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Abstract. In this paper, new sequence spaces X(r, s, t;∆(m)) for X ∈ {l∞, c,
c0} defined by using generalized means and difference operator of order m are
introduced. It is shown that these spaces are complete normed linear spaces and
the spaces c0(r, s, t;∆(m)), c(r, s, t;∆(m)) have Schauder basis. Furthermore,
the α-, β-, γ- duals of these spaces are computed and also obtained necessary
and sufficient conditions for some matrix transformations from X(r, s, t;∆(m))
to X. Finally, some classes of compact operators on the spaces c0(r, s, t;∆(m))
and l∞(r, s, t;∆(m)) are characterized by using the Hausdorff measure of .

1. Introduction

The study of sequence spaces has importance in the several branches of analysis,
namely, the structural theory of topological vector spaces, summability theory,
Schauder basis theory etc. In addition, the theory of sequence spaces is a powerful
tool for obtaining some topological and geometrical results using Schauder basis.

Let w be the space of all real or complex sequences x = (xn), where n ∈ N0 =
{0, 1, 2, . . .}. For an infinite matrix A and a sequence space λ, the matrix domain
of A, which is denoted by λA and defined as λA = {x ∈ w : Ax ∈ λ} [22]. Basic
methods, which are used to determine the topologies, matrix transformations and
inclusion relations on sequence spaces can also be applied to study the matrix
domain λA. In recent times, there is an approach of forming new sequence spaces
by using matrix domain of a suitable matrix and characterize the matrix mappings
between these sequence spaces.
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Kizmaz[12] first introduced and studied the difference sequence space. Later on,
several authors including Ahmad and Mursaleen [1], Çolak and Et [7], Başar and
Altay [2], Polat and Başar [19], Aydin and Başar [4] and others have introduced
and studied new sequence spaces defined by using difference operator.

On the other hand, sequence spaces are also defined by using generalized
weighted mean. Some of them can be viewed in Malkowsky and Savaş [14],
Altay and Başar [3]. Mursaleen and Noman [18] also introduced a sequence space
of generalized means, which includes most of the earlier known sequence spaces.
But till 2011, there was no such literature available in which a sequence space
is generated by combining both the weighted mean and the difference operator.
This was first initiated by Polat et al. [20]. Later on, Başarir and Kara [5] gener-
alized the sequence spaces of Polat et al. [20] to an mth-order difference sequence
spaces X(u, v; ∆(m)) for X ∈ {l∞, c, c0} which are defined as

X(u, v; ∆(m)) =
{

x = (xn) ∈ w :
(
(G(u, v).∆(m)x)n

)
∈ X

}
,

where u = (un), v = (vn) ∈ w such that un, vn 6= 0 for all n, ∆(m) = ∆(m−1) ◦∆(1)

for m ∈ N = {1, 2, . . .} and the matrices G(u, v) = (gnk), ∆(1) = (δnk) are defined
by

gnk =

{
unvk, 0 ≤ k ≤ n
0, k > n

δnk =

{
(−1)n−k, n− 1 ≤ k ≤ n
0, otherwise

for all n, k ∈ N0, respectively. For some results related to generalized weighted
mean and difference operator one can see [6] and [11].

The aim of this present paper is to introduce new sequence spaces defined
by using both the generalized means and the difference operator of order m.
We investigate some topological properties as well as the α-, β-, γ- duals and
bases of the new sequence spaces are obtained. We also characterize some matrix
mappings between these new sequence spaces. Moreover, we give the character-
ization of some classes of compact operators on the spaces c0(r, s, t; ∆

(m)) and
l∞(r, s, t; ∆(m)) by using the Hausdorff measure of .

2. Preliminaries

Let l∞, c and c0 be the spaces of all bounded, convergent and null sequences
x = (xn) respectively with the norm ‖x‖∞ = sup

n
|xn|. Let bs and cs be the

sequence spaces of all bounded and convergent series respectively. We denote by
e = (1, 1, · · · ) and en for the sequence whose n-th term is 1 and others are zero
and N0 = {0, 1, 2, . . .}. A sequence (bn) in a normed linear space (X, ‖.‖) is called
a Schauder basis for X if for every x ∈ X there is a unique sequence of scalars
(µn) such that ∥∥∥x−

k∑
n=0

µnbn

∥∥∥ → 0 as k →∞,
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i.e., x =
∞∑

n=0

µnbn [22].

For any subsets U and V of w, the multiplier space M(U, V ) of U and V is defined
as

M(U, V ) = {a = (an) ∈ w : au = (anun) ∈ V for all u = (un) ∈ U}.
In particular,

Uα = M(U, l1), Uβ = M(U, cs) and Uγ = M(U, bs)

are called the α-, β- and γ- duals of U respectively [15].
Let A = (ank)n,k be an infinite matrix with real or complex entries ank. We

write An as the sequence of the n-th row of A, i.e., An = (ank)k for every n. For
x = (xn) ∈ w, the A-transform of x is defined as the sequence Ax = ((Ax)n),
where

An(x) = (Ax)n =
∞∑

k=0

ankxk,

provided the series on the right side converges for each n. For any two sequence
spaces U and V , we denote by (U, V ), the class of all infinite matrices A that
map from U into V . Therefore A ∈ (U, V ) if and only if Ax = ((Ax)n) ∈ V for
all x ∈ U . In other words, A ∈ (U, V ) if and only if An ∈ Uβ for all n [22].

The theory of BK spaces is the most powerful tool in the characterization of
matrix transformations between sequence spaces. A sequence space X is called
a BK space if it is a Banach space with continuous coordinates pn : X → K,
where K denotes the real or complex field and pn(x) = xn for all x = (xn) ∈ X
and each n ∈ N0. The space l1 is a BK space with the usual norm defined by

‖x‖1 =
∞∑

k=0

|xk|. An infinite matrix T = (tnk)n,k is called a triangle if tnn 6= 0 and

tnk = 0 for all k > n. Let T be a triangle and X be a BK space. Then XT is
also a BK space with the norm given by ‖x‖XT

= ‖Tx‖X for all x ∈ XT [22].

3. Sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0}

In this section, we first begin with the notion of generalized means given by
Mursaleen et al. [18].
We denote the sets U and U0 as

U =
{

u = (un) ∈ w : un 6= 0 for all n
}

and U0 =
{

u = (un) ∈ w : u0 6= 0
}

.

