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EXISTENCE OF STEPANOV-LIKE SQUARE-MEAN PSEUDO
ALMOST PERIODIC SOLUTIONS TO PARTIAL STOCHASTIC

NEUTRAL DIFFERENTIAL EQUATIONS

ZUOMAO YAN1∗ AND HONGWU ZHANG2

Communicated by C. Cuevas

Abstract. In this paper, we introduce the concept of Stepanov-like square-
mean pseudo almost periodic functions and establish the existence and unique-
ness of square-mean almost periodic mild solutions for several neutral partial
stochastic differential equations with Stepanov-like almost periodic coefficients
in a real separable Hilbert space. Moreover, two examples are given to illustrate
the general theorems.

1. Introduction

The theory of neutral differential equations arises in many phenomena such as in
the study of oscillatory systems and also in the modeling of several physical prob-
lems. It has been widely studied in the last decades. There exists an extensive
literature for abstract partial neutral differential equations we refer to the papers
[2],[22],[23],[33],[34], the book [32]. The existence of almost periodic, asymptoti-
cally almost periodic, and pseudo-almost periodic solutions are the most attrac-
tive topics in qualitative theories of differential equations because of their sig-
nificance and applications in physics, mechanics and mathematical biology. The
concept of pseudo almost periodicity was introduced by Zhang in [35],[36],[37],[38]
in the early nineties. In recent years, the existence of pseudo-almost periodic so-
lutions on different kinds of differential equations have been considered in many
publications such as [3], [11],[12],[13],[14],[17],[18],[19],[20],[24],[25],[39]. and the
reference there in. Especially, Diagana has, in [15],[16], introduced the notion of
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Stepanov-like pseudo almost periodicity as a natural generalization of the concept
of pseudo almost periodicity as well as the one of Stepanov-like almost periodicity,
established a composition theorem on Stepanov-like pseudo almost periodic func-
tions, and [26] for more recent results about the Stepanov-like almost periodic
function theory.

Recently, there has been an increasing interest in extending certain classical de-
terministic results to stochastic differential equations. This is due to the fact that
most problems in a real life situation to which mathematical models are appli-
cable are basically stochastic rather than deterministic. The existence of almost
periodic, asymptotically almost periodic, and pseudo almost periodic solutions
to some stochastic differential equations has been considered in many publica-
tions such as [4],[29],[21],[30],[31],[10],[27],[5], [6],[7],[8],[9] and references therein.
Among them, Tudor [30] studied the almost periodic solution for the affine and
stochastic evolution equations. In [31], the pseudo almost periodic solution for a
class of stochastic differential equations was investigated. Cao et al.[10] proved
the existence and exponential stability of quadratic-mean asymptotically almost
periodic mild solutions to a class of stochastic differential equations. Huang and
Yang [27] presented some new criteria ensuring the existence and uniqueness of
quadratic-mean almost periodic solution as well as global exponential stability
of the almost periodic solution for stochastic cellular neural networks with de-
lay. Bezandry and Diagana [5] considered the almost periodic solution for a class
of stochastic differential equations. In [6],[7],[8], the existence of square-mean
almost periodic solutions to some stochastic differential equations on a Hilbert
space was investigated. In particular, Bezandry and Diagana [9] studied the
notion of Stepanov almost periodicity (or S2-almost periodicity) for stochastic
processes, which is weaker than the notion of quadratic-mean almost periodicity.
They results are more general and complicated than the almost periodic solutions
or pseudo almost periodic solutions to some stochastic differential equations.

In this paper, we investigate the existence and uniqueness of Stepanov-like
square-mean pseudo almost periodic mild solutions to the following neutral partial
stochastic differential equations:

dx(t) = Ax(t)dt+ dg(t, x(t)) + h(t, x(t))dt+ f(t, x(t))dW (t), t ∈ R, (1.1)

dx(t) = Ax(t)dt+ dg(t, B1x(t)) + h(t, B2x(t))dt+ f(t, B3x(t))dW (t), t ∈ R,
(1.2)

where A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 on L2(P,H)
and W (t) is a two-sided standard one-dimensional Brownian motion defined on
the filtered probability space (Ω,F ,P,Ft), where Ft = σ{W (u)−W (v);u, v ≤ t}.
g, h, f, g and Bi, i = 1, 2, 3, are appropriate functions to be specified later.

Existence results related to almost periodic solutions to abstract partial neu-
tral differential equations have recently been established in [20],[23],[39],[1],[25],
respectively. However, the existence of square-mean pseudo almost periodic so-
lutions to neutral partial stochastic differential equations of the form (1.1) and



118 Z. YAN, H. ZHANG

(1.2) in the case when the forcing terms g, h, f are Stepanov-like almost peri-
odic coefficients is an untreated topic and constitutes the main motivation of the
present paper. For this reason, we introduce and study the notion of Stepanov-
like square-mean pseudo almost periodic for stochastic processes, which, in turn
generalizes all the above-mentioned concepts, in particular, the notion of square-
mean pseudo almost periodic. As an application, we study and obtain the exis-
tence and uniqueness of square-mean pseudo almost periodic mild solutions to a
neutral stochastic functional differential equations with Stepanov-like-pseudo al-
most automorphic coefficients. Such a result generalizes most of known results on
the existence of almost periodic (respectively, pseudo almost periodic) solutions
to stochastic differential equations of type Eq. (1.1) and Eq. (1.2).

The paper is organized as follows. In Section 2, we recall briefly some basic
notations and definitions, lemmas related with square-mean pseudo almost peri-
odic functions and Stepanov-like square-mean pseudo almost periodic functions.
Section 3 verifies the existence and uniqueness of the Stepanov-like square-mean
pseudo almost periodic solutions for the problems (1.1) and (1.2). Finally in
Section 4, we investigate two examples to illustrate the abstract results.

2. preliminaries

In this section, we introduce some basic definitions, notations and lemmas which
are used throughout this paper.

Throughout the paper,we assume that (H, ‖ · ‖, 〈·, ·〉) and (K, ‖ · ‖K, 〈·, ·〉K) are
two real separable Hilbert spaces. Let (Ω,F ,P) be a complete probability space.
The notation L2(P,H) stands for the space of all H-valued random variables x
such that E ‖ x ‖2=

∫
Ω
‖ x ‖2 dP < ∞, which is a Banach space with the norm

‖ x ‖2= (
∫

Ω
‖ x ‖2 dP)

1
2 . It is routine to check that L2(P,H) is a Hilbert space

equipped with the norm ‖ · ‖. We let L(K,H) be the space of all linear bounded
operators from K into H, equipped with the usual operator norm ‖ · ‖L(K,H); in
particular, this is simply denoted by L(H) when K = H. W (t) is a two-sided
standard one-dimensional Brownian motion defined on the filtered probability
space (Ω,F ,P,Ft), where Ft = σ{W (u)−W (v);u, v ≤ t}.

