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Abstract. In this note we express the localized numerical range of elements
in locally multiplicative convex (l.m.c.) algebras as the intersection of closed
discs. We characterize the spectral states on l.m.c. algebras in terms of their
radicals.

1. Introduction

For a given locally m-convex algebra A there exists a separating family of
submultiplicative semi-norms {Pα} on A which generates the topology and is
such that Pα(b) = b for all α in the index set Γ and b in A. Given such an
algebra, we denote by P (A) the class of all such families of semi-norms on A and
by (A, {Pα}) the algebra A with a particular family of semi-norms {Pα} ∈ P (A).

Let Aα be the Banach algebra obtained by completing A/Ker(Pα), and let
πα : A → Aα be the quotient map. Then A is canonically imbedded as a dense
subalgebra of the projective limit algebra. Let ‖xα‖α = Pα(x) denote the norm
of xα = πα(x) for each x ∈ A.

Given (A, {Pα}) we define the set D(A, {Pα}; b) as follows

D(A, {Pα}; b) =
⋃
α

{D(A, Pα; b)}, where

D(A, Pα; b) = {f ∈ A′ : f(b) = Pα(b) and for all x ∈ A, |f(x)| ≤ Pα(x)}
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We define the locallized numerical range and localized numerical radius of a at
b as follows:

Vb(A, {Pα}; a) =
⋃
α

{f(ab) : f ∈ D(A, Pα; b)}

Vb(A, {Pα}; a) = sup{|λ| : λ ∈ Vb(A, {Pα}; a)}

It is well known that the unital numerical range V (a) of a in a unital Banach
algebra B is the intersection of closed discs of the form {λ : |z − λ| ≤ ‖ze− a‖}
In this note we express the locallized numerical range of a in a l.m.c algebra as
the intersection of similarly formed closed discs. We also prove that the localized
numerical range is in fact the intersection of a system of half planes.

2. Inclusion properties of Vb(A, {Pα}; a)

In this section we establish the closed disc property of localized numerical
ranges.

Theorem 2.1. For every a, b in (A, {Pα}) with Pα(b) = 1,Vb(A, {Pα}; a) is the
intersection of the following system of closed discs: {λ : |z − λ| ≤ ‖zb− ab‖}

Proof. Since D(A, Pα; b) is isomorphic to D(Aα, ‖ · ‖α; bα) we have the locallized
numerical range of an element a, characterized by the normal algebra numerical
ranges of aα. Hence, if λ ∈ Vb(A, {Pα}; a) then λ ∈ Vb(Aα, ‖ · ‖α; a). In this
case there exists an f ′α ∈ A′

α such that f ′α(bα) = 1, f ′α(aαbα) = λ and ‖f ′α‖α = 1.
Consequently, for every z ∈ C,

|z − λ| = |z − f ′α(aαbα)| = |zf ′α(bα)− f ′α(aαbα)| = |f ′α(zbα − aαbα)|
≤ ‖f ′α‖α‖zbα − aαbα‖α ≤ ‖zbα − aαbα‖α

Taking the intersection over all z ∈ C, we obtain the forward inclusion.
Conversely, let λ ∈

⋂
z

{λ : |z − λ| ≤ ‖zb− ab‖}, then the inequality

|z − λ| ≤ ‖zbα − aαbα‖α holds for all α in Γ (I)

Case 1) If aαbα and bα are linearly independent, we define a functional g′α on their
span as follows

g′α(σ1bα + σ2aαbα) = σ1 + σ2λ for all σ1, σ2 in C (II)

In particular, g′α(aαbα) = λ and g′α(bα) = 1, this implies that ‖g′α‖α ≥ 1. On
the other hand, for σ2 6= 0 we calculate

|g′α(σ1bα + σ2aαbα)| = |σ2|
∣∣∣∣g′α (

aαbα −
−σ1

σ2

bα

)∣∣∣∣
= |σ2|

∣∣∣∣g′α(aαbα)− g′α

((
−σ1

σ2

)
bα

)∣∣∣∣
≤ |σ2|

∥∥∥∥aαbα −
(
−σ1

σ2

)
bα

∥∥∥∥
α

(from (I) and (II))
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Hence, ‖g′α‖α = 1. Since g′α can be extended to f ′α ∈ A′
α preserving ‖f ′α‖α = 1,

f ′(bα) = 1 and f ′α(aαbα) = λ, it follows that λ ∈ Vbα(Aα, ‖ · ‖α; aα) and hence
λ ∈ Vb(A, {Pα}; a).