Let r = (rn), t = (tn) ∈ U and s = (sn) ∈ U0. The sequence y = (yn) of
generalized means of a sequence x = (xn) is defined by

yn =
1

rn

n∑
k=0

sn−ktkxk (n ∈ N0).

The infinite matrix A(r, s, t) of generalized means is defined by
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(A(r, s, t))nk =

{ sn−ktk
rn

, 0 ≤ k ≤ n
0, k > n.

Since A(r, s, t) is a triangle, it has a unique inverse and the inverse is also a

triangle [10]. Take D
(s)
0 = 1

s0
and

D
(s)
n = 1

sn+1
0

∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
...

...
...

...
sn−1 sn−2 sn−3 sn−4 · · · s0

sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣
for n = 1, 2, 3, · · ·

Then the inverse of A(r, s, t) is the triangle B = (bnk)n,k, which is defined as

bnk =

{
(−1)n−k D

(s)
n−k

tn
rk, 0 ≤ k ≤ n

0, k > n.

We now introduce the sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} as

X(r, s, t; ∆(m)) =
{

x = (xn) ∈ w : (((A(r, s, t).∆(m))x)n) ∈ X
}

,

which are the combination of the generalized means and the difference operator of
order m. By using matrix domain, we can write X(r, s, t; ∆(m)) = XA(r,s,t;∆(m)) =

{x ∈ w : A(r, s, t; ∆(m))x ∈ X}, where A(r, s, t; ∆(m)) = A(r, s, t).∆(m), product
of two triangles A(r, s, t) and ∆(m). The sequence y = (yn) is A(r, s, t).∆(m)-
transform of a sequence x = (xn), i.e.,

yn =
1

rn

n∑
j=0

[ n∑
i=j

(−1)i−j

(
m

i− j

)
sn−iti

]
xj.

These sequence spaces include many known sequence spaces studied by several
authors. For examples,

(1) if rn = 1
un

, tn = vn, sn = 1 for all n, then the sequence spaces X(r, s, t; ∆(m))

for X ∈ {l∞, c, c0} reduce to X(u, v; ∆(m)) studied by Başarir and Kara
[5] and in particular for m = 1, the sequence space X(u, v; ∆) introduced
by Polat et al. [20].

(2) if rn = 1
n!

, tn = αn

n!
, sn = (1−α)n

n!
, where 0 < α < 1, then the sequence

spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} reduce to eα
∞(∆(m)), eα(∆(m))

and eα
0 (∆(m)) respectively studied by Polat and Başar [19].

(3) if rn = n + 1, tn = 1 + αn, where 0 < α < 1 and sn = 1 for all n, then
the sequence spaces X(r, s, t; ∆(m)) for X ∈ {c, c0} reduce to the spaces of
sequences aα

c (∆) and aα
0 (∆) studied by Aydin and Başar [4]. For X = l∞,

the sequence space X(r, s, t; ∆(m)) reduces to aα
∞(∆) studied by Djolović

[8].
(4) if rn = λn tn = λn−λn−1, sn = 1 and m = 1 then the spaces X(r, s, t; ∆(m))

for X ∈ {c, c0} reduce to cλ
0(∆) and cλ(∆) respectively studied by Mur-

saleen and Noman [16].
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4. Main results

In this section, we begin with some topological results of the newly defined
sequence spaces.

Theorem 4.1. The sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} are com-
plete normed linear spaces under the norm defined by

‖x‖X(r,s,t;∆(m)) = sup
n

∣∣∣∣ 1

rn

n∑
j=0

[ n∑
i=j

(−1)i−j

(
m

i− j

)
sn−iti

]
xj

∣∣∣∣
= sup

n
|(A(r, s, t; ∆(m))x)n|.

Proof. Since ∆(m) is a linear operator, it is easy to show that X(r, s, t; ∆(m)) is a
linear space and the functional ‖.‖X(r,s,t;∆(m)) defined above gives a norm on the

linear space X(r, s, t; ∆(m)).
To show completeness, let (xi) be a Cauchy sequence in X(r, s, t; ∆(m)), where
xi = (xi

k) = (xi
0, x

i
1, x

i
2, . . .) ∈ X(r, s, t; ∆(m)) for each i ∈ N0. Then for every

ε > 0 there exists i0 ∈ N such that

‖xi − xj‖X(r,s,t;∆(m)) < ε for i, j ≥ i0.

The above implies that for each k ∈ N0,

|(A(r, s, t; ∆(m))xi)k − (A(r, s, t; ∆(m))xj)k| < ε for all i, j ≥ i0, (4.1)

Therefore the sequence ((A(r, s, t; ∆(m))xi)k)i is a Cauchy sequence of scalars for
each k ∈ N0 and hence ((A(r, s, t; ∆(m))xi)k)i converges for each k. We write

lim
i→∞

(A(r, s, t; ∆(m))xi)k = (A(r, s, t; ∆(m))x)k for each k ∈ N0.

Letting j →∞ in (4.1), we obtain∣∣∣(A(r, s, t; ∆(m))xi)k − (A(r, s, t; ∆(m))x)k

∣∣∣ < ε for all i ≥ i0 and each k ∈ N0.

Hence by definition, ‖xi − x‖X(r,s,t;∆(m)) < ε for all i ≥ i0. Next we show that

x ∈ X(r, s, t; ∆(m)). Since (xi) ⊂ X(r, s, t; ∆(m)), we have

‖x‖X(r,s,t;∆m) ≤ ‖xi‖X(r,s,t;∆(m)) + ‖xi − x‖X(r,s,t;∆(m)),

which is finite for i ≥ i0. So x ∈ X(r, s, t; ∆(m)). This completes the proof. �

Theorem 4.2. The sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} are lin-
early isomorphic to the spaces X ∈ {l∞, c, c0} respectively, i.e., l∞(r, s, t; ∆(m)) ∼=
l∞, c(r, s, t; ∆(m)) ∼= c and c0(r, s, t; ∆

(m)) ∼= c0.

Proof. We prove the theorem only for the case X = c0. For this, we need to show
that there exists a bijective linear map from c0(r, s, t; ∆

(m)) to c0.
We define a map T : c0(r, s, t; ∆

(m)) → c0 by x 7−→ Tx = y = (yn), where

yn =
1

rn

n∑
j=0

[ n∑
i=j

(−1)i−j

(
m

i− j

)
sn−iti

]
xj.
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Since ∆(m) is a linear operator, so the linearity of T is trivial. It is clear from
the definition that Tx = 0 implies x = 0. Thus T is injective. To prove T is
surjective, let y = (yn) ∈ c0. Since y = (A(r, s, t).∆(m))x, i.e.,

x = (A(r, s, t).∆(m))−1y = (∆(m))−1.A(r, s, t)−1y.