In this paper, the operator A is the infinitesimal generator of an exponentially
stable C0-semigroup {T (t)}t≥0 on L2(P,H); that is, there exist M > 0, δ > 0 such
that

‖ T (t) ‖≤Me−δt

for all t ≥ 0.

2.1. Square-mean Pseudo almost periodicity. The notations C(R, L2(P,H)),
and BC(R, L2(P,H)) stand for the collection of all continuous functions from R
into L2(P,H), the Banach space of all bounded continuous functions from R into
L2(P,H), equipped with the sup norm ‖ · ‖∞, respectively. Let BC(R, L2(P,K))
denote the Banach space of all bounded continuous functions from R to L2(P,K),
equipped with the L2(P,K)-sup norm ‖ · ‖∞,K .

Similarly, C(R × L2(P,K), L2(P,H)) and BC(R × L2(P,K), L2(P,H)) stand,
respectively, for the class of all jointly continuous functions from R × L2(P,K)
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into L2(P,H) and the collection of all jointly bounded continuous functions from
R× L2(P,K) into L2(P,H).

Definition 2.1. A stochastic process x(t) : R → L2(P,H) is said to be stochas-

tically bounded if there exists M̂ > 0 such that E ‖ x(t) ‖2≤ M̂ for all t ∈ R.
Definition 2.2. A stochastic process x : R → L2(P,H) is said to be stochastically
continuous if

lim
t→s

E ‖ x(t)− x(s) ‖2= 0.

Denote by BC(R, L2(P,H)) the collection of all the stochastically bounded and
continuous processes. Then several properties of the space BC(R, L2(P,H)) are
listed as follows.

Remark 2.3. BC(R, L2(P,H)) is a linear space.

Remark 2.4. BC(R, L2(P,H)) is a Banach space with the norm

‖ x ‖∞:= sup
t∈R

(E ‖ x(t) ‖2)
1
2

for E ‖ x(t) ‖2= (
∫

Ω
‖ x(t) ‖2 dP)

1
2 .

Definition 2.5. ([6],[7],[8]) A stochastic process x ∈ C(R, L2(P,H)) is called
(Bohr) square-mean almost periodic if for each ε > 0 there exists l(ε) > 0 such
that every interval of length l(ε) contains a number s′ with the property that

E ‖ x(t+ s′)− x(t) ‖2< ε

for each t ∈ R. The collection of all such functions will be denoted byAP (L2(P,H)).

Denote

PAP0(R, L2(P,H)) =

{
f ∈ BC(R, L2(P,H)) : lim

r→∞

1

2r

∫ r

−r

E ‖ f(t) ‖2 dt = 0

}
.

Definition 2.6. (Compare with [31]) A stochastic process f ∈ BC(R, L2(P,H))
is said to be square-mean pseudo almost periodic if it can be decomposed as
f = g + ϕ, where g ∈ AP (L2(P,H)) and ϕ ∈ PAP0(L

2(P,H)). The collection of
such functions will be denoted by PAP (L2(P,H)).

We define PAP0(R, L2(P,K)) as the collection of functions f ∈ BC(R ×
L2(P,K), L2(P,H)) such that

lim
r→∞

1

2r

∫ r

−r

E ‖ f(t, x) ‖2 dt = 0

uniformly in x ∈ L2(P,K).

Definition 2.7. ([6],[7],[8]) A stochastic process f ∈ C(R × L2(P,K), L2(P,H))
is called (Bohr) almost periodic in t ∈ R uniformly in x ∈ L2(P,K)) if for each
ε > 0 and any compact K ⊂ L2(P,K) there exists l(ε) > 0 such that every
interval of length l(ε) contains a number s′ with the property that

E ‖ f(t+ s′, x)− f(t, x) ‖2< ε

for each t ∈ R, x ∈ K. The collection of all such functions will be denoted by
AP (R× L2(P,K)).
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Lemma 2.8. Assume {fn}n∈N ⊂ PAP (L2(P,H)) be a sequence of stochastic
processes. If {fn} converges uniformly to some f , then f ∈ PAP (L2(P,H)).

One can refer to Lemma 2.5 in [16] for the proof of Lemma 2.8.

Definition 2.9. ([31]) A stochastic process f ∈ C(R × L2(P,K), L2(P,H)) is
said to be pseudo almost periodic in t ∈ R uniformly in u ∈ L2(P,K) if it can
be decomposed as f = g + ϕ, where g ∈ AP (R × L2(P,K)) and ϕ ∈ PAP0(R ×
L2(P,K)). The collection of such functions will be denoted by PAP (R×L2(P,K)).

Lemma 2.10. ([31]) Assume f ∈ PAP (R × L2(P,K)). Suppose that f(t, u) is
Lipschitz in u ∈ L2(P,H) uniformly in t ∈ R, in the sense that there exists L∗ > 0
such that

E ‖ f(t, u)− f(t, v) ‖2≤ L∗E ‖ u− v ‖2

for all t ∈ R, u, v ∈ L2(P,K).
If φ(·) ∈ PAP (L2(P,K)) then f(·, φ(·)) ∈ PAP (L2(P,H)).

Lemma 2.11. Let u ∈ PAP (L2(P,K)), B ∈ L(L2(P,K), L2(P,H)). If v(t) =
Bu(t) for each t ∈ R, then v ∈ PAP (L2(P,H)).

One can refer to Lemma 4.1 in [26] for the proof of Lemma 2.11.

2.2. Stepanov-like square-mean pseudo almost periodicity.

Definition 2.12. ([9]) The Bochner transform xb(t, s), t ∈ R, s ∈ [0, 1], of a
stochastic process x : R → L2(P,H) is defined by

xb(t, s) := x(t+ s).

Remark 2.13. ([9]) A stochastic process ψ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner
transform of a certain stochastic process x,

ψ(t, s) = xb(t, s),

if and only if
ψ(t+ τ, s− τ) = ψ(s, t)

for all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

Definition 2.14. ([9]) The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈
L2(P,H), of a function F : R× L2(P,H) → L2(P,H) is defined by

F b(t, s, u) := F (t+ s, u)

for each u ∈ L2(P,H).

Definition 2.15. ([9]) The space BS2(L2(P,H)) of all Stepanov bounded sto-
chastic processes consists of all measurable stochastic processes x : R → L2(P,H)
such that

xb ∈ L∞(R, L2(0, 1;L2(P,H))).