Case 2) Let aαbα and bα be linearly dependent. Then for σ ∈ C we have
aαbα = σbα. In this case

Vbα(Aα, ‖ · ‖α; aα) = {σ} =
⋂
z

{λ : |z − λ| ≤ ‖zbα − aαbα‖α},

and the proof is complete. �

Theorem 2.2. Let I be a closed two sided ideal of (A, {Pα}) with the canonical
mapping y → (y + I) of (A, {Pα}) onto A/I such that for Pα in {Pα}

Pα(y + I) = inf{Pα(y + j) : j ∈ I}

Suppose x ∈ (A, {Pα}) is such that, Pα(x) = 1 and Pα(x + I) = 1 . Then
∀a ∈ (A, {Pα}) we have

Vx+I(A/I, a + I) ⊆
⋂
j∈I

Vx(A, a + j).

If in addition xI = Ix then⋂
j∈I

Vx(A, a + j) ⊆ Vx+Īx(A/Īx, a + Īx)

Proof. If λ ∈ Vx+I(A/I, a+I) then by Theorem 2.1 we have λ ∈
⋂

J∈I Vx(A, a+j).
For the remaining part, note that Īx ⊆ I implies Pα(x + Īx) = 1.

Assume that λ ∈
⋂

J∈I Vx(A, a + j). Substituting the intersection of discs for
Vx(A, a + j), we deduce that for all z ∈ C

|λ− z| ≤ inf
j∈I

Pα(zx− ax− jx) = Pα((ax− zx) + Īx) and hence

λ ∈ Vx+Īx(A/Īx, a + Īx)

�

Remark 2.1. If Ix is dense in I then equality prevails in Theorem 2.2; this happens
in particular when (A, {Pα}) has unit and x = 1.

Also, the first inclusion in Theorem 2.2 can be strict. To see this, consider
A = C3 (coordinatewise operations and maximum norm), I = span(e2, e3); the
non-idempotent element x = (1, 1, 0) and a = (3, 2, 1). This makes Ix = Īx =
span(e2), A/I ∼= span(e1), A/Ix ∼= span(e1, e3); so

Vx+I(A/I, a + I) = {3}, while⋂
j∈I

Vx(A, a + j) = Vx+Īx(A/Īx, a + Īx = [2, 3].
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3. Vb(A, {Pα}; a) as the intersection of halfplanes

In this section we reduce the two-parameter intersection which defines the
intersection of closed discs to a succession of two one-parameter intersections of
halfplanes.

Definition 3.2. For a,b ∈ (A, {Pα}), we define

K
(a

b

)
= inf

α,s>0

Pα(b + sa)− Pα(b)

s

Let c, b ∈ (A, {Pα}). For every real β, we define the halfplane

P 1
2
(β,

c

b
) = {z ∈ C : Re(e−iβz) ≤ K

(
e−iβ c

b

)
}

Theorem 3.1. For all real n and for all b and c in (A, {Pα}),

K

(
c + inb

b

)
= K

(c

b

)
Proof. Let w(t) = Pα(c + inb + tb)− tPα(b). Then for α in Γ we have

w(t) = ‖cα + inbα + tbα‖α − t‖bα‖α and hence

K

(
cα + inbα

bα

)
= lim

t→∞
w(t).

Let r = |t + in|. Then w(t) can be written as

w(t) =

∥∥∥∥ r

t + in
cα + rbα

∥∥∥∥
α

− t‖bα‖α−‖cα + rbα‖α− r‖bα‖α +‖cα + rbα‖α + r‖bα‖α

clearly r →∞ as t →∞ and hence

K

(
cα

bα

)
= lim

t→∞
w(t)

and hence the theorem follows from the fact that ‖xα‖α = Pα(x), for all x in
(A, {Pα}) and Definition 3.1 above. �

Theorem 3.2. Let a, b ∈ (A, {Pα}) with Pα(b) = 1. Then for every real β,⋂
z∈C,α

{λ : |z − λ| ≤ Pα(zb− ab)} =
⋂

−π<β≤π

P 1
2

(
β,

c

b

)
Proof. Note that for α in Γ

{λ : |λ− z| ≤ ‖cα − zbα‖α} =
⋂
β∈R

{λ : Re
(
e−iβ(λ− z)

)
≤ ‖cα − zbα‖α},

and the mapping
(
β,−zeiβ

)
↔ (β, z) is bijective, so that by writing −zeiβ =

t + in, we have
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⋂
z∈C,α

{λ : |z − λ| ≤ ‖cα − zbα‖α}

=
⋂
β∈R

⋂
z∈C

{λ : Re(e−iβλ− e−iβz) ≤ ‖cα − zbα‖α}

=
⋂
β∈R

⋂
t,n∈R

{λ : Re(e−iβλ + t + in) ≤ ‖e−iβcα + (t + in)bα‖α}

=
⋂
β∈R

{
λ : Re(e−iβλ) ≤ K

(
e−iβ cα

bα

)}
=

⋂
β∈R

P 1
2

(
β,

cα

bα

)
.

