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Abstract. It is well known that every function in Hardy space can be fac-
torized into an inner function and outer function. Since the factorization is
unique, if we fix a function in Hardy space, inner and outer factors must be
control by each other. In this note, we give an inner-outer factorization on Qp

spaces and some subspace of Qp spaces, where 0 < p < 1.

1. Introduction

We denote the unit disc {z ∈ C : |z| < 1} by D and its boundary {z ∈ C : |z| = 1}
by ∂D. Let H(D) be the space of all analytic functions in D. For 0 < p <∞, the
Hardy space Hp is the set of f ∈ H(D) with

‖f‖pHp = sup
0<r<1

1

2π

∫ 2π

0

|f(reiθ)|pdθ <∞.

As usual, H∞ is the set of f ∈ H(D) with supz∈D |f(z)| <∞ (See [5]).
Let 0 < p <∞. The Qp space is the set of f ∈ H(D) such that

‖f‖Qp = |f(0)|+
(

sup
a∈D

∫
D
|f ′(z)|2g(z, a)pdA(z)

) 1
2

<∞,

where g denotes the Green function given by

g(z, a) = log
1

|ϕa(z)|
, z, a ∈ D, z 6= a,

ϕa(z) = a−z
1−az , dA(z) = 1

π
dxdy. If p = 1, Q1 = BMOA, the space of analytic

functions in the Hardy space H1(D) whose boundary functions have bounded
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mean oscillation (see, for example [14, 18]). When p > 1, Qp spaces coincide with
the Bloch space. For more information on Qp spaces, we refer to [17, 20, 21].

Let 0 < q < ∞ and −1 < α < ∞. The Aqα space is the set of f ∈ H(D) such
that ∫

D
|f(z)|q(1− |z|2)αdA(z) <∞.

For 1 ≤ q < ∞ and 0 < s < 1, the Besov space Bs
q is the set of functions

f ∈ Lq(∂D) such that∫ π

−π

dt

|t|sq+1

∫
∂D
|f(eitζ)− f(ζ)|qdm(ζ) <∞.

The analytic subspace ABs
q = Bs

q ∩Hq is the set of functions f ∈ Hq such that

‖f‖ABsq = |f(0)|q +

(∫
D
|f ′(z)|q(1− |z|)(1−s)q−1dA(z)

) 1
q

<∞.

We refer the reader to [2, 3, 4, 10].
An f ∈ H(D) is said to be an inner function if it is bounded and has boundary

values of modulus 1 almost everywhere on ∂D. If θ is an inner function, for
0 < ε < 1, define the level set of order ε of θ as follows.

Ω(θ, ε) = {z ∈ D : |θ(z)| < ε}.

For more information about inner function, we refer to [1, 12, 15, 16, 19].
We say that g ∈ H(D) is an outer function if there exists a positive function h

with log h ∈ L1(∂D) and a complex number C of modulus 1 such that

g(z) = C exp

(
1

2π

∫ 2π

0

log h(eit)
eit + z

eit − z
dt

)
.

Moreover, the boundary values of g satisfy h(ζ) = |g(ζ)| for almost all ζ ∈ ∂D.
It is well known that every f ∈ Hp has a factorization θg, where θ is an

inner function and g is an outer function. If we fix an f ∈ Hp, there must be
some relationship between θ and g, since the factorization is unique. Dyakonov
gave many interesting theorems on inner-outer factorization and characterized the
modulus of analytic functions in the disc whose boundary values belong to certain
smoothness classes. For many results concern this topic, we refer to [6, 7, 9, 11].
The following theorem can be found in [7, Theorem 1].
Theorem A. If f ∈ BMOA and θ is an inner function, then the following
conditions are equivalent:

(1) fθ ∈ BMO;
(2) fθ ∈ BMOA;
(3) supz∈D |f(z)|2(1− |θ(z)|2) <∞;
(4) supz∈Ω(θ, ε) |f(z)| <∞, for every ε, 0 < ε < 1;
(5) supz∈Ω(θ, ε) |f(z)| <∞, for some ε, 0 < ε < 1.
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Before we state next theorem, we need to give the definition ofQp(∂D). Let 0 <
p <∞. The Qp(∂D) space is the set of f ∈ L2(∂D) such that

sup
I⊆∂D
|I|−p

∫
I

∫
I

|f(ζ)− f(η)|2

|ζ − η|2−p
|dζ||dη| <∞.

In this paper, if we control the inner factor, in some sense, we first extend
Theorem A from the BMOA space to Qp spaces, 0 < p ≤ 1.
Theorem 1. Let 0 < p ≤ 1. If f ∈ Qp and θ ∈ Qp is an inner function, then
the following conditions are equivalent:

(1) fθ ∈ Qp(∂D);
(2) fθ ∈ Qp;
(3) supz∈D |f(z)|2(1− |θ(z)|2) <∞;
(4) supz∈Ω(θ, ε) |f(z)| <∞, for every ε, 0 < ε < 1;
(5) supz∈Ω(θ, ε) |f(z)| <∞, for some ε, 0 < ε < 1.

