

Ann. Funct. Anal. 6 (2015), no. 2, 184-203

http://doi.org/10.15352/afa/06-2-16

ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

A NEW LOOK AT THE CROSSED PRODUCTS OF PRO- C^* -ALGEBRAS

MARIA JOIŢA

Communicated by T. Loring

ABSTRACT. We give a new definition for the full crossed product, respectively reduced crossed product, of a pro- C^* -algebra $A[\tau_{\Gamma}]$ by an action α and, using these new definitions, we investigate some of their properties.

1. Introduction

Given a C^* -algebra A and a continuous action α of a locally compact group G on A, we can construct a new C^* -algebra, called the crossed product of A by α , usually denoted by $G \times_{\alpha} A$, and which contains, in some subtle sense, A and G. The origin of this construction goes back to Murray and von Neumann and their group measure space construction by which they associated a von Neumann algebra to a countable group acting on a measure space. The analog of this construction for the case of C^* -algebras is due to Gelfand with co-authors Naimark and Fomin. There is a vast literature on crossed products of C^* -algebras (see, for example, [W]), but the corresponding theory in the context of non-normed topological *-algebras has still a long way to go.

Crossed product of pro- C^* -algebras by inverse limit actions of locally compact groups were considered by Phillips [P2] and Joiţa [J2, J3, J4]. If $A[\tau_{\Gamma}]$ is a pro- C^* -algebra with topology given by the family of C^* -seminorms $\Gamma = \{p_{\lambda}\}_{{\lambda} \in \Lambda}$, then $A[\tau_{\Gamma}]$ can be identified with an inverse limit of C^* -algebras $\lim_{{\leftarrow} \lambda} A_{\lambda}$ (the Arens–Michael decomposition of $A[\tau_{\Gamma}]$), and if α is an inverse limit action of a locally compact group G on $A[\tau_{\Gamma}]$, then $\alpha_t = \lim_{{\leftarrow} \lambda} \alpha_t^{\lambda}$ for all $t \in G$, where for each $\lambda \in \Lambda$, α^{λ} is an action of G on the C^* -algebra A_{λ} . In [P2], the full (reduced) crossed product of $A[\tau_{\Gamma}]$ by α is defined as inverse limit of the full (reduced) crossed

Date: Received: Apr. 18, 2014; Accepted: Aug. 3, 2014.

2010 Mathematics Subject Classification. Primary 46L05; Secondary 46H99.

Key words and phrases. $pro-C^*$ -algebras; crossed products; covariant representations.

products of A_{λ} by α^{λ} , $\lambda \in \Lambda$. In particular, for a given inverse limit automorphism α of a pro- C^* -algebra $A[\tau_{\Gamma}]$, we can associate to the pair $(A[\tau_{\Gamma}], \alpha)$ a pro- C^* -algebra by the above crossed product construction, but if α is not an inverse limit automorphism, this construction is not possible. In the case of C^* -algebras, the crossed product of a C^* -algebra A by an action α is isomorphic to the enveloping C^* -algebra of the covariance algebra $L^1(G, \alpha, A)$. If α is an inverse limit action of G on $A[\tau_{\Gamma}]$, then the covariance algebra $L^1(G, \alpha, A[\tau_{\Gamma}])$ has a structure of locally m-convex *-algebra with topology given by the family of submultiplicative seminorms $\{N_{p_{\lambda}}\}_{\lambda \in \Lambda}$, where