This is a Banach space with the norm

‖ x ‖S2=‖ xb ‖L∞(R,L2)= sup
t∈R

( ∫ t+1

t

E ‖ x(τ) ‖2 dτ

) 1
2

.
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Definition 2.16. A stochastic process f ∈ BS2(R, L2(P,H)) is said to be Stepanov-
like square-mean pseudo almost periodic (or S2-pseudo almost periodic) if it can
be decomposed as f = h + ϕ, where hb ∈ AP (L2(0, 1;L2(P,H))) and ϕb ∈
PAP0(L

2(0, 1;L2(P,H))). Denote the set of all such stochastically continuous
processes by PAPS2(L2(P,H)).

In other words, a stochastic process f ∈ L2
loc(R, L2(P,H)) is said to be Stepanov-

like square-mean pseudo almost periodic if its Bochner transform f b : R →
L2(0, 1;L2(P,H)) is square-mean pseudo almost automorphic in the sense that
there exist two functions h, ϕ : R → L2(P,H) such that f = h + ϕ, where
hb ∈ AP (L2(0, 1;L2(P,H))) and ϕb ∈ PAP0(L

2(0, 1;L2(P,H))).
Obviously, the following inclusions hold:

AP (L2(P,H)) ⊂ PAP (L2(P,H)) ⊂ PAPS2(L2(P,H)).

Definition 2.17. A stochastic process f ∈ BS2(R×L2(P,K), L2(P,H)) is said to
be Stepanov-like square-mean pseudo almost periodic (or S2-pseudo almost peri-
odic) if it can be decomposed as f = h+ϕ, where hb ∈ AP (R×L2(0, 1;L2(P,K)))
and ϕb ∈ PAP0(R× L2(0, 1;L2(P,K))). Denote the set of all such stochastically
continuous processes by PAPS2(R× L2(P,K)).

Lemma 2.18. Assume f ∈ PAPS2(R × L2(P,K)). Suppose that f(t, u) is Lip-
schitz in u ∈ L2(P,K) uniformly in t ∈ R, in the sense that there exists L̃ > 0
such that

E ‖ f(t, u)− f(t, v) ‖2≤ L̃E ‖ u− v ‖2

for all t ∈ R, u, v ∈ L2(P,K). If φ(·) ∈ PAPS2(L2(P,K)) then f(·, φ(·)) ∈
PAPS2(L2(P,H)).

Lemma 2.18 can be proved by using Definition 2.16, Definition 2.17 and Lem-
mas 2.10. One may refer to Theorem 2.14 in [15] for more details about the proof
of Lemma 2.18.

Lemma 2.19. Let x(·) ∈ PAPS2(L2(P,K)), B ∈ L(L2(P,K), L2(P,H)). If y(t) =
Bx(t) for each t ∈ R, then y ∈ PAPS2(L2(P,H)).

The proof is similar to the proof of Theorem 4.2 in [26], and we omit the details
here.

3. Existence of Stepanov-like square-mean pseudo almost periodic
solutions

In this section, we prove that there is a unique mild solution for the problems
(1.1) and (1.2). We first prove the next auxiliary results.

Lemma 3.1. If h ∈ PAPS2(L2(P,H))∩C(R, L2(P,H)) and if H is the function
defined by

H(t) :=

∫ t

−∞
T (t− τ)h(τ)dτ (3.1)

for each t ∈ R, then H ∈ PAP (L2(P,H)).
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Proof. Since h ∈ PAPS2(L2(P,H)) ∩ C(R, L2(P,H)), write

h = h1 + h2,

where

hb
1 ∈ AP (L2(0, 1;L2(P,H))) ∩ C(R, L2(0, 1;L2(P,H)))

and

hb
2 ∈ PAP0(L

2(0, 1;L2(P,H))) ∩ C(R, L2(0, 1;L2(P,H))),

then H(t) can be decomposed as

H(t) =

∫ t

−∞
T (t− τ)h1(τ)dτ +

∫ t

−∞
T (t− τ)h2(τ)dτ.

Define for all k = 1, 2, 3, ..., the sequence of integral operators

Hk(t) =

∫ k

k−1

T (τ)h1(t− τ)dτ +

∫ k

k−1

T (τ)h2(t− τ)dτ.

Set

H1,k(t) =

∫ k

k−1

T (τ)h1(t− τ)dτ =

∫ t−k+1

t−k

T (t− τ)h1(τ)dτ

and

H2,k(t) =

∫ k

k−1

T (τ)h2(t− τ)dτ =

∫ t−k+1

t−k

T (t− τ)h2(τ)dτ

for each t ∈ R and k = 1, 2, 3, . . . . Next we show that H1,k ∈ AP (L2(P,H)) and
H2,k ∈ PAP0(L

2(P,H)).
To prove that H1,k ∈ AP (L2(P,H)). Using the exponential stable of T (t)t≥0

and Hölder’s inequality, it follows that

E ‖ H1,k(t) ‖2 = E

wwww∫ t−k+1

t−k

T (t− τ)h1(τ)dτ

wwww2

≤ E

( ∫ t−k+1

t−k

‖ T (t− τ) ‖‖ h1(τ) ‖ dτ
)2

≤M2E

( ∫ t−k+1

t−k

e−δ(t−τ) ‖ h1(τ) ‖ dτ
)2

≤M2

( ∫ t−k+1

t−k

e−2δ(t−τ)dτ

)( ∫ t−k+1

t−k

E ‖ h1(τ) ‖2 dτ

)
≤M2

( ∫ k

k−1

e−2δτdτ

)
‖ h1 ‖2

S2

≤ M2

2δ
(e2δ − 1)e−2δk ‖ h1 ‖2

S2 .

Since the series
M2

2δ
(e2δ − 1) ‖ h1 ‖2

S2

∞∑
k=1

e−2δk <∞,
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we deduce from the well-known Weirstrass test that the series
∑∞

k=1H1,k(t) is
uniformly convergent on R. Now let

H1(t) :=
∞∑

k=1

H1,k(t), t ∈ R.