So we can get a sequence x = (xn) as

xn =
n∑

j=0

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjyj, n ∈ N0. (4.2)

Then

‖x‖c0(r,s,t;∆(m)) = sup
n

∣∣∣∣ 1
rn

n∑
j=0

[ n∑
i=j

(−1)i−j

(
m

i− j

)
sn−iti

]
xj

∣∣∣∣ = sup
n
|yn| = ‖y‖∞ < ∞.

Thus x ∈ c0(r, s, t; ∆
(m)) and this shows that T is surjective. Hence T is

a linear bijection from c0(r, s, t; ∆
(m)) to c0. Also T is norm preserving. So

c0(r, s, t; ∆
(m)) ∼= c0.

Similarly, we can prove that l∞(r, s, t; ∆(m)) ∼= l∞, c(r, s, t; ∆(m)) ∼= c. This com-
pletes the proof. �

Since X(r, s, t; ∆(m)) ∼= X for X ∈ {c0, c}, the Schauder bases of the sequence
spaces X(r, s, t; ∆(m)) are the inverse image of the bases of X for X ∈ {c0, c}. So,
we have the following theorem without proof.

Theorem 4.3. Let µk = (A(r, s, t; ∆(m))x)k, k ∈ N0. For each j ∈ N0, define the

sequence b(j) = (b
(j)
n )n of the elements of the space c0(r, s, t; ∆

(m)) as

b(j)
n =


n∑

k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rj, 0 ≤ j ≤ n

0, j > n

and

b(−1)
n =

n∑
j=0

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rj.

Then the followings are true:
(i) The sequence (b(j))∞j=0 is a basis for the space c0(r, s, t; ∆

(m)) and any x ∈
c0(r, s, t; ∆

(m)) has a unique representation of the form

x =
∞∑

j=0

µjb
(j).

(ii) The set (b(j))∞j=−1 is a basis for c(r, s, t; ∆(m)) and any x ∈ c(r, s, t; ∆(m)) has
a unique representation of the form

x = `b(−1) +
∞∑

j=0

(µj − `)b(j),

where ` = lim
n→∞

(A(r, s, t; ∆(m))x)n.
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Remark 4.4. In particular, if we choose rn = 1
un

, tn = vn, sn = 1 for all n, then

the sequence spaces X(r, s, t; ∆(m)) reduce to X(u, v; ∆(m)) for X ∈ {c0, c}. With

this choice of sn, we have D
(s)
0 = D

(s)
1 = 1 and D

(s)
n = 0 for n ≥ 2. Then the

sequences b(j) = (b
(j)
n ) for j = −1, 0, 1, . . . reduce to

b(j)
n =


j+1∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
1

ujvk

, 0 ≤ j ≤ n

0, j > n.

and

b(−1)
n =

n∑
j=0

j+1∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
1

ujvk

.

The sequences (b(j))∞j=0 and (b(j))∞j=−1 are the bases for the spaces c0(u, v; ∆(m))

and c(u, v; ∆(m)) respectively [5].

Let F be the collection of all finite nonempty subsets of the set of all natural
numbers. Let A = (ank)n,k be an infinite matrix and consider the following con-
ditions:

sup
K∈F

∞∑
n=0

∣∣∣ ∑
k∈K

ank

∣∣∣ < ∞ (4.3)

sup
n

∞∑
k=0

|ank| < ∞ (4.4)

lim
n

∞∑
k=0

|ank| = 0 (4.5)

lim
n

ank = 0 for all k (4.6)

lim
n

∞∑
k=0

ank = 0 (4.7)

lim
n

ank exists for all k (4.8)

lim
n

∞∑
k=0

|ank − lim
n

ank| = 0 (4.9)

lim
n

∞∑
k=0

ank exists (4.10)

We now state some results given by Stieglitz and Tietz [21] which are required
to obtain the duals and matrix transformations.

Theorem 4.5. [21]
(a) A ∈ (c0, l1), A ∈ (c, l1), A ∈ (l∞, l1) if and only if (4.3) holds.
(b) A ∈ (c0, l∞), A ∈ (c, l∞), A ∈ (l∞, l∞) if and only if (4.4) holds.
(c) A ∈ (c0, c0) if and only if (4.4) and (4.6) hold.
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(d) A ∈ (l∞, c0) if and only if (4.5) holds.
(e) A ∈ (c, c0) if and only if (4.4), (4.6) and (4.7) hold.
(f) A ∈ (c0, c) if and only if (4.4) and (4.8) hold.
(g) A ∈ (l∞, c) if and only if (4.4), (4.8) and (4.9) hold.
(h) A ∈ (c, c) if and only if (4.4), (4.8) and (4.10) hold.

4.1. The α-, γ-duals of X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0}. Now we compute
the α-, γ-duals of X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0}.

Theorem 4.6. The α-dual of the space X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} is the
set

Λ =

{
a = (an) ∈ w : sup

K∈F

∞∑
n=0

∣∣∣ ∑
j∈K

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjan

∣∣∣ < ∞
}

.

Proof. Let a = (an) ∈ w, x ∈ X(r, s, t; ∆(m)) and y ∈ X for X ∈ {l∞, c, c0}. Then
for each n ∈ N0, we have

anxn =
n∑

j=0

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjanyj = (Cy)n,

where the matrix C = (cnj)n,j is defined as

cnj =


n∑

k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjan, 0 ≤ j ≤ n

0, j > n

and xn is given by (4.2). Thus for each x ∈ X(r, s, t; ∆(m)), (anxn)n ∈ l1 if
and only if Cy ∈ l1, where y ∈ X for X ∈ {l∞, c, c0}. Therefore a = (an) ∈
[X(r, s, t; ∆(m))]α if and only if C ∈ (X, l1). By using Theorem 4.5(a), we have

[X(r, s, t; ∆(m))]α = Λ.