$$N_{p_{\lambda}}(f) = \int_{G} p_{\lambda}(f(g)) dg,$$

and the enveloping pro- C^* -algebra of $L^1(G, \alpha, A[\tau_{\Gamma}])$ can be identified with the inverse limit of the enveloping C^* -algebras of the covariance algebras $L^1(G, \alpha^{\lambda}, A_{\lambda})$. Therefore, the full crossed product of $A[\tau_{\Gamma}]$ by α is isomorphic to the enveloping pro- C^* -algebra of the covariance algebra $L^1(G, \alpha, A[\tau_{\Gamma}])$. If α is not an inverse limit action, then the covariance algebra has not a structure of locally m-convex *-algebra $(N_{p_{\lambda}})$ is not a submultiplicative *-seminorm). We remark that the above definition of the full crossed product of a pro- C^* -algebra $A[\tau_{\Gamma}]$ by an inverse limit action depends of the Arens-Michael decomposition of $A[\tau_{\Gamma}]$, and so it is not good to define the notion of full crossed product of a pro- C^* -algebra $A[\tau_{\Gamma}]$ by an action which is not an inverse limit action. It is well known that the full crossed product of C^* -algebras is a universal object for nondegenerate covariant representations (see, for example, \mathbb{R}). The full crossed product of pro- \mathbb{C}^* -algebras by inverse limit actions has also the universal property with respect to the nondegenerate covariant representations [J3]. In this paper, we define the full crossed product of a pro- C^* -algebra $A[\tau_{\Gamma}]$ by an action α of a locally compact group G as a universal object for nondegenerate covariant representations and we show that the full crossed product of pro-C*-algebras exists for strong bounded actions. Strong boundless of the action α is essential to prove the existence of a covariant representation. Unfortunately, if the action α of G on $A[\tau_{\Gamma}]$ is strongly bounded, then there is another family of C^* -seminorms on $A[\tau_{\Gamma}]$ which induces the same topology on A, and α is an inverse limit action with respect to this family of C^* -seminorms.

The organization of this paper is as follows. After preliminaries in Section 2, we present some examples of group actions on pro- C^* -algebras in Section 3. In Section 4, we show that for a strong bounded action α of a locally compact group G on a pro- C^* -algebra $A[\tau_{\Gamma}]$ there is an injective covariant morphism from $A[\tau_{\Gamma}]$ to the pro- C^* -algebra $\mathcal{L}(\mathcal{H})$ for some locally Hilbert space \mathcal{H} . In Section 5, the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is defined to be the pro- C^* -algebra $G \times_{\alpha} A[\tau_{\Gamma}]$ generated by the images of ι_A and ι_G , where (ι_A, ι_G) is a universal covariant morphism of $A[\tau_{\Gamma}]$, in the sense that for any covariant morphism (j_A, j_G) from $A[\tau_{\Gamma}]$ to a pro- C^* -algebra $B[\tau_{\Gamma'}]$, there is a unique pro- C^* -morphism $\Phi: G \times_{\alpha} A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ such that $\Phi \circ \iota_A = j_A$ and $\Phi \circ \iota_G = j_G$. For inverse limit actions, this definition coincides with the definition from

[P2, J2]. We show that the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α exists if α is strongly bounded and it is invariant under the conjugacy of the actions. In Section 6, the reduced pro-C*-crossed product of a pro-C*-algebra $A[\tau_{\Gamma}]$ by a strong bounded action α is defined to be the pro-C*-subalgebra of the multiplier algebra $M(A[\tau_{\Gamma}] \otimes_{\min} \mathcal{K}(L^2(G)))$ of the minimal tensor product of $A[\tau_{\Gamma}]$ and $\mathcal{K}(L^2(G))$ generated by $\{\widetilde{\alpha}(a)(1\otimes\lambda_G(f)); a\in A, f\in C_c(G)\}$, where $\widetilde{\alpha}$ is the pro- C^* -morphism from $A[\tau_{\Gamma}]$ to $M(A[\tau_{\Gamma}] \otimes_{\min} C_0(G))$ induced by α . We show that, for inverse limit actions, this definition coincides with the definition from [P2, J2]. Also, we show that the reduced pro- C^* -crossed product is invariant under the conjugacy of the actions, and if G is amenable, then the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is isomorphic to the reduced pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α . Section 7 is dedicated the relation between the full pro- C^* crossed product and the maximal tensor product of pro- C^* -algebras, respectively the reduced pro- C^* -crossed product and the minimal tensor product of pro- C^* algebras. We show that there is a property of "associativity" between \times_{α} and \otimes_{\max} , respectively $\times_{\alpha,r}$ and \otimes_{\min} .

2. Preliminaries

A seminorm p on a topological *-algebra A satisfies the C^* -condition (or is a C^* -seminorm) if $p(a^*a) = p(a)^2$ for all $a \in A$. It is known that such a seminorm must be submultiplicative $(p(ab) \le p(a) p(b)$ for all $a, b \in A$) and *-preserving $(p(a^*) = p(a)$ for all $a \in A$).