Observe that

H1(t) :=

∫ t

−∞
T (t− τ)h1(τ)dτ, t ∈ R

and hence H1(t) ∈ C(R, L2(P,H)). Moreover, for any t ∈ R, we have

E ‖ H1(t) ‖2 ≤ 2E

wwwwH1(t)−
n∑

k=1

H1,k(t)

wwww2

+ 2

( n∑
k=1

e−δk

)( n∑
k=1

eδkE ‖ H1,k(t) ‖2

)
≤ C1(M, δ) ‖ h1 ‖2

S2 ,

where C1(M, δ) depends only on the fixed constants M and δ.
Let us show that each H1,k ∈ AP (L2(P,H)).
Indeed, by hb

1 ∈ AP (L2(0, 1;L2(P,H))), given ε > 0, one can find l(ε) > 0 such
that any interval of length l(ε) contains at least s′ with the property that∫ t+1

t

E ‖ h1(s+ s′)− h1(s) ‖2 ds < ε (3.2)

for all t ∈ R. On the other hand, using the inequality (3.2), exponential stable of
T (t)t≥0 and Hölder’s inequality, we obtain that

E ‖ H1,k(t+ s′)−H1,k(t) ‖2

≤ E

wwww∫ k

k−1

T (τ)[h1(t+ s′ − τ)− h1(t− τ)]dτ

wwww2

≤ E

( ∫ k

k−1

‖ T (τ) ‖‖ h1(t+ s′ − τ)− h1(t− τ) ‖ dτ
)2

≤M2E

( ∫ k

k−1

e−δτ ‖ h1(t+ s′ − τ)− h1(t− τ) ‖ dτ
)2

≤M2

( ∫ k

k−1

e−2δτdτ

)( ∫ k

k−1

E ‖ h1(t+ s′ − τ)− h1(t− τ) ‖2 dτ

)
≤ M2

2δ
e−2δk(e2δ − 1)

( ∫ t−k+1

t−k

E ‖ h1(s+ s′)− h1(s) ‖2 ds

)
<
M2

2δ
e−2δk(e2δ − 1)ε.

Therefore, we deduce that H1,k ∈ AP (L2(P,H)).
Next, we will prove that H2,k ∈ PAP0(L

2(P,H)). It is obvious that H2,k ∈
BC(R, L2(P,H)), the left task is to show that

lim
r→∞

1

2r

∫ r

−r

E ‖ H2,k(t) ‖2 dt = 0
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for each t ∈ R and k = 1, 2, 3, . . . . Then, by using the exponential stable of
T (t)t≥0 and Hölder’s inequality, it follows that

E ‖ H2,k(t) ‖2 = E

wwww∫ t−k+1

t−k

T (t− τ)h2(τ)dτ

wwww2

≤ E

( ∫ t−k+1

t−k

‖ T (t− τ) ‖‖ h2(τ) ‖ dτ
)2

≤ E

( ∫ t−k+1

t−k

Me−δ(t−τ) ‖ h2(τ) ‖ dτ
)2

≤M2

( ∫ t−k+1

t−k

e−2δ(t−τ)dτ

)( ∫ t−k+1

t−k

E ‖ h2(τ) ‖2 dτ

)
≤M2

( ∫ k

k−1

e−2δτdτ

)( ∫ t−k+1

t−k

E ‖ h2(τ) ‖2 dτ

)
≤ M2

2δ
e−2δk(e2δ − 1)

( ∫ t−k+1

t−k

E ‖ h2(τ) ‖2 dτ

)
≤ M2

2δ
(e2δ − 1)e−2δk ‖ h2 ‖2

S2 .

Since the series
M2

2δ
(e2δ − 1) ‖ h2 ‖2

S2

∞∑
k=1

e−2δk <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

k=1H2,k(t) is
uniformly convergent on R. Now let

H2(t) :=
∞∑

k=1

H2,k(t), t ∈ R.

Observe that

H2(t) :=

∫ t

−∞
T (t− τ)h2(τ)dτ, t ∈ R

and hence H2(t) ∈ C(R, L2(P,H)). Moreover, for any t ∈ R, we have

E ‖ H2(t) ‖2 ≤ 2E

wwwwH2(t)−
n∑

k=1

H2,k(t)

wwww2

+ 2

( n∑
k=1

e−δk

)( n∑
k=1

eδkE ‖ H2,k(t) ‖2

)
≤ C2(M, δ) ‖ h2 ‖2

S2 ,

where C2(M, δ) depends only on the fixed constants M and δ.
Let us show that each H2,k ∈ PAP0(L

2(P,H)). For that, note that the above
inequality

E ‖ H2,k(t) ‖2 ≤M2

( ∫ k

k−1

e−2δτdτ

)( ∫ t−k+1

t−k

E ‖ h2(τ) ‖2 dτ

)
≤ C2(M, δ)

( ∫ t−k+1

t−k

E ‖ h2(τ) ‖2 dτ

)
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and hence H2,k ∈ PAP0(L
2(P,H)), as hb

2 ∈ PAP0(L
2(0, 1;L2(P,H))).

Thus we conclude that each Hk(t) ∈ PAP (L2(P,H)) and hence
∑∞

k=1Hk(t) ∈
PAP (L2(P,H)). Consequently its uniform limit

H(t) =
∞∑

k=1

Hk(t) ∈ PAP (L2(P,H)),

by Lemma 2.8. The proof is complete. �

Lemma 3.2. If f ∈ PAPS2(L2(P,H)) ∩ C(R, L2(P,H) and if F is the function
defined by

F (t) :=

∫ t

−∞
T (t− τ)f(τ)dW (τ) (3.3)

for each t ∈ R, then F ∈ PAP (L2(P,H)).

Proof. Since f ∈ PAPS2(L2(P,H)) ∩ C(R, L2(P,H), write

f = f1 + f2,

where

f b
1 ∈ AP (L2(0, 1;L2(P,H))) ∩ C(R, L2(0, 1;L2(P,H)))

and

f b
2 ∈ PAP0(L

2(0, 1;L2(P,H))) ∩ C(R, L2(0, 1;L2(P,H))),

then F (t) can be decomposed as

F (t) =

∫ t

−∞
T (t− τ)f1(τ)dW (τ) +

∫ t

−∞
T (t− τ)f2(τ)dW (τ).

Define for all k = 1, 2, 3, ..., the sequence of integral operators

Fk(t) :=

∫ k

k−1

T (τ)f1(t− τ)dW (τ) +

∫ k

k−1

T (τ)f2(t− τ)dW (τ).

Set

F1,k(t) =

∫ k

k−1

T (τ)f1(t− τ)dW (τ) =

∫ t−k+1

t−k

T (t− τ)f1(τ)dW (τ)

and

F2,k(t) =

∫ k

k−1

T (τ)f2(t− τ)dW (τ) =

∫ t−k+1

t−k

T (t− τ)f2(τ)dW (τ)

for each t ∈ R and k = 1, 2, 3, . . . . Next we show that F1,k ∈ AP (L2(P,H)) and
F2,k ∈ PAP0(L

2(P,H)).
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To prove that F1,k ∈ AP (L2(P,H)). Using an estimate on the Ito integral
established in [28], it follows that

E ‖ F1,k(t) ‖2 ≤ E

wwww∫ t−k+1

t−k

T (t− τ)f1(τ)dW (τ)

wwww2

≤
∫ t−k+1

t−k

‖ T (t− τ) ‖2 E ‖ f1(τ) ‖2 dτ

≤M2

∫ t−k+1

t−k

e−2δ(t−τ)E ‖ f1(τ) ‖2 dτ

≤M2

∫ k

k−1

e−2δτE ‖ f1(t− τ) ‖2 dτ

≤M2 sup
τ∈[k−1,k]

e−2δτ

∫ k

k−1

E ‖ f1(t− τ) ‖2 dτ

≤M2e−2δke2δ ‖ f1 ‖2
S2 .