�

Theorem 4.7. The γ-dual of the space X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} is the
set

Γ =
{

a = (an) ∈ w : sup
l

∞∑
n=0

|eln| < ∞
}

,

where the matrix E = (eln) is defined by

eln =



rn

[
an

s0tn
+

n+1∑
k=n

(−1)k−n D
(s)
k−n

tk

l∑
j=n+1

(
m + j − k − 1

j − k

)
aj

+
l∑

k=n+2

(−1)k−n D
(s)
k−n

tk

l∑
j=k

(
m + j − k − 1

j − k

)
aj

]
, 0 ≤ n ≤ l

0, n > l.
(4.11)
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Note: We mean
l∑

j=n

= 0 if n > l.

Proof. Let a = (an) ∈ w, x ∈ X(r, s, t; ∆(m)) and y ∈ X for X ∈ {l∞, c, c0},
which are connected by the relation (4.2). Then, we have

l∑
n=0

anxn =
l∑

n=0

n∑
j=0

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjanyj

=
l−1∑
n=0

n∑
j=0

n∑
k=j

(−1)k−j

(
m + n− k − 1

n− k

)
D

(s)
k−j

tk
rjyjan

+
l∑

j=0

l∑
k=j

(−1)k−j

(
m + l − k − 1

l − k

)
D

(s)
k−j

tk
rjyjal

=

[
D

(s)
0

t0
a0 +

1∑
k=0

(−1)k D
(s)
k

tk

l∑
j=1

(
m + j − k − 1

j − k

)
aj

+
l∑

k=2

(−1)k D
(s)
k

tk

l∑
j=k

(
m + j − k − 1

j − k

)
aj

]
r0y0

+

[
D

(s)
0

t1
a1 +

2∑
k=1

(−1)k−1D
(s)
k−1

tk

l∑
j=2

(
m + j − k − 1

j − k

)
aj

+
l∑

k=3

(−1)k−1D
(s)
k−1

tk

l∑
j=k

(
m + j − k − 1

j − k

)
aj

]
r1y1 + · · ·+ D

(s)
0

tl
alrlyl

=
l∑

n=0

rn

[
an

s0tn
+

n+1∑
k=n

(−1)k−n D
(s)
k−n

tk

l∑
j=n+1

(
m + j − k − 1

j − k

)
aj

+
l∑

k=n+2

(−1)k−n D
(s)
k−n

tk

l∑
j=k

(
m + j − k − 1

j − k

)
aj

]
yn

= (Ey)l,

where E is the matrix defined in (4.11).
Thus a ∈

[
X(r, s, t; ∆(m))

]γ
if and only if ax = (anxn) ∈ bs for x ∈ X(r, s, t; ∆(m))

if and only if
( l∑

n=0

anxn

)
∈ l∞, i.e., Ey ∈ l∞ for y ∈ X. Hence by Theorem 4.5(b),

we have [
X(r, s, t; ∆(m))

]γ
= Γ.

�

Remark 4.8. In particular, if we choose rn = 1
un

, tn = vn, sn = 1 for all n, then

the sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0} reduce to X(u, v; ∆(m))
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[5]. With this choice of sn, we have D
(s)
0 = D

(s)
1 = 1 and D

(s)
n = 0 for n ≥ 2.

Therefore the γ-dual of the space X(u, v; ∆(m)) for X ∈ {l∞, c, c0} is the set

{
a = (an) ∈ w : sup

l

∞∑
n=0

∣∣∣∣ 1

un

[
an

vn

+
n+1∑
k=n

(−1)k−n

vk

l∑
j=n+1

(
m + j − k − 1

j − k

)
aj

]∣∣∣∣ < ∞
}

.

4.2. β-dual and Matrix transformations. Here we first discuss about the β-
dual and then characterize the matrix transformations. Let T be a triangle and
XT be the matrix domain of T in X.

Theorem 4.9. ([10], Theorem 2.6) Let X be a BK space with AK property and
R = St, the transpose of S, where S = (sjk) is the inverse of the matrix T .
Then a ∈ (XT )β if and only if a ∈ (Xβ)R and W ∈ (X, c0), where the triangle

W = (wpk) is defined by wpk =
∞∑

j=p

ajsjk. Moreover if a ∈ (XT )β, then

∞∑
k=0

akzk =
∞∑

k=0

Rk(a)Tk(z) for all z ∈ XT .

Remark 4.10. ([10], Remark 2.7) The conclusion of Theorem 4.9 is also true for
X = l∞.

Remark 4.11. ( [10], [15]) We have a ∈ (cT )β if and only if R(a) ∈ l1 and W ∈
(c, c). Moreover, if a ∈ (cT )β then we have for all z ∈ cT

∞∑
k=0

akzk =
∞∑

k=0

Rk(a)Tk(z)− ηγ,

where η = lim
k→∞

Tk(z) and γ = lim
p→∞

p∑
k=0

wpk.

To find the β-duals of the sequence spaces X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0},
we define the following sets:
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B1 =
{

a ∈ w :
∞∑

k=0

|Rk(a)| < ∞
}

B2 =
{

a ∈ w : lim
p→∞

wpk = 0 for all k
}

B3 =
{

a ∈ w : sup
p

∞∑
k=0

|wpk| < ∞
}

B4 =
{

a ∈ w : lim
p→∞

p∑
k=0

|wpk| = 0
}

B5 =
{

a ∈ w : lim
p→∞

wpk exists for all k
}

B6 =
{

a ∈ w : lim
p→∞

p∑
k=0

wpk exists
}

,

where

Rk(a) = rk

[
ak

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
aj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
aj

]

and

wpk = rk

[
p∑

i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=p

(
m+j−i−1

j−i

)
aj +

∞∑
i=p+1

(−1)i−k D
(s)
i−k

ti

∞∑
j=i

(
m+j−i−1

j−i

)
aj

]
.

Theorem 4.12. We have [c0(r, s, t; ∆
(m))]β = B1

⋂
B2

⋂
B3, [l∞(r, s, t; ∆(m))]β =

B1

⋂
B4 and [c(r, s, t; ∆(m))]β = B1

⋂
B3

⋂
B5

⋂
B6.

Proof. Here the triangle T = A(r, s, t).∆(m). So T−1 = (A(r, s, t).∆(m))−1 =
(∆(m))−1.A(r, s, t)−1. Let S = (sjk) be the inverse of T . Then we have

sjk =


j∑

i=k

(−1)i−k
(

m+j−i−1
j−i

)D
(s)
i−k

ti
rk, 0 ≤ k ≤ j

0, k > j.