A pro- C^* -algebra is a complete Hausdorff topological *-algebra A whose topology is given by a directed family of C^* -seminorms $\{p_{\lambda}\}_{{\lambda}\in\Lambda}$. Other terms used for pro- C^* -algebras are: locally C^* -algebras (A. Inoue, M. Fragoulopoulou, A. Mallios, etc.), LMC^* -algebras (G. Lassner, K. Schmüdgen), b^* -algebras (C. Apostol).

Let $A[\tau_{\Gamma}]$ be a pro- C^* -algebra with topology given by $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$ and let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra with topology given by $\Gamma' = \{q_{\delta}\}_{\delta \in \Delta}$. A continuous *-morphism $\varphi : A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ (that is, φ is linear, $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in A$, $\varphi(a^*) = \varphi(a)^*$ for all $a \in A$ and for each $q_{\delta} \in \Gamma'$, there is $p_{\lambda} \in \Gamma$ such that $q_{\delta}(\varphi(a)) \leq p_{\lambda}(a)$ for all $a \in A$) is called a pro- C^* -morphism. Two pro- C^* -algebras $A[\tau_{\Gamma}]$ and $B[\tau_{\Gamma'}]$ are isomorphic if there is a pro- C^* -isomorphism $\varphi : A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ (that is, φ is invertible, φ and φ^{-1} are pro- C^* -morphisms).

If $\{A_{\lambda}; \pi_{\lambda\mu}\}_{\lambda \geq \mu, \lambda, \mu \in \Lambda}$ is an inverse system of C^* -algebras, then $\lim_{\leftarrow \lambda} A_{\lambda}$ with topology given by the family of C^* -seminorms $\{p_{\lambda}\}_{\lambda \in \Lambda}$, with $p_{\lambda}\left((a_{\mu})_{\mu \in \Lambda}\right) =$

 $||a_{\lambda}||_{A_{\lambda}}$ for all $\lambda \in \Lambda$, is a pro- C^* -algebra.

Let $A[\tau_{\Gamma}]$ be a pro- C^* -algebra with topology given by $\Gamma = \{p_{\lambda}\}_{\lambda \in \Lambda}$. For $\lambda \in \Lambda$, $\ker p_{\lambda}$ is a closed *-bilateral ideal and $A_{\lambda} = A/\ker p_{\lambda}$ is a C^* -algebra in the C^* -norm $\|\cdot\|_{p_{\lambda}}$ induced by p_{λ} (that is, $\|a\|_{p_{\lambda}} = p_{\lambda}(a)$, for all $a \in A$). The canonical map from A to A_{λ} is denoted by π_{λ}^{A} , $\pi_{\lambda}^{A}(a) = a + \ker p_{\lambda}$ for all $a \in A$. For $\lambda, \mu \in \Lambda$ with $\mu \leq \lambda$ there is a unique surjective C^* -morphism $\pi_{\lambda\mu}^{A} : A_{\lambda} \to A_{\mu}$ such that $\pi_{\lambda\mu}^{A}(a + \ker p_{\lambda}) = a + \ker p_{\mu}$, and then $\{A_{\lambda}; \pi_{\lambda\mu}^{A}\}_{\lambda,\mu\in\Lambda}$ is an inverse system of

 C^* -algebras. Moreover, pro- C^* -algebras $A[\tau_{\Gamma}]$ and $\lim_{\leftarrow \lambda} A_{\lambda}$ are isomorphic (the Arens–Michael decomposition of $A[\tau_{\Gamma}]$).

Let $\{(\mathcal{H}_{\lambda}, \langle \cdot, \cdot \rangle_{\lambda})\}_{\lambda \in \Lambda}$ be a family of Hilbert spaces such that $\mathcal{H}_{\mu} \subseteq \mathcal{H}_{\lambda}$ and $\langle \cdot, \cdot \rangle_{\lambda} |_{\mathcal{H}_{\mu}} = \langle \cdot, \cdot \rangle_{\mu}$ for all $\lambda, \mu \in \Lambda$ with $\mu \leq \lambda$. $\mathcal{H} = \lim_{\lambda \to \lambda} \mathcal{H}_{\lambda}$ with inductive limit topology is called a locally Hilbert space.

