weighted Hardy operator Uφ.
In what follows, we introduce some more definitions and notations. Let B(0, r)

denote the ball centered at 0 and with radius r. In [1], Alvararez, Guzman–
Partida and Lakey introduced the central Morrey spaces.

Definition 1.1. Let −1
p
≤ λ < 0 and 1 < p <∞.A function f ∈ Lploc(Rn) is said

to belong to the central Morrey spaces Ḃp,λ(Rn) if and only if

‖f‖Ḃp,λ(Rn) = sup
r>0

(
1

|B(0, r)|1+λp

∫
B(0,r)

|f(x)|pdx
) 1

p

<∞.

When λ = −1
p
, then Ḃp,λ(Rn) = Lp(Rn). One can easily check that Ḃp,λ(Rn)

reduces to {0} when λ < −1/p.

Definition 1.2. Let 1 ≤ q < ∞. A function b ∈ Lqloc(Rn) will be called in
˙CMO

q
(Rn) if and only if

‖b‖ ˙CMO
q
(Rn) = sup

r>0

(
1

|B(0, r)|

∫
B(0,r)

|b(x)− bB|qdx
) 1

q

<∞,

where bB = 1
|B(0,r)|

∫
B(0,r)

b(x)dx.
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Further more, we can show that

BMO(Rn) ⊂ ˙CMO
q
(Rn), 1 ≤ q <∞,

˙CMO
q1

(Rn) ⊂ ˙CMO
q2

(Rn), 1 ≤ q2 < q1 <∞.
When q > 1, spaces ˙CMO

q
(Rn) become Banach spaces after identifying the

functions with differ by a constant almost everywhere. We refer for more details
to [1].

The main purpose of this article is to establish some boundedness properties
of the generalized Hausdorff operators and their commutators in central Morrey
spaces. The motivations of our results are the works in [9], [11] and [18]. More
precisely, in Section 2, we devoted to the sharp estimates of HΦ,s on the Lebesgue

spaces and the central Morrey spaces Ḃp,λ(Rn). In Section 3, we establish the
sufficient and necessary conditions on the function Φ which ensure the commu-
tators Hb

Φ,s with symbols in ˙CMO
p2

(Rn) are bounded from one central Morrey

spaces Ḃp1,λ(Rn) to another central Morrey spaces Ḃp,λ(Rn) and p, p1, p2 satisfy
the equality 1

p
= 1

p1
+ 1

p2
. These results extend the theorems in [11] and [18]. As

applications, we give a new method to obtain sharp bounds for weighted Hardy
operators and weighted Cesàro operators on central Morrey spaces. Instead of
standard methods in study of commutators of singular integrals by using sharp
maximal functions to control commutators, the key of our methods is to get a
pointwise estimate by using the boundedness of Hausdorff operators.

Throughout this paper, we write A � B to mean that A ≤ CB with some
positive constant C independent of appropriate quantities.

2. Sharp boundedness of Generalized Hausdorff operators

In this section, we discuss the sharp boundedness of generalized Hausdorff
operators HΦ,s on Lebesgue spaces and central Morrey spaces. Our theorems are
stated as follows.

Theorem 2.1. Let 1 ≤ p < ∞,−1
p
≤ λ < 0. Assume that Φ is a non-negative

function. Let s : R+ → R be a measurable function such that |s(t)| > 0 a.e.
t ∈ R+. Denote

A =

∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy.

Then
‖HΦ,sf‖Ḃp,λ(Rn) ≤ A‖f‖Ḃp,λ(Rn)

if and only if A <∞. Moreover, we have

‖HΦ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) = A.

Corollary 2.2. Let 1 ≤ p < ∞,−1
p
≤ λ < 0. Assume that φ is a non-negative

function. Let s : R+ → R be a measurable function such that |s(t)| > 0 a.e.
t ∈ R+. Then

1)

‖Uφ,sf‖Ḃp,λ(Rn) ≤
∫ 1

0

φ(t)|s(t)|nλdt‖f‖Ḃp,λ(Rn)
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if and only if ∫ 1

0

φ(t)|s(t)|nλdt <∞.

Moreover, we have

‖Uφ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) =

∫ 1

0

φ(t)|s(t)|nλdt.

2)

‖Vφ,sf‖Ḃp,λ(Rn) ≤
∫ 1

0

φ(t)

tn
|s(1

t
)|nλdt‖f‖Ḃp,λ(Rn)

if and only if ∫ 1

0

φ(t)

tn
|s(1

t
)|nλdt <∞.