To find the β-dual of X(r, s, t; ∆(m)) for X ∈ {l∞, c, c0}, we need to show R(a) =
(Rk(a)) ∈ l1, where R = St and characterize the classes W ∈ (c0, c0), W ∈ (l∞, c0)
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and W ∈ (c, c). Now

Rk(a) =
∞∑

j=k

ajsjk

=
∞∑

j=k

j∑
i=k

(−1)i−k

(
m + j − i− 1

j − i

)
D

(s)
i−k

ti
rkaj

=
D

(s)
0

tk
rkak +

∞∑
j=k+1

j∑
i=k

(−1)i−k

(
m + j − i− 1

j − i

)
D

(s)
i−k

ti
rkaj

= rk

[
ak

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
aj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
aj

]
and

wpk =
∞∑

j=p

ajsjk

=
∞∑

j=p

j∑
i=k

(−1)i−k

(
m + j − i− 1

j − i

)
D

(s)
i−k

ti
rkaj

= rk

[ p∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=p

(
m + j − i− 1

j − i

)
aj

+
∞∑

i=p+1

(−1)i−k D
(s)
i−k

ti

∞∑
j=i

(
m + j − i− 1

j − i

)
aj

]
.

Using Theorem 4.9 and Remark 4.10 & 4.11, we have [c0(r, s, t; ∆
(m))]β = B1

⋂
B2⋂

B3, [l∞(r, s, t; ∆(m))]β = B1

⋂
B4 and [c(r, s, t; ∆(m))]β = B1

⋂
B3

⋂
B5

⋂
B6.
�

Theorem 4.13. ([10], Theorem 2.13) Let X be a BK space with AK property,
Y be an arbitrary subset of w and R = St, where S = (sjk) is the inverse of the
matrix T . Then A ∈ (XT , Y ) if and only if BA ∈ (X, Y ) and WAn ∈ (X, c0) for
all n = 0, 1, 2, · · · , where BA is the matrix with rows BA

n = R(An), An are the
rows of A and the triangles WAn for n ∈ N0 are defined by

wAn
pk =


∞∑

j=p

anjsjk, 0 ≤ k ≤ p

0, k > p.

Theorem 4.14. ([10]) Let Y be any linear subspace of w. Then A ∈ (cT , Y ) if
and only if Rk(An) ∈ (c0, Y ) and WAn ∈ (c, c) for all n and Rk(An)e− (γn) ∈ Y ,
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where γn = lim
p→∞

p∑
k=0

wAn
pk for n = 0, 1, 2 · · · .

Moreover, if A ∈ (cT , Y ) then we have

Az = Rk(An)(T (z))− η(γn) for all z ∈ cT , where η = lim
k→∞

Tk(z).

To characterize the matrix transformations A ∈ (X(r, s, t; ∆(m)), Y ) for X, Y ∈
{l∞, c, c0}, we list the following conditions:

sup
n

∞∑
k=0

|Rk(An)| < ∞ (4.12)

lim
n→∞

Rk(An) = 0 for all k (4.13)

sup
p

p∑
k=0

|wAn
pk | < ∞ for all n (4.14)

lim
p→∞

wAn
pk = 0 for all n (4.15)

lim
n→∞

Rk(An) exists for all k (4.16)

lim
n→∞

∞∑
k=0

|Rk(An)| = 0 (4.17)

lim
p→∞

p∑
k=0

|wAn
pk | = 0 for all n (4.18)

lim
n→∞

∞∑
k=0

∣∣∣Rk(An)− lim
n→∞

Rk(An)
∣∣∣ = 0 (4.19)

lim
p→∞

wAn
pk exists for all k, n (4.20)

lim
p→∞

p∑
k=0

wAn
pk exists for all n (4.21)

Rk(An)e− (γn) ∈ c0 for all γn, n = 0, 1, 2, · · · (4.22)

Rk(An)e− (γn) ∈ l∞ for all γn, n = 0, 1, 2, · · · (4.23)

Rk(An)e− (γn) ∈ c for all γn, n = 0, 1, 2, · · · , (4.24)

where γn = lim
p→∞

p∑
k=0

wAn
pk ,

Rk(An) = rk

[
ank

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
anj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
anj

]
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and

wAn
pk = rk

[
p∑

i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=p

(
m+j−i−1

j−i

)
anj +

∞∑
i=p+1

(−1)i−k D
(s)
i−k

ti

∞∑
j=i

(
m+j−i−1

j−i

)
anj

]
.

Theorem 4.15. (a) A ∈ (c0(r, s, t; ∆
(m)), c0) if and only if (4.12), (4.13), (4.14)

and (4.15) hold.
(b) A ∈ (c0(r, s, t; ∆

(m)), c) if and only if (4.12), (4.14), (4.15) and (4.16)hold.
(c) A ∈ (c0(r, s, t; ∆

(m)), l∞) if and only if (4.12), (4.14) and (4.15) hold.

Proof. We only prove the part (a) of this theorem. The other parts follow in a
similar way. We first compute the matrices BA = (Rk(An)) and WAn = (wAn

pk )

for n = 0, 1, 2, · · · of Theorem 4.13 to determine the conditions BA ∈ (c0, c0) and
WAn ∈ (c0, c0). Using the same lines of proof as used in Theorem 4.12, we have

Rk(An) =
∞∑

j=k

sjkanj

=
D

(s)
0

tk
rkank +

∞∑
j=k+1

j∑
i=k

(−1)i−k

(
m + j − i− 1

j − i

)
D

(s)
i−k

ti
rkanj

= rk

[
ank

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
anj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
anj

]
and

wAn
pk =

∞∑
j=p

sjkanj

= rk

[ p∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=p

(
m + j − i− 1

j − i

)
anj

+
∞∑

i=p+1

(−1)i−k D
(s)
i−k

ti

∞∑
j=i

(
m + j − i− 1

j − i

)
anj

]
.

Using Theorem 4.13, we have A ∈ (c0(r, s, t; ∆
(m)), c0) if and only if the conditions

(4.12), (4.13), (4.14) and (4.15) hold. �

We can also obtain the following results.