Let $\mathcal{L}(\mathcal{H}) = \{T : \mathcal{H} \to \mathcal{H}; T_{\lambda} = T|_{\mathcal{H}_{\lambda}} \in L(\mathcal{H}_{\lambda}) \text{ and } P_{\lambda\mu}T_{\lambda} = T_{\lambda}P_{\lambda\mu} \text{ for all } \lambda, \mu \in \Lambda \text{ with } \mu \leq \lambda\}, \text{ where } P_{\lambda\mu} \text{ is the projection of } \mathcal{H}_{\lambda} \text{ on } \mathcal{H}_{\mu}. \text{ Clearly, } \mathcal{L}(\mathcal{H}) \text{ is an algebra in an obvious way, and } T \to T^* \text{ with } T^*|_{\mathcal{H}_{\lambda}} = (T_{\lambda})^* \text{ for all } \lambda \in \Lambda \text{ is an involution.}$

For each $\lambda \in \Lambda$, the map $p_{\lambda,\mathcal{L}(\mathcal{H})} : \mathcal{L}(\mathcal{H}) \to [0,\infty)$ given by $p_{\lambda,\mathcal{L}(\mathcal{H})}(T) = ||T|_{\mathcal{H}_{\lambda}}||_{L(\mathcal{H}_{\lambda})}$ is a C^* -seminorm on $\mathcal{L}(\mathcal{H})$, and with topology given by the family of C^* -seminorms $\{p_{\lambda,\mathcal{L}(\mathcal{H})}\}_{\lambda\in\Lambda}$, $\mathcal{L}(\mathcal{H})$ becomes a pro- C^* -algebra.

Since $\mathcal{L}(\mathcal{H})$ is a pro- C^* -algebra, it has an Arens-Michael decomposition, given by the C^* -algebras $\mathcal{L}(\mathcal{H})_{\lambda} = \mathcal{L}(\mathcal{H})/\ker p_{\lambda,\mathcal{L}(\mathcal{H})}$, $\lambda \in \Lambda$. Moreover, for each $\lambda \in \Lambda$, the map $\varphi_{\lambda} : \mathcal{L}(\mathcal{H})_{\lambda} \to \mathcal{L}(\mathcal{H}_{\lambda})$ given by $\varphi_{\lambda} (T + \ker p_{\lambda,\mathcal{L}(\mathcal{H})}) = T|_{\mathcal{H}_{\lambda}}$ is an isometric *-morphism. The canonical maps from $\mathcal{L}(\mathcal{H})$ to $\mathcal{L}(\mathcal{H})_{\lambda}, \lambda \in \Lambda$ are denoted by $\pi_{\lambda}^{\mathcal{H}}, \lambda \in \Lambda$, and $\pi_{\lambda}^{\mathcal{H}}(T) = T|_{\mathcal{H}_{\lambda}}$. For a given pro- C^* -algebra $A[\tau_{\Gamma}]$ there is a locally Hilbert space \mathcal{H} such that $A[\tau_{\Gamma}]$ is isomorphic to a pro- C^* -subalgebra of $\mathcal{L}(\mathcal{H})$ (see [I, Theorem 5.1]).