Moreover, we have

‖Vφ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) =

∫ 1

0

φ(t)

tn
|s(1

t
)|nλdt.

Proof. 1) Taking Φ(y) = |y|φ(|y|)χ{|y|≤1}(y), then by the polar decomposition, we
obtain

HΦ,sf(x) = ωn

∫ 1

0

φ(t)f(s(t)x)dt = ωnUφ,sf(x),

where ωn denotes the Lebesgue measure of the unit sphere in Rn.
2) Taking Φ(y) = φ(1/|y|)|y|n−1χ{|y|≥1}(y), then by the polar decomposition,

we obtain

HΦ,sf(x) = ωn

∫ 1

0

φ(t)

tn
f(s(

1

t
)x)dt = ωnVφ,sf(x).

Then the corollary is followed by Theorem 2.1. �

Remark 2.3. If we take s(t) = 1
t

in Theorem 2.1, then by an easy calculation, we
get

A =

∫
Rn

Φ(y)|y|−n−nλdy.

Therefore, HΦ is bounded on Ḃp,λ(Rn) if and only if∫
Rn

Φ(y)|y|−n−nλdy <∞,

where −1
p
≤ λ < 0.
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Proof of Theorem 2.1 By Minkowski’s inequality and a change of variables,
we have

‖HΦ,sf‖Lp(B(0,r)) =

(∫
B(0,r)

∣∣∣∣∫
Rn

Φ(y)

|y|n
f(s(|y|)x)dy

∣∣∣∣p dx) 1
p

≤
∫
Rn

|Φ(y)|
|y|n

(∫
B(0,r)

|f(s(|y|)x)|pdx
) 1

p

dy

=

∫
Rn

|Φ(y)|
|y|n

|s(|y|)|−
n
p

(∫
B(0,|s(|y|)|r)

|f(x)|pdx
) 1

p

dy.

We obtain

‖HΦ,sf‖Ḃp,λ(Rn)

≤ sup
r>0

1

|B(0, r)|1/p+λ

∫
Rn

|Φ(y)|
|y|n

|s(|y|)|−
n
p

(∫
B(0,|s(|y|)|r)

|f(x)|pdx
) 1

p

dy

=

∫
Rn

|Φ(y)|
|y|n

|s(|y|)|nλdy‖f‖Ḃp,λ(Rn).

Thus, HΦ,s maps Ḃp,λ(Rn) into itself and

‖HΦ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) ≤
∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy. (2.1)

Conversely, to see the necessity, we prove it in two cases.
Case 1. If −1

p
< λ < 0, let f0(x) = |x|λn. It is easy to check that f0 ∈ Ḃp,λ(Rn)

and ‖f0‖Ḃp,λ(Rn) = ω−λn n
1
p

+λ(nλp+ n)−
1
p . Then,

HΦ,sf0(x) = |x|nλ
∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy = f0(x)

∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy.

So,

‖HΦ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) ≥
∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy. (2.2)

It follows that A <∞. Therefore, combining (2.1) and (2.2), we get

‖HΦ,s‖Ḃp,λ(Rn)→Ḃp,λ(Rn) =

∫
Rn

Φ(y)

|y|n
|s(|y|)|nλdy.

Case 2. If λ = −1
p
, then for any ε > 0, we take f1(x) = |x|−

n
p
−εχ{|x|≥1}(x).

By an elementary calculation, we have ‖f1‖Lp(Rn) = ω
1
p
n (εp)−

1
p . Denote S(x, y) =

{y||s(|y|)x| ≥ 1}, then

HΦ,sf1(x) = |x|−n/p−ε
∫
S(x,y)

Φ(y)

|y|n
|s(|y|)|−n/p−εdy.
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For any ε > 0, if |x| > 1
ε
, then S(1

ε
, y) ⊂ S(x, y). Thus, we have

‖HΦ,sf1‖Lp(Rn) =

(∫
Rn

∣∣∣∣∫
S(x,y)

Φ(y)

|y|n
|s(|y|)|−n/p−εdy

∣∣∣∣p |x|−n−pεdx) 1
p

≥

(∫
|x|> 1

ε

∣∣∣∣∣
∫
S( 1

ε
,y)

Φ(y)

|y|n
|s(|y|)|−n/p−εdy

∣∣∣∣∣
p

|x|−n−pεdx

) 1
p

= ω
1
p
n (εp)−

1
p εε
∫
S( 1

ε
,y)

Φ(y)

|y|n
|s(|y|)|−n/p−εdy

= εε‖f1‖Lp(Rn)

∫
S( 1

ε
,y)

Φ(y)

|y|n
|s(|y|)|−n/p−εdy.