Corollary 4.16. (a) A ∈ (l∞(r, s, t; ∆(m)), c0) if and only if the conditions (4.17)
and (4.18) hold.
(b) A ∈ (l∞(r, s, t; ∆(m)), c) if and only if the conditions (4.12), (4.16), (4.18) and
(4.19) hold.
(c) A ∈ (l∞(r, s, t; ∆(m)), l∞) if and only if the conditions (4.12) and (4.18) hold.
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Corollary 4.17. (a) A ∈ (c(r, s, t; ∆(m)), c0) if and only if the conditions (4.12),
(4.13), (4.14), (4.20), (4.21) and (4.22) hold.
(b) A ∈ (c(r, s, t; ∆(m)), c) if and only if the conditions (4.12), (4.14), (4.16), (4.20),
(4.21) and (4.24) hold.
(c) A ∈ (c(r, s, t; ∆(m)), l∞) if and only if the conditions (4.12), (4.14), (4.20), (4.21)
and (4.23) hold.

5. Compact operators on the spaces X(r, s, t; ∆(m)) for X ∈ {c0, l∞}

In this section, we apply the Hausdorff measure of to establish necessary and
sufficient conditions for an infinite matrix to be a compact operator from the
space X(r, s, t; ∆(m)) to X for X ∈ {c0, l∞}.

As the matrix transformations between BK spaces are continuous, it is quite
natural to find necessary and sufficient conditions for a matrix mapping between
BK spaces to be a compact operator. This can be achieved with the help of Haus-
dorff measure of . Recently several authors, namely, Malkowsky and Rakočević
[13], Djolović et al. [9], Djolović [8], Mursaleen and Noman [17], Başarir and
Kara [5] and others have established some identities or estimates for the opera-
tor norms and the Hausdorff measure of of matrix operators from an arbitrary
BK space to arbitrary BK space. Let us recall some definitions and well-known
results.

Let X, Y be two Banach spaces and SX denotes the unit sphere in X, i.e.,
SX = {x ∈ X : ‖x‖ = 1}. We denote by B(X, Y ), the set of all bounded
(continuous) linear operators L : X → Y , which is a Banach space with the
operator norm ‖L‖ = sup

x∈SX

‖L(x)‖Y for all L ∈ B(X,Y ). A linear operator

L : X → Y is said to be compact if the domain of L is all of X and for every
bounded sequence (xn) ∈ X, the sequence (L(xn)) has a subsequence which is
convergent in Y and we denote by C(X, Y ), the class of all compact operators in
B(X, Y ). An operator L ∈ B(X, Y ) is said to be finite rank if dimR(L) < ∞,
where R(L) is the range space of L. If X is a BK space and a = (ak) ∈ w, then
we consider

‖a‖∗X = sup
x∈SX

∣∣∣ ∞∑
k=0

akxk

∣∣∣, (5.1)

provided the expression on the right side exists and is finite which is the case
whenever a ∈ Xβ [17].
Let (X, d) be a metric space and MX be the class of all bounded subsets of X.
Let B(x, r) = {y ∈ X : d(x, y) < r} denotes the open ball of radius r > 0 with
centre at x. The Hausdorff measure of of a set Q ∈ MX , denoted by χ(Q), is
defined as

χ(Q) = inf
{

ε > 0 : Q ⊂
n⋃

i=0

B(xi, ri), xi ∈ X, ri < ε, n ∈ N0

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of . The basic
properties of the Hausdorff measure of can be found in ([9], [13]). For example,
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if Q,Q1 and Q2 are bounded subsets of a metric space (X, d) then

χ(Q) = 0 if and only if Q is totally bounded and

if Q1 ⊂ Q2 then χ(Q1) ≤ χ(Q2).

Also if X is a normed space, the function χ has some additional properties due
to linear structure, namely,

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α|χ(Q) for all α ∈ K.

Let φ denotes the set of all finite sequences, i.e., of sequences that terminate in
zeros. Throughout we denote p′ as the conjugate of p for 1 ≤ p < ∞, i.e., p′ = p

p−1

for p > 1 and p′ = ∞ for p = 1. The following known results are fundamental for
our investigation.

Lemma 5.1. [17] Let X denote any of the sequence spaces c0 or l∞. If A ∈ (X, c),
then

(i) αk = lim
n→∞

ank exists for all k ∈ N0,

(ii) α = (αk) ∈ l1,

(iii) sup
n

∞∑
k=0

|ank − αk| < ∞,

(iv) lim
n→∞

An(x) =
∞∑

k=0

αkxk for all x = (xk) ∈ X.

Lemma 5.2. ([13], Theorem 1.29) Let X denote any of the spaces c0, c or l∞.
Then, Xβ = l1 and ‖a‖∗X = ‖a‖1 for all a ∈ l1.

Lemma 5.3. [17] Let X ⊃ φ and Y be BK spaces. Then (X,Y ) ⊂ B(X, Y ), i.e.,
every matrix A ∈ (X, Y ) defines an operator LA ∈ B(X,Y ), where LA(x) = Ax
for all x ∈ X.

Lemma 5.4. [8] Let X ⊃ φ be a BK space and Y be any of the spaces c0, c or
l∞. If A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,l∞) = sup
n
‖An‖∗X < ∞.

Lemma 5.5. [13] Let Q ∈Mc0 and Pl : c0 → c0 (l ∈ N0) be the operator defined
by Pl(x) = (x0, x1, · · · , xl, 0, 0, · · · ) for all x = (xk) ∈ c0. Then

χ(Q) = lim
l→∞

(
sup
x∈Q

‖(I − Pl)(x)‖∞
)
,

where I is the identity operator on c0.

Let z = (zn) ∈ c. Then z has a unique representation z = ˆ̀e +
∞∑

n=0

(zn − ˆ̀)en,

where ˆ̀= lim
n→∞

zn. We now define the operators Pl (l ∈ N0) from c onto the linear
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span of {e, e0, e1, · · · , el} as

Pl(z) = ˆ̀e +
l∑

n=0

(zn − ˆ̀)en,

for all z ∈ c and ˆ̀= lim
n→∞

zn.

Then the following result gives an estimate for the Hausdorff measure of in the
BK space c.

Lemma 5.6. [13] Let Q ∈ Mc and Pl : c → c be the operator from c onto the
linear span of {e, e0, e1, . . . el}. Then

1

2
lim
l→∞

(
sup
x∈Q

‖(I − Pl)(x)‖∞
)
≤ χ(Q) ≤ lim

l→∞

(
sup
x∈Q

‖(I − Pl)(x)‖∞
)
,

where I is the identity operator on c.

Lemma 5.7. [13] Let X, Y be two Banach spaces and L ∈ B(X,Y ). Then

‖L‖χ = χ(L(SX))

and

L ∈ C(X, Y ) if and only if ‖L‖χ = 0.