Since the series

M2e2δ ‖ f1 ‖2
S2

∞∑
k=1

e−2δk <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

k=1 F1,k(t) is
uniformly convergent on R. Now let

F1(t) :=
∞∑

k=1

F1,k(t), t ∈ R.

Observe that

F1(t) :=

∫ t

−∞
T (t− τ)f1(τ)dW (τ), t ∈ R

and hence F1(t) ∈ C(R, L2(P,H)). Moreover, for any t ∈ R, we have

E ‖ F1(t) ‖2 ≤ 2E

wwwwF1(t)−
n∑

k=1

F1,k(t)

wwww2

+ 2

( n∑
k=1

e−δk

)( n∑
k=1

eδkE ‖ F1,k(t) ‖2

)
≤ C̃1(M, δ) ‖ f1 ‖2

S2 ,

where C̃1(M, δ) depends only on the fixed constants M and δ.
Let us show that each F1,k ∈ AP (L2(P,H)).
Indeed, by f b

1 ∈ AP (L2(0, 1;L2(P,H))), given ε > 0, one can find l(ε) > 0 such
that any interval of length l(ε) contains at least s′ with the property that∫ t+1

t

E ‖ f1(s+ s′)− f1(s) ‖2 ds < ε (3.4)
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for each t ∈ R. On the other hand, using the inequality (3.4), exponential stable
of T (t)t≥0 and the Ito integral, we obtain that

E ‖ F1,k(t+ s′)− F1,k(t) ‖2

= E

wwww∫ k

k−1

T (τ)[f1(t+ s′ − τ)− f1(t− τ)]dW (τ)

wwww2

≤
∫ k

k−1

‖ T (τ) ‖2 E ‖ f1(t+ s′ − τ)− f1(t− τ) ‖2 dτ

≤M2

∫ k

k−1

e−2δτE ‖ f1(t+ s′ − τ)− f1(t− τ) ‖2 dτ

≤M2 sup
τ∈[k−1,k]

e−2δτ

∫ k

k−1

E ‖ f1(t+ s′ − τ)− f1(t− τ) ‖2 dτ

≤M2e−2δke2δ

∫ t−k+1

t−k

E ‖ f1(s+ s′)− f1(s) ‖2 ds

< M2e−2δke2δε.

Therefore, we deduce that F1,k ∈ AA(L2(P,H)).
Next, we will prove that F2,k ∈ PAP0(L

2(P,H)). It is obvious that F2,k ∈
BC(R, L2(P,H), the left task is to show that

lim
r→∞

1

2r

∫ r

−r

E ‖ F2,k(t) ‖2 dt = 0

for each t ∈ R and k = 1, 2, 3, . . . . Then, by using the exponential stable of
U(t, s)t≥s and the Ito integral, it follows that

E ‖ F2,k(t) ‖2 = E

wwww∫ t−k+1

t−k

T (t− τ)f2(τ)dτ

wwww2

≤M2

∫ t−k+1

t−k

e−2δ(t−τ)E ‖ f2(τ) ‖2 dτ

≤M2

∫ k

k−1

e−2δτE ‖ f2(t− τ) ‖2 dτ

≤M2 sup
τ∈[k−1,k]

e−2δτ

∫ k

k−1

E ‖ f2(t− τ) ‖2 dτ

≤M2e−2δke2δ ‖ f2 ‖2
S2 .

Since the series

M2e2δ ‖ f2 ‖2
S2

∞∑
k=1

e−2δk <∞,

we deduce from the well-known Weirstrass test that the series
∑∞

k=1 F2,k(t) is
uniformly convergent on R. Now let

F2(t) :=
∞∑

k=1

F2,k(t), t ∈ R.
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F2(t) =

∫ t

−∞
T (t− τ)f2(τ)dW (τ), t ∈ R

and hence F2(t) ∈ C(R, L2(P,H)). Moreover, for any t ∈ R, we have

E ‖ F2(t) ‖2 ≤ 2E

wwwwF2(t)−
n∑

k=1

F2,k(t)

wwww2

+ 2

( n∑
k=1

e−δk

)( n∑
k=1

eδkE ‖ F2,k(t) ‖2

)
≤ C̃2(M, δ) ‖ f2 ‖2

S2 ,

where C̃2(M, δ) depends only on the fixed constants M and δ.
Let us show that each F2,k ∈ PAP0(L

2(P,H)). For that, note that the above
inequality

E ‖ F2,k(t) ‖2 ≤ 2M2e−2δke2δ

∫ k

k−1

E ‖ f2(t− τ) ‖2 dτ

≤ C̃2(M, δ)

∫ k

k−1

E ‖ f2(t− τ) ‖2 dτ

and hence F2,k ∈ PAP0(L
2(P,H)), as f b

2 ∈ PAP0(L
2(0, 1;L2(P,H))).

Thus we conclude that each Fk(t) ∈ PAP (L2(P,H)) and hence
∑∞

k=1 Fk(t) ∈
PAP (L2(P,H)). Consequently its uniform limit

F (t) =
∞∑

k=1

Fk(t) ∈ PAP (L2(P,H)),

by Lemma 2.8. The proof is complete. �

Now, we establish the existence and uniqueness theorem of pseudo almost pe-
riodic mild solutions to neutral partial stochastic differential equation (1.1). For
that, we make the following hypotheses:

(H1) The functions g ∈ PAP (R×L2(P,H))∩C(R×L2(P,H)), L2(P,H)), h, f ∈
PAPS2(R× L2(P,H)) ∩ C(R× L2(P,H), L2(P,H)).

(H2) The functions g, h, f are Lipschitz with respect to the second argument
uniformly in the first argument in the sense that: there exist Lg, Lh, Lf > 0
such that

E ‖ g(t, x)− g(t, y) ‖2≤ LgE ‖ x− y ‖2,

E ‖ h(t, x)− h(t, y) ‖2≤ LhE ‖ x− y ‖2,

and
E ‖ f(t, x)− f(t, y) ‖2≤ LfE ‖ x− y ‖2

for all t ∈ R and each x, y ∈ L2(P,H).

Definition 3.3. An Ft-progressively measurable stochastic process x : R →
L2(P,H) is called a mild solution of the system (1.1) if x(t) satisfies

x(t)− g(t, x(t)) = T (t− s)[x(s)− g(s, x(s))]

+

∫ t

s

T (t− τ)h(τ, x(τ))dτ +

∫ t

s

T (t− τ)f(τ, x(τ))dW (τ) (3.5)

for all t ≥ s and all s ∈ R.
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Theorem 3.4. Assume that (H1)-(H2) hold. If

3

[
Lg +

M2

δ2
Lh +

M2

2δ
Lf

]
< 1. (3.6)

then Eq. (1.1) admits a unique pseudo almost periodic mild solution on R.