Letting ε→ 0(noticing εε → 1), then

‖HΦ,s‖Lp(Rn)→Lp(Rn) ≥
∫
Rn

Φ(y)

|y|n
|s(|y|)|−n/pdy. (2.3)

So, by (2.1) and (2.3), we obtain

‖HΦ,s‖Lp(Rn)→Lp(Rn) =

∫
Rn

Φ(y)

|y|n
|s(|y|)|−n/pdy.

This completes the proof of Theorem 2.1.

3. Commutators of generalized Hausdorff operators

Recently, in [9], the authors obtained a necessary and sufficient condition on
the function φ, which ensures the boundedness of the generalized Hardy-Cesàro
operators and its commutators on weighted Lp spaces and BMO spaces. The
purpose of this section is to establish a necessary and sufficient condition on the
function Φ, which ensures the boundedness of the commutators with symbols in

˙CMO
p
(Rn) on central Morrey spaces. Our results extend the main theorems in

[11].
The main theorems in this section are formulated as follows.

Theorem 3.1. Let 1 ≤ p < p1 < ∞, 1
p

= 1
p1

+ 1
p2
,−1

p
≤ λ < 0, let b(x) ∈

˙CMO
p2

(Rn) and s : R+ → R be a measurable function such that |s(t)| > 0.
Denote

B =

∫
Rn

|Φ(y)|
|y|n

|s(|y|)|nλ log max

{
2|s(|y|)|, 2

|s(|y|)|

}
dy.

If B <∞, then Hb
Φ,s is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn). That is

‖Hb
Φ,sf‖Ḃp,λ(Rn) � B‖b‖ ˙CMO

p2 (Rn)‖f‖Ḃp1,λ(Rn).

Define new types of commutators generated by Hausdorff operators as follows.

Hb
Φ,1f(x) =

∫
|y|≤1

Φ(y)

|y|n
f(s(|y|)x) [b(x)− b(s(|y|)x)] dy,
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Hb
Φ,2f(x) =

∫
|y|≥1

Φ(y)

|y|n
f(s(|y|)x) [b(x)− b(s(|y|)x)] dy.

Then, we can obtain the following sufficient and necessary conditions on Φ which
ensure the boundedness of the commutators on Ḃp,λ(Rn).

Theorem 3.2. Let 1 ≤ p < p1 <∞, 1
p

= 1
p1

+ 1
p2
,−1

p
≤ λ < 0, b ∈ ˙CMO

p2
(Rn).

Assume that Φ is a non-negative integrable function.
1) Let s : R+ → R be a measurable function such that tβ ≤ |s(t)| ≤ tγ a.e.

t ∈ R+ for some constants β, γ > 0. If we denote

C1 =

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log 2/|s(|y|)|dy,

then Hb
Φ,1 is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn) if and only if C1 <∞.

2) Let s : R+ → R be a measurable function such that |s(t)| ≥ tγ a.e. t ∈ R+

for some constant γ > 0. If we denote

C2 =

∫
|y|≥1

Φ(y)

|y|n
|s(|y|)|nλ log 2|s(|y|)|dy,

then Hb
Φ,2 is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn) if and only if C2 <∞.

Corollary 3.3. Let 1 ≤ p < p1 <∞, 1
p

= 1
p1

+ 1
p2
,−1

p
≤ λ < 0, b ∈ ˙CMO

p2
(Rn).

1) Let s : R+ → R be a measurable function such that tβ ≤ |s(t)| ≤ tγ a.e.
t ∈ R+ for some constants β, γ > 0. Then U b

φ,s is bounded from Ḃp1,λ(Rn) to

Ḃp,λ(Rn) if and only if ∫ 1

0

φ(t)|s(t)|nλ log
2

|s(t)|
dt <∞.

2) Let s : R+ → R be a measurable function such that |s(t)| ≥ tγ a.e. t ∈ R+

for some constant γ > 0. Then V b
φ,s is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn) if and

only if ∫ 1

0

φ(t)

tn
|s(1

t
)|nλ log 2|s(1

t
)|dt <∞.

The proof of this corollary is as similar as the proof of Corollary 2.2, we omit
the details here.