Let M(X) denote the space of multipliers of X. The next theorem was another
main theorem in [7, Theorem 6].
Theorem B. If f ∈ M(BMOA) and θ is an inner function, then the following
conditions are equivalent:

(1) fθ ∈M(BMOA);
(2) supz∈Ω(θ, ε) |f(z)| log 1

1−|z| <∞, for every ε, 0 < ε < 1;

(3) supz∈Ω(θ, ε) |f(z)| log 1
1−|z| <∞, for some ε, 0 < ε < 1.

Using Theorem 1, we also have the following theorem.
Theorem 2. Let 0 < p ≤ 1. If f ∈ M(Qp) and θ ∈ Qp is an inner function,
then the following conditions are equivalent:

(1) fθ ∈M(Qp);
(2) supz∈Ω(θ, ε) |f(z)| log 1

1−|z| <∞, for every ε, 0 < ε < 1;

(3) supz∈Ω(θ, ε) |f(z)| log 1
1−|z| <∞, for some ε, 0 < ε < 1.

Using the idea as Theorems 1 and 2, we can also get the similar result on
ABs

q ∩Qp.
Theorem 3. Let 1 ≤ q <∞, 0 < p ≤ 1 and 0 < s < 1/q. If f ∈ Qp ∩ ABs

q and
θ ∈ Qp ∩ ABs

q is an inner function, then the following conditions are equivalent:

(1) fθ ∈ Qp(∂D) ∩Bs
q ;

(2) fθ ∈ Qp ∩ ABs
q ;

(3) supz∈D |f(z)|2(1− |θ(z)|2) <∞;
(4) supz∈Ω(θ, ε) |f(z)| <∞, for every ε, 0 < ε < 1;
(5) supz∈Ω(θ, ε) |f(z)| <∞, for some ε, 0 < ε < 1.

Throughout this paper, for two functions f and g, f . g means that there is a
positive constant C such that f ≤ Cg.

2. Proofs of Main Results

To prove our main results in this paper, we need some lemmas which will be
stated as follows.
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Lemma A. [20] Let 0 < p < 1. f ∈ Qp if and only if

sup
a∈D

∫
D

(∫
∂D
|f(ζ)|2dµz(ζ)− |f(z)|2

)
(1− |ϕa(z)|2)p

(1− |z|2)2
dA(z) <∞,

where dµz(ζ) = 1−|z|2
|ζ−z|2

|dζ|
2π

.

Before state the next lemma, we first recall some properties of the system Γε
of the so-called Carleson curves associated with θ and ε, see [14, Chapter VIII]
and [8]. Γε = ∪iγi is a countable union of simple closed rectifiable curves γi in D
with the following properties:

(1) The curves γi have pairwise disjoint interiors; for each of them one has
l(γi ∩ ∂D) = 0, where l(.) denotes length.

(2) Arc length measure |dz| on Γε ∩ D is a Carleson measure.
(3) For z ∈ Γε∩D we have η < |θ(z)| < ε, where η(ε) is some positive constant

depending on ε. Moreover, Γε ∩ D ⊆ Ω(θ, ε).

Lemma B. [8] Let 1 ≤ q <∞ and s > 0. Suppose that f ∈ H2 and θ is an inner
function. If ∫

Γε

|f(z)|q|dz|
(1− |z|2)sq

<∞, 0 < ε < 1,

then P−(θf) ∈ Bs
q . Here P− denoted by the orthogonal projection from L2(∂D)

onto L2(∂D)	H2.
Lemma C. [19] Let 1 ≤ q < ∞ and 0 < s < 1. Suppose that f ∈ Bs

q and
u ∈ H∞. Then the following are equivalent:

(1) fu ∈ Bs
q ;

(2) fu ∈ Bs
q ;

(3) P−(uf) ∈ Bs
q .

Here P− denoted by the orthogonal projection from L2(∂D) onto L2(∂D)	H2.
Lemma D. [19] Let 1 ≤ q <∞, q − 2 < α < q − 1 and 0 < ε < 1. Suppose that
θ is an inner function and Bθ,ε is its associated interpolating Blaschke product,
then the following are equivalent:

(1) θ′ ∈ Aqα;
(2) B′θ,ε ∈ Aqα;
(3) If {ak}∞k=0 is the sequence of zeros of Bθ,ε, then

∞∑
k=0

(1− |ak|2)α−q+2 <∞;

(4) ∫
Γε

|f(z)|q|dz|
(1− |z|2)q−α−1

<∞.

Now we are in a position to prove our main results.