Proof. Consider the nonlinear operator Λ on BC(R, L2(P,H)) defined by

(Λx)(t) = g(t, x(t)) +

∫ t

−∞
T (t− τ)h(τ, x(τ)dτ

+

∫ t

−∞
T (t− τ)f(τ, x(τ)dW (τ), t ∈ R.

Let x(·) ∈ PAP (L2(P,H)), then g(·, x(·)) ∈ PAP (L2(P,H)), by Lemma 2.10,
thanks to assumptions (H1)-(H2). Together with Lemma 2.18, we deduce that
h(·, x(·)), f(·, x(·)) ∈ PAPS2(L2(P,H)). It is easy to check that h(·, x(·)), f(·, x(·))
is in C(R, L2(P,H)). Applying Lemma 3.1,Lemma 3.2 for h(·) = h(·, x(·)), f(·) =
f(·, x(·)), it follows that the operator Λ is well defined and maps in PAP (L2(P,H))
into itself.

Let x, y ∈ PAP (L2(P,H)), then (H1)-(H2) yield that

E ‖ (Λx)(t)− (Λy)(t) ‖2 ≤ 3E ‖ g(t, x(t))− g(t, y(t)) ‖2

+ 3E

wwww∫ t

−∞
T (t− s)[h(s, x(s))− h(s, y(s))]ds

wwww2

+ 3E

wwww∫ t

−∞
T (t− s)[f(s, x(s))− f(s, y(s))]dW (s)

wwww2

.

By using the Cauchy-Schwarz inequality, we first evaluate the first second term
of the right-hand side

3E ‖ g(t, x(t))− g(t, y(t)) ‖2 ≤ 3LgE ‖ x(t)− y(t) ‖2

≤ 3Lq ‖ x− y ‖2
∞

and

3E

wwww∫ t

−∞
T (t− s)[h(s, x(s))− h(s, y(s))]ds

wwww2

≤ 3E

( ∫ t

−∞
‖ T (t− s) ‖‖ h(s, x(s))− h(s, y(s)) ‖ ds

)2

≤ 3M2E

( ∫ t

−∞
e−δ(t−s) ‖ h(s, x(s))− h(s, y(s)) ‖ ds

)2

≤ 3M2

( ∫ t

−∞
e−δ(t−s)ds

)( ∫ t

0

e−δ(t−s)E ‖ h(s, x(s))− h(s, y(s)) ‖2 ds

)
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≤ 3M2
αLh

( ∫ t

−∞
e−δ(t−s)ds

)( ∫ t

−∞
e−δ(t−s)E ‖ x(s)− y(s) ‖2 ds

)
≤ 3M2Lh

( ∫ t

−∞
e−δ(t−s)ds

)2

sup
s∈R

E ‖ x(s)− y(s) ‖2

≤ 3M2

δ2
Lh ‖ x− y ‖2

∞ .

As to the last term, by the Ito integral, we get

3E

wwww∫ t

−∞
T (t− s)[f(s, x(s))− f(s, y(s))]dW (s)

wwww2

≤ 3

∫ t

−∞
‖ T (t− s) ‖2 E ‖ f(s, x(s))− f(s, y(s)) ‖2 ds

≤ 3M2

∫ t

−∞
e−2δ(t−s)E ‖ f(s, x(s))− f(s, y(s)) ‖2 ds

≤ 3M2Lf

∫ t

−∞
e−2δ(t−s)E ‖ x(s)− y(s) ‖2 ds

≤ 3M2Lf

∫ t

−∞
e−2δ(t−s)ds sup

s∈R
E ‖ x(s)− y(s) ‖2

≤ 3M2

2δ
Lf ‖ x− y ‖2

∞ .

Thus, by combining the above inequality together, we obtain that, for each t ∈ R,

E ‖ (Λx)(t)− (Λy)(t) ‖2≤ 3

[
Lg +

M2

δ2
Lh +

M2

2δ
Lf

]
‖ x− y ‖2

∞ .

Hence

‖ Λx− Λy ‖∞≤
√
L0 ‖ x− y ‖∞,

where L0 = 3[Lg + M2

δ2 Lh + M2

2δ
Lf ] < 1, then the operator Λ becomes a strict

contraction. By the Banach contraction principle, we draw a conclusion that
there exists a unique fixed point x(·) for Λ in PAP (L2(P,H)).

Finally, to prove that x satisfies (3.5) for all t ≥ s, all s ∈ R. For this, we let

x(s) = g(s, x(s)) +

∫ s

−∞
T (t− τ)h(τ, x(τ))dτ

+

∫ s

−∞
T (t− τ)f(τ, x(τ))dW (τ), s ∈ R. (3.7)

Multiply both sides of (3.7) by T (s) for all s ∈ R, then

T (s)x(s) = T (s)g(s, x(s)) +

∫ s

−∞
T (t− τ)h(τ, x(τ))dτ

+

∫ s

−∞
T (t− τ)f(τ, x(τ))dW (τ)
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= T (s)g(s, x(s)) +

∫ t

−∞
T (t− τ)h(τ, x(τ))dτ

−
∫ t

s

T (t− τ)h(τ, x(τ))dτ

+

∫ t

−∞
T (t− τ)f(τ, x(τ))dW (τ)−

∫ t

s

T (t− τ)f(τ, x(τ))dW (τ)

= T (s)g(s, x(s)) + x(t)− g(t, x(t))

−
∫ t

s

T (t− τ)h(τ, x(τ))dτ −
∫ t

s

T (t− τ)f(τ, x(τ))dW (τ).

Hence x ∈ PAP (L2(P,H)) is a unique mild solution to Eq. (1.1). The proof is
complete. �

Next, we establish the existence and uniqueness theorem of pseudo almost
periodic mild solutions to perturb neutral partial stochastic differential equation
(1.2). For that, we make the following hypotheses:

(P1) L2(P,K) ↪→ L2(P,H) is continuously embedded, where K := [D(A)]
(equipped with graph norm).

(P2) The functions g ∈ PAP (R×L2(P,K))∩C(R×L2(P,H), L2(P,K)), h, f ∈
PAPS2(R× L2(P,K)) ∩ C(R× L2(P,H)), L2(P,K)).