We establish the following lemmas which are required to characterize the classes
of compact operators with the help of Hausdorff measure of .

Lemma 5.8. Let X(r, s, t; ∆(m)) be any sequence spaces for X ∈ {c0, l∞}. If
a = (ak) ∈ [X(r, s, t; ∆(m))]β then ã = (ãk) ∈ Xβ = l1 and the equality

∞∑
k=0

akxk =
∞∑

k=0

ãkyk

holds for every x = (xk) ∈ X(r, s, t; ∆(m)) and y = (yk) ∈ X, where y =
(A(r, s, t).∆(m))x. In addition

ãk = rk

[
ak

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
aj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
aj

]
. (5.2)

Proof. Let a = (ak) ∈ [X(r, s, t; ∆(m))]β. Then by Theorem 4.9 and Remark 4.10,
we have R(a) = (Rk(a)) ∈ Xβ = l1 and also

∞∑
k=0

akxk =
∞∑

k=0

Rk(a)Tk(x) for all x ∈ X(r, s, t; ∆(m)),
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where

Rk(a) = rk

[
ak

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
aj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
aj

]
= ãk,

and y = T (x) = (A(r, s, t).∆(m))x. This completes the proof. �

Lemma 5.9. Let X(r, s, t; ∆(m)) be any sequence spaces for X ∈ {c0, l∞}. Then
we have

‖a‖∗X(r,s,t;∆(m)) = ‖ã‖1 =
∞∑

k=0

|ãk| < ∞

for all a = (ak) ∈ [X(r, s, t; ∆(m))]β, where ã = (ãk) is defined in (5.2).

Proof. Let a = (ak) ∈ [X(r, s, t; ∆(m))]β. Then from Lemma 5.8, we have ã =
(ãk) ∈ l1. Also x ∈ SX(r,s,t;∆(m)) if and only if y = T (x) ∈ SX as ‖x‖X(r,s,t;∆(m)) =
‖y‖∞. From (5.1), we have

‖a‖∗X(r,s,t;∆(m)) = sup
x∈S

X(r,s,t;∆(m))

∣∣∣ ∞∑
k=0

akxk

∣∣∣ = sup
y∈SX

∣∣∣ ∞∑
k=0

ãkyk

∣∣∣ = ‖ã‖∗X .

Using by Lemma 5.2, we have ‖a‖∗
X(r,s,t;∆(m))

= ‖ã‖∗X = ‖ã‖1, which is finite as

ã ∈ l1. This completes the proof. �

Lemma 5.10. Let X(r, s, t; ∆(m)) be any sequence space for X ∈ {c0, l∞}, Y any
sequence space and A = (ank)n,k an infinite matrix. If A ∈ (X(r, s, t; ∆(m)), Y ),

then Ã ∈ (X, Y ) such that Ax = Ãy for all x ∈ X(r, s, t; ∆(m)) and y ∈ X, which
are connected by the relation y = (A(r, s, t).∆(m))x and
Ã = (ãnk)n,k is given by

ãnk = rk

[
ank

s0tk
+

k+1∑
i=k

(−1)i−k D
(s)
i−k

ti

∞∑
j=k+1

(
m + j − i− 1

j − i

)
anj

+
∞∑
l=2

(−1)l D
(s)
l

tl+k

∞∑
j=k+l

(
m + j − k − l − 1

j − k − l

)
anj

]
, (5.3)

provided the series on the right side converges for all n, k.

Proof. We assume that A ∈ (X(r, s, t; ∆(m)), Y ), then An ∈ [X(r, s, t; ∆(m))]β for
all n. Thus it follows from Lemma 5.8, we have Ãn ∈ Xβ = l1 for all n and
Ax = Ãy holds for every x ∈ X(r, s, t; ∆(m)), y ∈ X, which are connected by the
relation y = (A(r, s, t).∆(m))x. Hence Ãy ∈ Y . Since x = (∆(m))−1(A(r, s, t))−1y,
for every y ∈ X, we get some x ∈ X(r, s, t; ∆(m)) and hence Ã ∈ (X, Y ). This
completes the proof. �
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Lemma 5.11. Let X(r, s, t; ∆(m)) be any sequence spaces for X ∈ {c0, l∞}, A =
(ank)n,k be an infinite matrix and Ã = (ãnk)n,k be the associate matrix defined in
(5.3). If A ∈ (X(r, s, t; ∆(m)), Y ), where Y ∈ {c0, c, l∞}, then

‖LA‖ = ‖A‖(X,l∞) = sup
n

∞∑
k=0

|ãnk| < ∞.

Proof. Since the spaces X(r, s, t; ∆(m)) for X ∈ {c0, l∞} are BK spaces, using
Lemma 5.4 we have

‖LA‖ = ‖A‖(X,l∞) = sup
n
‖An‖∗X(r,s,t;∆(m)).

Now from Lemma 5.9, we have

‖An‖∗X(r,s,t;∆(m)) = ‖Ãn‖1 =
∞∑

k=0

|ãnk|,

which is finite as (Ãn) ∈ l1. This completes the proof. �

Now we give the main results.

Theorem 5.12. Let X(r, s, t; ∆(m)) be any sequence spaces, where X ∈ {c0, l∞}.
(a) If A ∈ (X(r, s, t; ∆(m)), c0) then

‖LA‖χ = lim sup
n→∞

∞∑
k=0

|ãnk| (5.4)

(b) If A ∈ (X(r, s, t; ∆(m)), c) then

1

2
lim sup

n→∞

∞∑
k=0

|ãnk − α̃k| ≤ ‖LA‖χ ≤ lim sup
n→∞

∞∑
k=0

|ãnk − α̃k|, (5.5)

where α̃k = lim
n→∞

ãnk for all k.