Remark 3.4. If we assume s(t) = t, then we get the following results for the
commutators of weighted Hardy operator U b

φf(x) := b(x)Uφ(f)(x) − Uφ(bf)(x).
Namely, if p, p1, p2 and λ satisfy the conditions as in Theorem 3.2, then for any
b ∈ ˙CMO

p2
(Rn), U b

φ is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn) if and only if∫ 1

0

φ(t)tnλ log
2

t
dt <∞.

Under the same conditions on p, p1, p2 and λ, the result for the commutators of
weighted Cesàro operator V b

φf(x) := b(x)Vφ(f)(x)−Vφ(bf)(x) is stated as follows.
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V b
φ is bounded from Ḃp1,λ(Rn) to Ḃp,λ(Rn) if and only if∫ 1

0

φ(t)

tn+nλ
log

2

t
dt <∞.

This is one of the main results in [11].

Now we are in a position to prove the theorems.
Proof of Theorem 3.1 Following, we will show that Hb

Φ,s is a bounded oper-

ator from Ḃp1,λ(Rn) to Ḃp,λ(Rn). For any ball B(0, r) in Rn, one has

‖Hb
Φ,sf‖Ḃp,λ(Rn)

≤ sup
r>0
|B(0, r)|−

1
p
−λ
(∫

B(0,r)

∣∣∣∣∫
Rn

Φ(y)

|y|n
f(s(|y|)x) [b(x)− bB] dy

∣∣∣∣p dx) 1
p

+ sup
r>0
|B(0, r)|−

1
p
−λ
(∫

B(0,r)

∣∣∣∣∫
Rn

Φ(y)

|y|n
f(s(|y|)x)

[
bB − b|s(|y|)|B

]
dy

∣∣∣∣p dx) 1
p

+ sup
r>0
|B(0, r)|−

1
p
−λ
(∫

B(0,r)

∣∣∣∣∫
Rn

Φ(y)

|y|n
f(s(|y|)x)

[
b|s(|y|)|B − b(s(|y|)x)

]
dy

∣∣∣∣p dx) 1
p

:= I + II + III,

where bB = 1
|B(0,r)|

∫
B(0,r)

f(x)dx. First, let us estimate I. Since 1
p

= 1
p1

+ 1
p2

, by

Hölder’s inequality and Theorem 2.1, we have

I = sup
r>0
|B(0, r)|−

1
p
−λ
(∫

B(0,r)

|HΦ,sf(x)|p|b(x)− bB|pdx
) 1

p

≤ sup
r>0
|B(0, r)|−

1
p
−λ
(∫

B(0,r)

|HΦ,sf(x)|p1dx
) 1

p1

(∫
B(0,r)

|b(x)− bB|p2dx
) 1

p2

≤
∫
Rn

|Φ(y)|
|y|n

|s(|y|)|nλdy‖b‖ ˙CMO
p2 (Rn)‖f‖Ḃp1,λ(Rn).

For II, we divide it into two parts as follows. Using Minkowski’s inequality, one
has

II

≤ sup
r>0
|B(0, r)|−

1
p
−λ
∫
Rn

Φ(y)

|y|n

(∫
B(0,r)

∣∣f(s(|y|)x)
[
bB − b|s(|y|)|B

]∣∣p dx) 1
p

dy

≤ sup
r>0
|B(0, r)|−

1
p
−λ
∫
|s(|y|)|≤1

|Φ(y)|
|y|n

(∫
B(0,r)

∣∣f(s(|y|)x)
[
bB − b|s(|y|)|B

]∣∣p dx) 1
p

dy

+ sup
r>0
|B(0, r)|−

1
p
−λ
∫
|s(|y|)|≥1

|Φ(y)|
|y|n

(∫
B(0,r)

∣∣f(s(|y|)x)
[
bB − b|s(|y|)|B

]∣∣p dx) 1
p

dy

:= II1 + II2.

First, we estimate II1. For any 0 < |s(|y|)| ≤ 1, there exists a k ∈ Z+, such
that 2k−1 ≤ |s(|y|)|−1 < 2k. Then due to Hölder’s inequality and changing of
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variables, we get

II1 ≤ ‖f‖Ḃp1,λ(Rn)
∫
|s(|y|)|≤1

|Φ(y)|
|y|n

|s(|y|)|nλ
(

k∑
i=1

|b2−iB − b2−i+1B |+ |b2−kB − b|s(|y|)|B |

)
dy.