(P3) The functions g, h, f are Lipschitz with respect to the second argument
uniformly in the first argument in the sense that: there exist L̃g, L̃h, L̃f > 0
such that

E ‖ g(t, x)− g(t, y) ‖2
K≤ L̃gE ‖ x− y ‖2,

E ‖ h(t, x)− h(t, y) ‖2
K≤ L̃hE ‖ x− y ‖2,

and

E ‖ f(t, x)− f(t, y) ‖2
K≤ L̃fE ‖ x− y ‖2

for all t ∈ R and each x, y ∈ L2(P,H).
(P4) Bi ∈ L(L2(P,K), L2(P,H)) with maxi=1,2,3{‖ Bi ‖L(L2(P,K),L2(P,H))} = µ.

Definition 3.5. An Ft-progressively measurable stochastic process x : R →
L2(P,K) is called a mild solution of the system (3.1) if x(t) satisfies

x(t)− g(t, B1x(t)) = T (t− s)[x(s)− g(s, B1x(s))]

+

∫ t

s

T (t− τ)h(τ, B2x(τ))dτ +

∫ t

s

T (t− τ)f(τ, B3x(τ))dW (τ) (3.8)

for all t ≥ s and all s ∈ R.

Theorem 3.6. Assume that (P1)-(P4) hold. If

3

[
L̃g +

M2

δ2
L̃h +

M2

2δ
L̃f

]
µ2 < 1. (3.9)

then Eq. (1.2) admits a unique pseudo almost periodic mild solution on R.
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Proof. Consider the nonlinear operator Λ̃ on BC(R, L2(P,K)) defined by

(Λ̃x)(t) = g(t, B1x(t)) +

∫ t

−∞
T (t− τ)h(τ, B2x(τ))dτ

+

∫ t

−∞
T (t− τ)f(τ, B3x(τ))dW (τ), t ∈ R.

Let x(·) ∈ PAP (L2(P,K)), then g(·, B1x(·)) ∈ PAP (L2(P,K)), Lemma 2.10,
Lemma 2.11, thanks to assumptions (P1)-(P4). Together with Lemma 2.18,
Lemma 2.19, we deduce that h(·, B2x(·)), f(·, B3x(·)) ∈ PAPS2(L2(P,H)). It
is easy to check that h(·, B2x(·)), f(·, B3x(·)) ∈ C(R, L2(P,H)). Applying Lemma
3.1, Lemma 3.2 for h(·) = h(·, B2x(·)), f(·) = f(·, B3x(·)), it follows that the

operator Λ̃ is well defined and maps in PAP (L2(P,K)) into itself.
Let x, y ∈ PAP (L2(P,K)), then (P2)-(P4) yield that

E ‖ (Λ̃x)(t)− (Λ̃y)(t) ‖2
K

≤ 3E ‖ g(t, B1x(t))− g(t, B1y(t)) ‖2
K

+ 3E

wwww∫ t

−∞
T (t− s)[h(s, B2x(s))− h(s, B2y(s))]ds

wwww2

K

+ 3E

wwww∫ t

−∞
T (t− s)[f(s, B3x(s))− f(s, B3y(s))]dW (s)

wwww2

K
.

By using the Cauchy-Schwarz inequality, we first evaluate the first second term
of the right-hand side

3E ‖ g(t, B1x(t))− g(t, B1y(t)) ‖2
K ≤ 3L̃gµ

2E ‖ x(t)− y(t) ‖2
K

≤ 3L̃qµ
2 ‖ x− y ‖2

∞,K

and

3E

wwww∫ t

−∞
T (t− s)[h(s, B2x(s))− h(s, B2y(s))]ds

wwww2

K

≤ 3E

( ∫ t

−∞
‖ T (t− s) ‖‖ h(s, B2x(s))− h(s, B2y(s)) ‖K ds

)2

≤ 3M2E

( ∫ t

−∞
e−δ(t−s) ‖ h(s, B2x(s))− h(s, B2y(s)) ‖K ds

)2

≤ 3M2

( ∫ t

−∞
e−δ(t−s)ds

)
×

( ∫ t

0

e−δ(t−s)E ‖ h(s, B2x(s))− h(s, B2y(s)) ‖2
K ds

)
≤ 3M2L̃hµ

2

( ∫ t

−∞
e−δ(t−s)ds

)( ∫ t

−∞
e−δ(t−s)E ‖ x(s)− y(s) ‖2

K ds

)
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≤ 3M2L̃hµ
2

( ∫ t

−∞
e−δ(t−s)ds

)2

sup
s∈R

E ‖ x(s)− y(s) ‖2
K

≤ 3M2

δ2
L̃hµ

2 ‖ x− y ‖2
∞,K .

As to the last term, by the Ito integral, we get

3E

wwww∫ t

−∞
T (t− s)[f(s, B3x(s))− f(s, B3y(s))]dW (s)

wwww2

K

≤ 3

∫ t

−∞
‖ T (t− s) ‖2 E ‖ f(s, B3x(s))− f(s, B3y(s)) ‖2

K ds

≤ 3M2

∫ t

−∞
e−2δ(t−s)E ‖ f(s, B3x(s))− f(s, B3y(s)) ‖2

K ds

≤ 3M2L̃fµ
2

∫ t

−∞
e−2δ(t−s)E ‖ x(s)− y(s) ‖2

K ds

≤ 3M2L̃fµ
2

∫ t

−∞
e−2δ(t−s)ds sup

s∈R
E ‖ x(s)− y(s) ‖2

K

≤ 3M2

2δ
L̃fµ

2 ‖ x− y ‖2
∞,K .

Thus, by combining the above inequality together, we obtain that, for each t ∈ R,
E ‖ (Ψx)(t)− (Ψy)(t) ‖2

K

≤ 3

[
L̃g +

M2

δ2
L̃h +

M2

2δ
L̃f

]
µ2 ‖ x− y ‖2

∞,K .

Hence

‖ Λ̃x− Λ̃y ‖∞,K≤
√
L∗0 ‖ x− y ‖∞,K,

where L∗0 = 3[L̃g + M2

δ2 L̃h + M2

2δ
L̃f ]µ

2 < 1, then the operator Λ̃ becomes a strict
contraction. By the Banach contraction principle, we draw a conclusion that

there exists a unique fixed point x(·) for Λ̃ in PAP (L2(P,K)).
Finally, to prove that x satisfies (3.8) for all t ≥ s, all s ∈ R. For this, we let

x(s) = g(s, B1x(s)) +

∫ s

−∞
T (t− τ)h(τ, B2x(τ))dτ

+

∫ s

−∞
T (t− τ)f(τ, B3x(τ))dW (τ), s ∈ R. (3.10)

Multiply both sides of (3.10) by T (s) for all s ∈ R, then

T (s)x(s) = T (s)g(s, B1x(s)) +

∫ s

−∞
T (t− τ)h(τ, B2x(τ))dτ

+

∫ s

−∞
T (t− τ)f(τ, B3x(τ))dW (τ)

= T (s)g(s, B1x(s)) +

∫ t

−∞
T (t− τ)h(τ, B2x(τ))dτ
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−
∫ t

s

T (t− τ)h(τ, B2x(τ))dτ

+

∫ t

−∞
T (t− τ)f(τ, B3x(τ))dW (τ)−

∫ t

s

T (t− τ)f(τ, B3x(τ))dW (τ)

= T (s)g(s, B1x(s)) + x(t)− g(t, B1x(t))

−
∫ t

s

T (t− τ)h(τ, B2x(τ))dτ −
∫ t

s

T (t− τ)f(τ, B3x(τ))dW (τ).