(c) If A ∈ (X(r, s, t; ∆(m)), l∞) then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

∞∑
k=0

|ãnk|. (5.6)

Proof. (a) Let us first observe that the expressions in (5.4) and in (5.6) exist
by Lemma 5.11. Also by using the Lemma 5.1 & 5.10, we can deduce that the
expressions in (5.5) exists.
We write S = SX(r,s,t;∆(m)) in short. Then by Lemma 5.7, we have ‖LA‖χ =

χ(AS). Since X(r, s, t; ∆(m)) and c0 are BK spaces, A induces a continuous map
LA from X(r, s, t; ∆(m)) to c0 by Lemma 5.3. Thus AS is bounded in c0, i.e.,
AS ∈Mc0 . Now by Lemma 5.5,

χ(AS) = lim
l→∞

(
sup
x∈S

‖(I − Pl)(Ax)‖∞
)
,
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where Pl : c0 → c0 is defined by Pl(x) = (x0, x1, · · · , xl, 0, 0, · · · ) for all x =
(xk) ∈ c0 and l ∈ N0. Therefore ‖(I − Pl)(Ax)‖∞ = sup

n>l
|An(x)| for all x ∈

X(r, s, t; ∆(m)). Using (5.1) and Lemma 5.9, we have

sup
x∈S

‖(I − Pl)(Ax)‖∞ = sup
n>l

‖An‖∗X(r,s,t;∆(m))

= sup
n>l

‖Ãn‖1

Therefore χ(AS) = lim
l→∞

(
sup
n>l

‖Ãn‖1

)
= lim sup

n→∞
‖Ãn‖1 = lim sup

n→∞

∞∑
k=0

|ãnk|. This

completes the proof.
(b) We have AS ∈Mc. Let Pl : c → c be the operator from c onto the span of

{e, e0, e1, · · · , el} defined as

Pl(z) = ˆ̀e +
r∑

k=0

(zk − ˆ̀)ek,

where ˆ̀= lim
k→∞

zk. Thus for every l ∈ N0, we have

(I − Pl)(z) =
∞∑

k=l+1

(zk − ˆ̀)ek.

Therefore ‖(I − Pl)(z)‖∞ = sup
k>l

|zk − ˆ̀| for all z = (zk) ∈ c. Applying Lemma

5.6, we have

1

2
lim
l→∞

(
sup
x∈S

‖(I − Pl)(Ax)‖∞
)
≤ ‖LA‖χ ≤ lim

l→∞

(
sup
x∈S

‖(I − Pl)(Ax)‖∞
)
. (5.7)

Since A ∈ (X(r, s, t; ∆(m)), c), we have by Lemma 5.10, Ã ∈ (X, c) and Ax = Ãy
for every x ∈ X(r, s, t; ∆(m)) and y ∈ X, which are connected by the relation
y = (A(r, s, t).∆(m))x. Using Lemma 5.1, we have α̃k = lim

n→∞
ãnk exists for all

k, α̃ = (α̃k) ∈ Xβ = l1 and lim
n→∞

Ãn(y) =
∞∑

k=0

α̃kyk. Since ‖(I − Pl)(z)‖∞ =

sup
k>l

|zk − ˆ̀|, we have

‖(I − Pl)(Ax)‖∞ = ‖(I − Pl)(Ãy)‖∞

= sup
n>l

∣∣∣Ãn(y)−
∞∑

k=0

α̃kyk

∣∣∣
= sup

n>l

∣∣∣ ∞∑
k=0

(ãnk − α̃k)yk

∣∣∣.
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Also we know that x ∈ S = SX(r,s,t;∆(m)) if and only if y ∈ SX . From (5.1) and
Lemma 5.2, we deduce

sup
x∈S

‖(I − Pl)(Ax)‖∞ = sup
n>l

(
sup
y∈SX

∣∣∣ ∞∑
k=0

(ãnk − α̃k)yk

∣∣∣)
= sup

n>l
‖Ãn − α̃‖∗X = sup

n>l
‖Ãn − α̃‖1.

Hence from (5.7), we have

1
2
lim sup

n→∞

∞∑
k=0

|ãnk − α̃k| ≤ ‖LA‖χ ≤ lim sup
n→∞

∞∑
k=0

|ãnk − α̃k|.

(c) We first define an operator Pl : l∞ → l∞, as Pl(x) = (x0, x1, · · · , xl, 0, 0, · · · )
for all x = (xk) ∈ l∞, l ∈ N0. We have

AS ⊂ Pl(AS) + (I − Pl)(AS).

By the property of χ, we have

0 ≤ χ(AS) ≤ χ(Pl(AS)) + χ((I − Pl)(AS))

= χ((I − Pl)(AS))

≤ sup
x∈S

‖(I − Pl)(Ax)‖∞

= sup
n>l

‖Ãn‖1.

Hence

0 ≤ χ(AS) ≤ lim sup
n→∞

‖Ãn‖1 = lim sup
n→∞

∞∑
k=0

|ãnk|.

This completes the proof. �

Corollary 5.13. Let X(r, s, t; ∆(m)) be any sequence spaces for X ∈ {c0, l∞}.

(a) If A ∈ (X(r, s, t; ∆(m)), c0), then LA is compact if and only if lim
n→∞

∞∑
k=0

|ãnk| = 0

(b) If A ∈ (X(r, s, t, ∆(m)), c) then LA is compact if and only if

lim
n→∞

∞∑
k=0

|ãnk − α̃k| = 0, where α̃k = lim
n→∞

ãnk for all k.

(c) If A ∈ (X(r, s, t, ∆(m)), l∞) then LA is compact if lim
n→∞

∞∑
k=0

|ãnk| = 0.

Proof. The proof is immediate from Theorem 5.12. �

Corollary 5.14. For every matrix A ∈ (l∞(r, s, t; ∆(m)), c0) or A ∈ (l∞(r, s, t;
∆(m)), c) the operator LA induced by matrix A is compact.
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Proof. Let A ∈ (l∞(r, s, t; ∆(m)), c0) then Ã ∈ (l∞, c0), where Ax = Ãy holds for
every x ∈ l∞(r, s, t; ∆(m)) and y ∈ l∞, which are connected by the relation y =

(A(r, s, t).∆(m))x. Since Ã ∈ (l∞, c0), by Theorem 4.5(d), we have lim
n→∞

∞∑
k=0

|ãnk| =

0. Hence by Corollary 5.13(a) the operator LA is compact.
Similarly if A ∈ (l∞(r, s, t; ∆(m)), c) then Ã ∈ (l∞, c). From Theorem 4.5(g), we

have lim
n→∞

∞∑
k=0

|ãnk − α̃k| = 0, where α̃k = lim
n→∞

ãnk for all k. Thus by Corollary

5.13(b), we have LA is compact. �
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3. B. Altay and F. Başar, Generalization of the sequence space `(p) derived by weighted mean,
J. Math. Anal. Appl. 330 (2007), 174–185.
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