Note that P 1
2

(
β, cα

bα

)
is 2π periodic with respect to β, so that its domain can

be reduced to (−π, π], and also that the infimum over n ∈ R becomes redundant
by virtue of Theorem 3.1. �

Corollary 3.1. The dependence of P 1
2

(
β, c

b

)
on β is Lipschitz continuous.

Proof. Follows from Theorem 3.1 and the triangle inequality. �

4. Spectral states of l.m.c. algebras

By [3] we have

D(A, {Pα}; e) =
⋃
α∈Γ

{f ∈ A′ : f(e) = 1, |f(x)| ≤ Pα(x), for each x ∈ A} .

Definition 4.1. Let A be a complex unital l.m.c. algebra and let A′ be the dual
space of A. We say that f ∈ A′ is a spectral state of A if for each a in A

f(a) ∈ cosp(A, a)

Where cosp(A, a) is the convex hull of the spectrum of a in A.

Let ϕα(xα) be the spectral radius of xα in Aα. Then we write the set of all
spectral states in Aα as follows,

Ωα = {fα ∈ Aα : f(eα) = 1, |fα(xα)| ≤ ϕα(xα) for every xα in Aα}
The set Ωα is a weak∗-compact convex set.

Definition 4.2. Let π∗α be the adjoint of the quotient map and Kα = π∗α(Ωα).
Then the set Ω(A,{Pα}) of all spectral states of (A, {Pα}) is given by

Ω(A,{Pα}) =
⋃
α∈Γ

Kα

Remark 4.1. The set Ω(A,{Pα}) is the inductive limit of the set Kα.

Lemma 4.1. If (A, {Pα}) is a uniform l.m.c. algebra. Then

Ω(A,{Pα}) = D(A, {Pα}; e)
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Proof. Let (A, {Pα}) be a uniform l.m.c. algebra then for each α ∈ Γ and each
x ∈ A we have Pα(x) = ϕα(x). Hence the equality follows by the definition of
Ωα �

Let (A, {Pα}) be commutative and let Â be the Hausdorff space of all contin-

uous multiplicative linear functionals on A with the weak∗ topology. If Âα is the
set of all continuous multiplicative linear functionals on Aα and Mα = π∗α(Âα)

then each Âα is homeomorphic to Mα and Â =
⋃

α Mα.
Let the Gelfand transformations on A and Aα be given by φA and φAα re-

spectively. Suppose that the set of all Radon probability measures on a compact
T2-space is denoted by RM .

The following theorem resembles Lemma 2 in [2, P. 11] and it gives, in partic-
ular, an integral representation of spectral states.

Theorem 4.1. Let (A, {Pα}) be a commutative unital l.m.c. algebra. If f is a
linear functional on (A, {Pα}) then the following statements are equivalent:

f ∈ Ω(A,{Pα}) (1)

f(e) = 1 and there exists an α in Γ such that |f(x)| ≤ ϕα(xα), x ∈ A. (2)

There exists an α in Γ and µ ∈ RM(Mα) such that f(x) =

∫
φA(x)dµ, x ∈ A.

(3)

There exists a Radon probability measure µ on Â having compact (4)

equicontinuous support EC such that f(x) =

∫
φA(x)dµ, x ∈ A.

There exists α in Γ such that
∣∣ef(x)

∣∣ ≤ ‖exα‖α , x ∈ A (5)

There exists α in Γ such that Ref(x) ≤ sup{Remα(xα) : mα ∈ Âα, x ∈ A} (6)

Proof. The equivalence of (1) to (3) follows by the definitions involved. Clearly

(3) implies (4) and since every compact equicontinuous subset EC of Â is a subset
of some Mα for α ∈ Γ it follows that (4) implies (3). From (6) we have Ref(x) ≤
ln ‖ex

α‖α, where ln is the natural log function. If x = nx then we get for n ∈ N,
x ∈ A