Using Hölder’s inequality, for any i ∈ Z, q ≥ 1, then in the inside integral, we
obtain

|b2iB − b2i−1B| =
1

|2i−1B|

∣∣∣∣∫
2i−1B

(b(x)− b2iB)dx

∣∣∣∣ � 1

|2iB|

∣∣∣∣∫
2iB

(b(x)− b2iB)dx

∣∣∣∣
≤

(
1

|2iB|

∫
2iB

|b(x)− b2iB|qdx
) 1

q

≤ ‖b‖ ˙CMO
q
(Rn).

It follows that

II1

�
∞∑
k=o

∫
2−k−1≤|s(|y|)|≤2−k

|Φ(y)|
|y|n

|s(|y|)|nλ(k + 1)dy‖b‖ ˙CMO
p2 (Rn)‖f‖Ḃp1,λ(Rn)

�
∞∑
k=o

∫
2−k−1≤|s(|y|)|≤2−k

|Φ(y)|
|y|n

|s(|y|)|nλ(log 2k + 1)dy‖b‖ ˙CMO
p2 (Rn)‖f‖Ḃp1,λ(Rn)

≤
∞∑
k=o

∫
2−k−1≤|s(|y|)|≤2−k

|Φ(y)|
|y|n

|s(|y|)|nλ
(

log
1

|s(|y|)|
+ 1

)
dy‖b‖ ˙CMO

p2 (Rn)‖f‖Ḃp1,λ(Rn)

≤
∫
|s(|y|)|≤1

|Φ(y)|
|y|n

|s(|y|)|nλ
(

log
1

|s(|y|)|
+ 1

)
dy‖b‖ ˙CMO

p2 (Rn)‖f‖Ḃp1,λ(Rn)

≤
∫
|s(|y|)|≤1

|Φ(y)|
|y|n

|s(|y|)|nλ
(

log
2

|s(|y|)|

)
dy‖b‖ ˙CMO

p2 (Rn)‖f‖Ḃp1,λ(Rn).

Using an argument similar to the proof of II1, we have

II2 ≤
∫
|s(|y|)|≥1

|Φ(y)|
|y|n

|s(|y|)|nλ(log 2|s(|y|)|)dy‖b‖ ˙CMO
p2 (Rn)‖f‖Ḃp1,λ(Rn).

Finally, we estimate III. By Minkowski’s inequality and Hölder’s inequality, we
have

III ≤ sup
r>0
|B(0, r)|−

1
p
−λ
∫
Rn

|Φ(y)|
|y|n

(∫
B(0,r)

∣∣f(s(|y|)x)
[
b|s(|y|)|B − b(s(|y|)x)

]∣∣p dx) 1
p

dy
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≤ sup
r>0
|B(0, r)|−

1
p
−λ
∫
Rn

|Φ(y)|
|y|n

(∫
B(0,r)

|f(s(|y|)x)|p1dx
) 1

p1

·
(∫

B(0,r)

∣∣b|s(|y|)|B − b(s(|y|)x)
∣∣p2 dx) 1

p2

dy

≤ sup
r>0
|B(0, r)|−

1
p
−λ
∫
Rn

|Φ(y)|
|y|n

|s(|y|)|−
n
p

(∫
B(0,r|s(|y|)|)

|f(x)|p1dx
) 1

p1

·
(∫

B(0,r|s(|y|)|)
|b|s(|y|)|B − b(x)|p2dx

) 1
p2

dy

≤
∫
Rn

|Φ(y)|
|y|n

|s(|y|)|nλdy‖b‖ ˙CMO
p2 (Rn)‖f‖Ḃp1,λ(Rn).

Combining I, II and III, we have proved Theorem 3.1.
Proof of Theorem 3.2 1) The sufficient part is similar to the proof of Theorem

3.1. We only need to give the proof of the necessary part.
Case 1. If −1

p
< λ < 0, we take f0(x) = |x|λn. A routine computation by the

polar transformation shows that ‖f0‖Ḃp1,λ(Rn) = ω−λn n
1
p1

+λ
(λp1n+n)

− 1
p1 <∞. So

f0 ∈ Ḃp1,λ(Rn). Let b0(x) = log |x|, x ∈ Rn, then b0 ∈ BMO(Rn) ⊂ ˙CMO
p2

(Rn)
and

Hb0
Φ,1f0(x) = |x|nλ

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy.

Since 0 < |s(|y|)| ≤ |y|γ ≤ 1, we have

‖Hb0
Φ,1f0‖Ḃp,λ(Rn) =

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy‖f0‖Ḃp,λ(Rn)

= ω−λn n
1
p

+λ(λpn+ n)−
1
p

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy.

So,

‖Hb0
Φ,1‖Ḃp1,λ(Rn)→Ḃp,λ(Rn) �

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy.