A multiplier of $A[\tau_{\Gamma}]$ is a pair (l,r) of linear maps $l,r:A[\tau_{\Gamma}] \to A[\tau_{\Gamma}]$ such that are respectively left and right A-module homomorphisms and r(a)b = al(b) for all $a, b \in A$. The set $M(A[\tau_{\Gamma}])$ of all multipliers of $A[\tau_{\Gamma}]$ is a pro- C^* -algebra with multiplication given by $(l_1, r_1) (l_2, r_2) = (l_1 l_2, r_2 r_1)$, the involution given by $(l, r)^* = (r^*, l^*)$, where $r^*(a) = r(a^*)^*$ and $l^*(a) = l(a^*)^*$ for all $a \in A$, and the topology given by the family of C^* -seminorms $\{p_{\lambda,M(A[\tau_{\Gamma}])}\}_{\lambda\in\Lambda}$, where $p_{\lambda,M(A[\tau_{\Gamma}])}(l,r) = \sup\{p_{\lambda}(l(a)); p_{\lambda}(a) \leq 1\}$. Moreover, for each $p_{\lambda} \in \Gamma$, the C^* -algebras $(M(A[\tau_{\Gamma}]))_{\lambda}$ and $M(A_{\lambda})$ are isomorphic. The strict topology on $M(A[\tau_{\Gamma}])$ is given by the family of seminorms $\{p_{\lambda,a}\}_{(\lambda,a)\in\Lambda\times A}$, where $p_{\lambda,a}(l,r) = p_{\lambda}(l(a)) + p_{\lambda}(r(a))$, $M(A[\tau_{\Gamma}])$ is complete with respect to the strict topology and $A[\tau_{\Gamma}]$ is dense in $M(A[\tau_{\Gamma}])$ (see [P1] and [J1, Proposition 3.4]).

A pro- C^* -morphism $\varphi: A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ is nondegenerate if $[\varphi(A)B] = B[\tau_{\Gamma'}]$, where $[\varphi(A)B]$ denotes the closed subspace of $B[\tau_{\Gamma'}]$ generated by $\{\varphi(a)b; a \in A, b \in B\}$. A nondegenerate pro- C^* -morphism $\varphi: A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ extends to a unique pro- C^* -morphism $\overline{\varphi}: M(A[\tau_{\Gamma}]) \to M(B[\tau_{\Gamma'}])$.

3. Group actions on Pro- C^* -algebras

Throughout this paper, $A[\tau_{\Gamma}]$ is a pro- C^* -algebra with topology given by the family of C^* -seminorms $\Gamma = \{p_{\lambda}\}_{{\lambda} \in {\Lambda}}$ and G is a locally compact group.

- **Definition 3.1.** (1) An action of G on $A[\tau_{\Gamma}]$ is a group morphism α from G to $\operatorname{Aut}(A[\tau_{\Gamma}])$, the group of all automorphisms of $A[\tau_{\Gamma}]$, such that the map $t \mapsto \alpha_t(a)$ from G to $A[\tau_{\Gamma}]$ is continuous for each $a \in A$.
 - (2) An action α of G on $A[\tau_{\Gamma}]$ is *strongly bounded*, if for each $\lambda \in \Lambda$ there is $\mu \in \Lambda$ such that

$$p_{\lambda}\left(\alpha_{t}\left(a\right)\right) \leq p_{\mu}\left(a\right)$$

for all $t \in G$ and for all $a \in A$.

- (3) An action α is an inverse limit action, if $p_{\lambda}(\alpha_t(a)) = p_{\lambda}(a)$ for all $a \in A$, for all $t \in G$ and for all $\lambda \in \Lambda$.
- Remark 3.2. (1) If α is an inverse limit action of G on $A[\tau_{\Gamma}]$, then for each $\lambda \in \Lambda$, there is an action α^{λ} of G on A_{λ} such that $\alpha_{t}^{\lambda} \circ \pi_{\lambda}^{A} = \pi_{\lambda}^{A} \circ \alpha_{t}$ for all $t \in G$, and $\alpha_{t} = \lim_{t \to \infty} \alpha_{t}^{\lambda}$ for all $t \in G$.
 - (2) Any inverse limit action of G on $A[\tau_{\Gamma}]$ is strongly bounded.
 - (3) If A is a C^* -algebra, then any action of G on A is strongly bounded.
 - (4) If G is a compact group, then any action of G on $A[\tau_{\Gamma}]$ is strongly bounded.

Let X be a compactly countably generated Hausdorff topological space (that is, X is a direct limit of a countable family $\{K_n\}_n$ of compact spaces). The *-algebra C(X) of all continuous complex valued functions on X is a pro- C^* -algebra with topology given by the family of C^* -seminorms $\{p_{K_n}\}_n$, where $p_{K_n}(f) = \sup\{|f(x)|; x \in K_n\}$.