Hence x ∈ PAP (L2(P,K)) is a unique mild solution to Eq. (1.2). The proof is
complete. �

4. Application

Example 4.1. Consider pseudo almost periodic mild solutions to following neu-
tral partial stochastic differential equations of the form

dz(t, x) =
∂2

∂x2
z(t, x)dt+ da1(t, z(t, x))dt

+a2(t, z(t, x))dt+ a3(t, z(t, x))dW (t), (4.1)

a1(t, z(t, x))|x=0 = a1(t, z(t, x))|x=π = 0, t ∈ R, (4.2)

z(t, 0) = z(t, π) = 0, t ∈ R, x ∈ [0, π], (4.3)

where W (t) is a two-sided standard one-dimensional Brownian motion defined
on the filtered probability space (Ω,F ,P,Ft). In this system, a1 is pseudo almost
periodic continuous function and ai, i = 2, 3, are Stepanov-like pseudo almost
periodic continuous functions.

Let H = L2([0, π]) with the norm ‖ · ‖ and define the operators A : A(D) ⊂
H → H by Av = v′′ with the domain D(A) := {v ∈ H : v′′ ∈ H, v(0) = v(π) = 0}.
It is well known that A is the infinitesimal generator of an analytic semigroup
T (t) on H with (M = δ = 1)

‖ T (t) ‖≤ e−t for t ≥ 0.

Furthermore, A has a discrete spectrum with eigenvalues of the form −n2, n ∈ N
and normalized eigenfunctions given by vn(ξ) := ( 2

π
)

1
2 sin(nξ). In addition, the

following properties hold:

(a) The set of functions {vn : n ∈ N} is an orthonormal basis for H;
(b) For v ∈ H, T (t)v =

∑∞
n=1 exp(−n2t)〈v, vn〉vn, and Av =

∑∞
n=1 n

2〈v, vn〉vn,
v ∈ D(A);

Let g ∈ PAP (R × L2(P,H)) ∩ C(R × L2(P,H), L2(P,H)),h, f ∈ PAPS2(R ×
L2(P,H))∩C(R×L2(P,H), L2(P,H)), and be defined for x ∈ [0, π] and t ∈ R by

g(t, u)(x) = a1(t, u(t)(x)),

h(t, u)(x) = a2(t, u(t)(x)),

f(t, u)(x) = a3(t, u(t)(x)).
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Then, the above equation can be written in the abstract form as the system (1.1).
Assume that there exist constants Li > 0, i = 1, 2, 3 such that

E ‖ a1(t, u)− a1(t, v) ‖2≤ L1E ‖ u− v ‖2,

E ‖ a2(t, u)− a2(t, v) ‖2≤ L2E ‖ u− v ‖2,

E ‖ a3(t, u)− a3(t, v) ‖2≤ L3E ‖ u− v ‖2,

for all t ∈ R and each u, v ∈ L2(P,H).
Consequently all assumptions (H1)-(H2) are satisfied, then by Theorem 3.4,

we deduce the following result.
Proposition 4.1. Under the above assumption, if

3(L1 + L2 + L3) < 1.

Then, Eq. (4.1)-(4.3) has a unique pseudo almost periodic solution on R.

Example 4.2. Consider pseudo almost periodic mild solutions to following per-
turbed neutral partial stochastic differential equations of the form

dz(t, x) =
∂2

∂x2
z(t, x)dt+ da1

(
t,
∂2

∂x2
z(t, x)

)
+a2

(
t,
∂2

∂x2
z(t, x)

)
dt+ a3

(
t, z(t,

∂2

∂x2
x)

)
dW (t), (4.4)

a1

(
t,
∂2

∂x2
z(t, x)

)∣∣∣∣
x=0

= a1

(
t,
∂2

∂x2
z(t, x)

)∣∣∣∣
x=π

= 0, t ∈ R, (4.5)

z(t, 0) = z(t, π) = 0, t ∈ R, x ∈ [0, π], (4.6)

where H, A,W (t), ai, i = 1, 2, 3, be as in Example 4.1. In addition, let K :=
[D(A)] denote the space D(A) endowed with the graph norm ‖ · ‖=‖ · ‖ + ‖ A· ‖,
then L2(P,K) ↪→ L2(P,H) is continuously embedded.

Define the operators Bi, i = 1, 2, 3, by Bi = A with D(Bi) = D(A), then
Bi : L2(P,K) → L2(P,H) are bounded and ‖ Bi ‖L(L2(P,K),L2(P,H))= 1.

Let g ∈ PAP (R× L2(P,H)) ∩ C(R× L2(P,H), L2(P,K)), h, f ∈ PAPS2(R×
L2(P,H))∩C(R×L2(P,H), L2(P,K)), and be defined for x ∈ [0, π] and t ∈ R by

g(t, u)(x) = a1(t, u(t)(x)),

h(t, u)(x) = a2(t, u(t)(x)),

f(t, u)(x) = a3(t, u(t)(x)).

Then, the above equation can be written in the abstract form as the system (1.2).
Assume that there exist constants L̃i > 0, i = 1, 2, 3 such that

E ‖ a1(t, u)− a1(t, v) ‖2
K≤ L̃1E ‖ u− v ‖2,

E ‖ a2(t, u)− a2(t, v) ‖2
K≤ L̃2E ‖ u− v ‖2,

E ‖ a3(t, u)− a3(t, v) ‖2
K≤ L̃3E ‖ u− v ‖2

for all t ∈ R and each u, v ∈ L2(P,H).
Consequently all assumptions (P1)-(P4) are satisfied, then by Theorem 3.6, we

deduce the following result.
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Proposition 4.3. Under the above assumption, if

3(L̃1 + L̃2 + L̃3) < 1.

Then, Eq. (4.4)-(4.6) has a unique pseudo almost periodic solution on R.
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19. H.S. Ding, J. Liang, G.M. N’Guérékata and T.J. Xiao, Pseudo almost periodicity to some
nonautonomous evolution equations with delay, Nonlinear Anal. 67 (2007), no. 5, 1412–
1418.
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