Therefore, we obtain∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy <∞. (3.1)

For |s(|y|)| ≤ |y|γ, it follows that∫
|y|≤ 1

2

Φ(y)

|y|n
|s(|y|)|nλdy �

∫
|y|≤ 1

2

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy <∞. (3.2)



GENERALIZED HAUSDORFF OPERATORS 71

On the other hand, for Φ(y) is an integral function and |s(|y|)| ≥ |y|β(β > 0) and
λ < 0, we know that ∫

1
2
≤|y|≤1

Φ(y)

|y|n
|s(|y|)|nλdy <∞. (3.3)

According to (3.2) and (3.3), we have∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλdy <∞. (3.4)

Noticing that

C1 = log 2

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλdy +

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|nλ log

1

|s(|y|)|
dy.

Then, combining (3.1) and (3.4), we have C1 <∞.
Case 2. If λ = −1

p
, then for any 0 < ε < 1

2
, let f1(x) = |x|−

n
p
−εχ{|x|≥1}(x). By a

routine calculation, we have ‖f1‖Lp(Rn) = ω
1
p
n (εp)−

1
p . Let b0(x) = log |x|, x ∈ Rn,

then b0 ∈ ˙CMO
p2

(Rn) and we have

Hb0
Φ f1(x) = |x|−n/p−ε

∫
{y||y|≤1}

⋂
S(x,y)

Φ(y)

|y|n
|s(|y|)|−n/p−ε log

1

|s(|y|)|
dy,

where S(x, y) = {y||s(|y|)x| ≥ 1}.Thus, for any ε > 0, we have

‖Hb0
Φ,1f1‖Lp(Rn)

≥

(∫
|x|> 1

ε

∣∣∣∣∫
{y||y|≤1}

⋂
S(x,y)

Φ(y)

|y|n
|s(|y|)|−n/p−ε log

1

|s(|y|)|
dy

∣∣∣∣p |x|−n−pεdx
) 1

p

≥ ω
1
p
n (εp)−

1
p εε
∫
{y||y|≤1}

⋂
S(ε,y)

Φ(y)

|y|n
|s(|y|)|−n/p−ε log

1

|s(|y|)|
dy

= εε‖f1‖Lp(Rn)

∫
{y||y|≤1}

⋂
S(ε,y)

Φ(y)

|y|n
|s(|y|)|−n/p−ε log

1

|s(|y|)|
dy.

It follows that

‖Hb0
Φ,1‖Lp(Rn)→Lp(Rn) ≥ εε

∫
{y||y|≤1}

⋂
S(ε,y)

Φ(y)

|y|n
|s(|y|)|−n/p−ε log

1

|s(|y|)|
dy.

Letting ε→ 0(using εε → 1), then we obtain

‖Hb0
Φ,1‖Lp(Rn)→Lp(Rn) ≥

∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|−n/p log

1

|s(|y|)|
dy.

So, combining the boundedness of Hb
Φ,1, we obtain∫

|y|≤1

Φ(y)

|y|n
|s(|y|)|−n/p log

1

|s(|y|)|
dy <∞.

By a similar proof as that for Case 1, we get∫
|y|≤1

Φ(y)

|y|n
|s(|y|)|−n/p <∞.
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This completes the proof of part 1).
2) The proof for 2) is similar to that of 1), except replacing the function b0(x)

by log 1
|x| . We omit the details.
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Lebesgue and BMO spaces, Integral Transforms Spec. Funct. 25 (2014), no.9, 697–710.

10. D.S. Fan and F.Y. Zhao, Multilinear Fractional Hausdorff Operators, Acta Math. Sin. Engl.
Ser. 30 (2014), no. 8, 1407–1421.

11. Z.W. Fu, S.Z. Lu and W. Yuan, A weighted variant of Riemann-Liouville fractional integrals
on Rn, Abstr. Appl. Anal. (2012), Article ID 780132, 18 pages.

12. G.L. Gao, X.M. Wu and W.C. Guo, Some results for Hausdorff operators, Math. Inequal.
Appl. 18 (2015), no. 1, 155–168.

13. C. Georgakis, The Hausdorff mean of a Fourier-Stieltjes transform, Proc. Amer. Math. Soc.
116 (1992), 465–471.

14. A. Hussain and G.L. Gao, Some new estimates for the commutators of n-dimensional Haus-
dorff operator, Appl. Math. J. Chinese Univ. Ser. B 29 (2014), no. 2, 139–150.
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