Proof of Theorem 1. Since Q1 = BMOA and θ ∈ H∞ ⊆ BMOA, it is only to
prove the case of p ∈ (0, 1).
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(1) ⇔ (2). Suppose that f ∈ Qp and θ is an inner function. From Theorem
2.1 of [13], we have fθ ∈ Qp if and only if

sup
I⊆∂D
|I|−p

∫
I

∫
I

|f(ζ)θ(ζ)− f(η)θ(η)|2

|ζ − η|2−p
|dζ||dη| <∞.

Noting that

f(ζ)θ(ζ)− f(η)θ(η) = (f(ζ)− f(η))θ(ζ) + f(η)(θ(ζ)− θ(η)),

we can deduce that fθ ∈ Qp if and only if

sup
I⊆∂D
|I|−p

∫
I

∫
I

|f(η)|2|θ(ζ)− θ(η)|2

|ζ − η|2−p
|dζ||dη| <∞,

and if and only if fθ ∈ Qp(∂D).
(2) ⇒ (4) ⇒ (5) ⇒ (3). If f ∈ Qp ⊆ BMOA, fθ ∈ Qp ⊆ BMOA. From

Theorem A, we easily to obtain the desired result.
(3)⇒ (2). From Lemma A, we see that θ ∈ Qp if and only if

sup
a∈D

∫
D

(
1− |θ(z)|2

) (1− |ϕa(z)|2)p

(1− |z|2)2
dA(z) <∞.

Suppose θ ∈ Qp, f ∈ Qp. To prove fθ ∈ Qp, we only need to prove

sup
a∈D

∫
D
|f(z)|2|θ′(z)|2(1− |ϕa(z)|2)pdA(z) <∞.

Applying the well known Schwarz lemma and (3) of Theorem A, we obtain that

sup
a∈D

∫
D
|f(z)|2|θ′(z)|2(1− |ϕa(z)|2)pdA(z)

≤ sup
a∈D

∫
D
|f(z)|2

(
1− |θ(z)|2

1− |z|2

)2

(1− |ϕa(z)|2)pdA(z)

≤
(

sup
z∈D
|f(z)|2(1− |θ(z)|2)

)
× sup

a∈D

∫
D

1− |θ(z)|2

(1− |z|2)2
(1− |ϕa(z)|2)pdA(z) <∞.

The proof is complete.

Proof of Theorem 2. (1) ⇒ (2). Let f ∈ M(Qp) and θ ∈ Qp be an inner
function. For any g ∈ Qp, we have fgθ ∈ Qp by the assumption. From Theorem
1, we know that fgθ ∈ Qp if and only if

sup
z∈Ω(θ,ε)

|f(z)g(z)| <∞

for every ε, 0 < ε < 1.
For any a ∈ Ω(θ, ε), we define

ga(z) = log

(
a

|a|
− z
)
.
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Clearly, ga ∈ Qp and notice the fact that ‖·‖Qp is Möbius invariant, hence, ‖ga‖Qp
is independent of a. Thus, for any a ∈ Ω(θ, ε),

|f(a)ga(a)| <∞.

Since

| log(1− |a|)| = |Re log

(
a

|a|
− a
)
| ≤ | log

(
a

|a|
− a
)
| = |ga(a)|,

we easily get the desired result by the arbitrary of a.
(2)⇒ (3). It is obvious.
(3)⇒ (1). Let g ∈ Qp ⊆ B. Using the fact that

|g(z)| . log
1

1− |z|
‖g‖B ≤ log

1

1− |z|
‖g‖Qp ,

we have

|f(z)g(z)| . log
1

1− |z|
|f(z)|‖g‖Qp

for f ∈M(Qp). Therefore,

sup
z∈Ω(θ,ε)

|f(z)g(z)| . sup
z∈Ω(θ,ε)

log
1

1− |z|
|f(z)| <∞,

for some ε, 0 < ε < 1. From Theorem 1, we deduce that

fgθ ∈ Qp.

Hence, fθ ∈M(Qp). The proof is complete.

Proof of Theorem 3.(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5). Combine with Theorem 1
and Lemma C, similarly to the proof of Theorem 1, we can easily get the desired
result.

(5) ⇒ (2). From Theorem 1, we have fθ ∈ Qp. Using Lemmas B and C, it is
only to prove ∫

Γε

|f(z)|q|dz|
(1− |z|2)sq

<∞, 0 < ε < 1.

If θ ∈ Qp ∩ ABs
q ⊆ ABs

q , then θ′ ∈ Aq(1−s)q−1. Thus, by Lemma D, we have∫
Γε

|dz|
(1− |z|2)sq

<∞.

Using the fact that Γε ∩ D ⊆ Ω(θ, ε), we deduce that∫
Γε

|f(z)|q|dz|
(1− |z|2)sq

≤

(
sup

z∈Ω(θ, ε)

|f(z)|

)q ∫
Γε

|dz|
(1− |z|2)sq

<∞.

The proof is complete.
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