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ON THE TRANSCENDENTAL RADIUS OF THE VOLTERRA
INTEGRATION OPERATOR

LEVON GEVORGYAN

Communicated by J. Esterle

Abstract. The transcendental radius of the Volterra integration operator V
acting in the space L2 (0; 1) is calculated. The latter is compared with the
norm of the self-commutator of V.

1. Introduction and preliminaries

Let A be a linear bounded operator, acting in a Hilbert space (H, 〈·, ·〉) . According
to [7] there exists a unique complex number c belonging to the closure of the
numerical range W (A) such that

m (A) = inf
λ∈C

‖A− λI‖ = ‖A− cI‖ .

Fujii and Prasanna [1] called m (A) transcendental radius of A. Prasanna proved
[6] that

m2 (A) = sup
‖x‖=1

{
‖Ax‖2 − |〈Ax, x〉|2

}
. (1.1)

In [5] a more general problem is considered and is proved that

m2
T (A) = ‖T − λ0A‖2 = inf

λ∈C
‖T − λA‖2 = sup

‖x‖=1

{
‖Tx‖2 − |〈Tx, Ax〉|2

‖Ax‖2

}
. (1.2)

The number λ0 is unique if the approximate point spectrum of A does not contain
0 and is characterized by the following conditions. There exists a sequence of unit
elements {xn} such that

〈(T − λ0A) xn, Axn〉 → 0, ‖(T − λ0A) xn‖ → ‖T − λ0A‖ . (1.3)
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In [3] is proved that

λ0 = lim
n→∞

〈Txn, Axn〉
‖Axn‖2 , (1.4)

where {xn} is a sequence of unit vectors, approximating the supremum in (1.2).
It is easy to see that (1.4) implies both conditions in (1.3). Indeed, denoting

λn =
〈Txn, Axn〉
‖Axn‖2

we have

〈(T − λ0A) xn, Axn〉 = (λn − λ0) · ‖Axn‖2 → 0.

For the second equality

‖T − λ0A‖2 = lim
n→∞

{
‖Txn‖2 − |λn|2 · ‖Axn‖2} .

On the other hand

‖(T − λ0A) xn‖2 = ‖Txn‖2 − 2 ‖Axn‖2 · Re λnλ0 + |λ0|2 · ‖Axn‖2 .

2. Main results

Consider the Volterra integration operator in L2 (0 ; 1) defined by the formula

(V f) (x) =

x∫
0

f (t) dt.

Easy calculations show that

(V V ∗f) (x) =

x∫
0

tf (t)dt + x

1∫
x

f (t)dt,

(V ∗V f) (x) =

1∫
0

f (t)dt− x

x∫
0

f (t)dt−
1∫

x

tf (t)dt.

Now we search

inf
λ∈C

‖V − λI‖ .

The equality V f − cf = V f − cf implies ‖V − cI‖ = ‖V − cI‖ and finally,
c ∈ R. Recall ([4], Problem 165) that W (V ) is bounded by the curve

t 7→ 1− cos t

t2
± i

t− sin t

t2
, 0 ≤ t ≤ 2π

and ‖V ‖ = 2
π
, therefore 0 6 c 6 1

2
, m2 (V ) 6 4

π2 .
The operator S = (V ∗ − λI) (V − λI) is defined by the formula

(Sf) (x) = (1− λ)

1∫
0

f (t) dt− x

x∫
0

f (t)dt−
1∫

x

tf (t)dt + λ2f (x) . (2.1)
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As V ∗V − λ (V ∗ + V ) is a self-adjoint compact operator, its norm coincides with
the eigenvalue having the greatest absolute value. For the positive operator S =
V ∗V −λ (V ∗ + V )+λ2I one has ‖S‖ = max {eig (S)} , where {eig (S)} is the set
of eigenvalues of S.

Calculating the second derivative of (2.1), we get for the eigenfunctions of S
the second order differential equation(

µ− λ2
)
f ′′ (x) + f (x) = 0.