Ref(x) ≤ 1

n
ln ‖enxα‖α

By Theorem 8 of [2, P. 32] one can get

sup{Reλ : λ ∈ sp(Aα, xα)} = inf

{
1

n
ln ‖enxα‖α : n ∈ N

}
which shows that (6) implies (5) and this completes the proof since (5) implies
(6) and (6) implies (1) are obvious. �

Example 4.1. (a) In case of a spectrally barrelled algebra A the spectral states
of A are the linear functionals which are supported by Radon probability measure
on Â
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(b) Let X be a compact Hausdorff space and let E = C(X) be the unital

l.m.c. algebra , with the unite. Then Ê is isomorphic to X and the compact
equicontinuous subsets of Ê are the countable compact subsets of X. Let for
x ∈ E

f(x) = λ1x(RL) + λ2x(R2) + · · ·+ λnx(Rn)

Then the spectral states of E are the functionals given by f(x) at Rn ∈ X. On
the other hand, if µ is a probability measure on X vanishing on singletons and
f is a linear functional on E defined by integration with respect to µ. Then
f(x) ∈ cosp(E, x) for all x ∈ E and f(e) = 1 with |f(x)| ≤ ‖x‖∞, but f is not
a spectral state.

(c) In general, Ω(A,{Pα}) may be an empty set. For example in the algebra B(H)
of all bounded linear operators on an infinite dimensional Hilbert space H, the
set ΩB(H) is empty, see Example 5 of [1, P. 115]. Also, from Theorem 10 of [1,
P. 118], it follows that for the C∗-algebra A of all compact operators on H the
set ΩA is a singelton set. In fact this linear functional is unique vanishing at the
compact operators and is multiplicative.

In the following theorem we give an interpretation of Theorem 2 of [3, P. 82]
and extend the theorem to the case when a l.m.c. algebra A has the following
condition: for all x and y in (A, {Pα}),(xy− yx) belongs to the radical of A. Let
Rad(A) denote the radical of A, {f(a) : f ∈ ΩA} = FA, and {fα(a) : fα ∈ ΩAα}

Theorem 4.2. Let A be a complete unital l.m.c. algebra such that for all a and
b in A, (ab− ba) ∈ Rad(A). Then cosp(A, a) = FA, if and only if cosp(Aα, aα) =
FAα.

Proof. Let cosp(Aα, aα) = FAα . Since each Aα is complete, it follows from Theo-
rem 1 of [3, P. 82] that

sp(A, a) =
⋃
α

{sp(Aα, aα)}

Hence, cosp(A, a) =
⋃

α co{sp(Aα, aα} and the implication follows from the def-
inition of Ωα.

Conversely suppose that cosp(A, a) = FA. Since for all a and b in A and
f(ab− ba) = 0, we have

sp(A, ab− ba) = {0}
and hence, ϕ(A, ab − ba) = 0. Thus for each α in Γ and all a,b in A we have
ϕα(aαbα−bαaα) = 0. This proves that Aα is a commutative modulus in Rad(Aα).
In this case the element c(ab− ba) has a quasi-inverse by Proposition 16 of [2, P.
125] and (ab− ba) ∈ Rad(A). Thus A is commutative modulo its Rad(A), if and
only if Aα is commutative modulo its Rad(Aα).

To prove this implication it is sufficient to show that if each Aα is commutative
modulo its Rad(Aα) then cosp(Aα, aα) = FAα . Clearly, for each a in A

cosp(Aα, aα) ⊃ FAα and sp(Aα, aα) = Âα.

Since Ωα is convex and Âα ⊂ Ωα therefore FAα ⊃ cosp(Aα, aα). �
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Corollary 4.1. Let A be a complete unital l.m.c. algebra as defined in Theorem
4.2 above. Then for each a in A

cosp(A, a) ⊆
{

f(a) : f ∈
⋂
{D(A, {Pα}; e)}

}
.

Proof. From Theorem 4.2 it follows that cosp(A, a) = FA if and only if A is
commutative modulo its Rad(A). Therefore corollary follows by replacing the set⋂
{f(a) : f ∈ D(A, {Pα}; e)} by a smaller subset {f(a) : f ∈

⋂
D(A, {Pα}; e)} in

Theorem 2 of [3, P. 82]. �

Corollary 4.2. Let A be a complete unital l.m.c. algebra as given in theorem
4.2 above. Then A is commutative modulo its Rad(A) if and only if ϕ(A, a) ≤ β,
where β = sup{Ref(a) : f ∈ ΩA}.

Proof. The corollary follows from the fact that cosp(A, a) ⊂ F̄A if and only if
ϕ(A, a) ≤ β and from Theorem 4.2 above. �
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