It is easy to see that the eigenfunction satisfies the condition f ′ (0) = 0, so

f (x) = cos
x√

µ− λ2
.

Putting f (t) = cos αt into (2.1), we get

(Sf) (x) = −λ

α
sin α− 1

α2
cos α +

1

α2
cos αx + λ2 cos αx,

meaning that f is an eigenfunction corresponding to the eigenvalue

µ =
1

α2
+ λ2, (2.2)

if and only if α satisfies

cot α + αλ = 0. (2.3)

For each λ > 0 equation (2.3) has one and only one solution α in each interval
(kπ + π/2 ; (k + 1) π) , k ∈ Z+, therefore from (2.2) the greatest eigenvalue of S
corresponds to the interval (π/2 ; π) . Then, we have

µ =
1

α2
+

cot2 α

α2
=

1

α2 sin2 α
.

The smallest value of ‖S‖ corresponds to the greatest value of α sin α, which
occurs if α ∈ (π/2 ; π) satisfies

tan α + α = 0. (2.4)

From (2.3) and (2.4) we get λ = 1/α2. So we arrive to the following result.

Proposition 2.1. The transcendental radius of the Volterra integration operator
is equal to

√
1/α2 + 1/α4, where α ∈ (π/2 ; π) satisfies (2.4).

The approximate solution of the transcendental equation (2.4), given by Mat-
Lab is α ≈ 2.028757838110434; λ ≈ 0.242962685095034 and

min
λ
‖V − λI‖2 ≈ 0.301993551443623.

Putting the function f (x) = 2
(

α
2α+sin 2α

)1/2
cos αx into (1.4) and (1.1), we get

the same values of λ and of the minimal norm.
From the general theory of the Sturm–Liouville operator theory the following

result may be deduced.

Corollary 2.2. The sequence of function {cos αkx}∞k=1 , where {αk} are the pos-
itive roots of the equation cot α + αλ = 0 form an orthogonal basis of L2 (0; 1) .
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Now we intend to show an application of the result above to a problem in
operator theory.

In [7] it is shown that the norm of inner derivation DT (A) = AT − TA is
defined by the following formula

sup
‖A‖=1

‖AT − TA‖ = 2m (T ) .

In [2] is proved that for any operator A the self-commutator C (A) = AA∗−A∗A
satisfies the following inequality

‖AA∗ − A∗A‖ ≤ ‖A‖2 . (2.5)

For some operators the inequality turns to be the equality.

Example 2.3. Let S be the operator of the simple unilateral shift. Then S∗S −
SS∗ is the operator of orthogonal projection on the first element of the basis,
shifted by S, so ‖S∗S − SS∗‖ = 1 and ‖S‖ = 1, hence ‖S∗S − SS∗‖ = ‖S‖2 .

As C (A− λI) = C (A) for any λ ∈ C, inequality (2.5) may be sharpened

‖AA∗ − A∗A‖ 6 m2 (A) .

For the Volterra operator we have

((V ∗V − V V ∗) f) (x) =

1∫
0

f (t)dt− x

1∫
0

f (t)dt−
1∫

0

tf (t)dt.

The self-commutator C (V ) is a two dimensional self-adjoint operator with unit

eigenfunctions e1 =
√

2 +
√

3
((

3−
√

3
)
x− 1

)
, e2 = 1√

2+
√

3

((
3 +

√
3
)
x− 1

)
corresponding to the eigenvalues

{√
3

6
,−

√
3

6

}
, so

‖C (V )‖ =

√
3

6
≈ 0.288675134 · · · .

Easily can be proved that the operator

(Bf) (x) =
1√
2
√

3

((
3 +

√
3
)

x− 1
) 1∫

0

((
3−

√
3
)

t− 1
)

f (t) dt

has the same self-commutator - C (V ) = C (B) .
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