Example 3.3. Let (G, X) be a transformation group (that is, there is a continuous map $(t, x) \mapsto t \cdot x$ from $G \times X$ to X such that $e \cdot x = x$ and $s \cdot (t \cdot x) = (st) \cdot x$ for all $s, t \in G$ and for all $x \in X$) with $X = \lim_{n \to \infty} K_n$ a compactly countably generated Hausdorff topological space. Then there is an action α of G on the pro- C^* -algebra C(X), given by

$$\alpha_t(f)(x) = f(t^{-1} \cdot x).$$

If for any positive integer n, there is a positive integer m such that $G \cdot K_n \subseteq K_m$, the action α is strongly bounded, since for each n, there is m such that

 $p_{K_n}(\alpha_t(f)) = \sup\{|f(t^{-1} \cdot x)| : x \in K_n\} \le \sup\{|f(y)| : y \in K_m\} = p_{K_m}(f)$ for all $f \in C(X)$ and for all $t \in G$. If $G \cdot K_n = K_n$ for all n, then α is an inverse limit action. Take, for instance, $\mathbb{R} = \lim_{n \to \infty} [-n, n]$. Suppose that \mathbb{Z}_2 actions on \mathbb{R} by $\widehat{0} \cdot x = x$ and $\widehat{1} \cdot x = 2 - x$ for all $x \in \mathbb{R}$. Then $(\mathbb{Z}_2, \mathbb{R})$ is a transformation group such that for each positive integer n, $\mathbb{Z}_2 \cdot [-n, n] \subseteq [-n - 2, n + 2]$.

Example 3.4. Let $X = \lim_{n \to \infty} K_n$ be a compactly countably generated Hausdorff topological space and $h: X \to X$ a homeomorphism with the property that for each positive integer n, there is a positive integer m such that $h^k(K_n) \subseteq K_m$ for all integers k. Then the map $n \mapsto \alpha_n$ from \mathbb{Z} to $\operatorname{Aut}(C(X))$, where $\alpha_n(f) = f \circ h^n$, is a strong bounded action of \mathbb{Z} to C(X). If $h(K_n) = K_n$ for all n, then α is an inverse limit action. Take, for instance, $\mathbb{R} = \lim_{n \to \infty} [-n, n]$. The map $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = 1 - x is a homeomorphism such that for each positive integer n, $h^k([-n, n]) \subseteq [-n - 1, n + 1]$ for all integers k.

Example 3.5. The *-algebra C[0,1] equipped with the topology 'cc' of uniform convergence on countable compact subsets is a pro- C^* -algebra denoted by $C_{cc}[0,1]$ (see, for example, [F, p. 104]). The action of \mathbb{Z}_2 on $C_{cc}[0,1]$ given by $\alpha_{\widehat{0}} = \mathrm{id}_{C_{cc}[0,1]}$ and $\alpha_{\widehat{1}}(f)(x) = f(1-x)$ for all $f \in C_{cc}[0,1]$ and for all $x \in [0,1]$ is strongly bounded.

Remark 3.6. (1) Let α be a strong bounded action of G on $A[\tau_{\Gamma}]$. Then, for each $\lambda \in \Lambda$, the map $p^{\lambda}: A \to [0, \infty)$ given by

$$p^{\lambda}(a) = \sup\{p_{\lambda}(\alpha_t(a)); t \in G\}$$

is a continuous C^* -seminorm on $A[\tau_{\Gamma}]$. Let $\Gamma^G = \{p^{\lambda}\}_{{\lambda} \in \Lambda}$. Since, for each ${\lambda} \in {\Lambda}$, there is ${\mu} \in {\Lambda}$ such that

$$p_{\lambda} \le p^{\lambda} \le p_{\mu},$$

 Γ^G defines on A a structure of pro- C^* -algebra, and moreover, the pro- C^* -algebras $A[\tau_{\Gamma}]$ and $A[\tau_{\Gamma}^G]$ are isomorphic.

(2) If the action α of G on $A[\tau_{\Gamma}]$ is strongly bounded,, then α is an inverse limit action of G on $A[\tau_{\Gamma}^G]$.

4. Covariant representations

Definition 4.1. A pro- C^* -dynamical system is a triple $(G, \alpha, A[\tau_{\Gamma}])$, where G is a locally compact group, $A[\tau_{\Gamma}]$ is a pro- C^* -algebra and α is an action of G on $A[\tau_{\Gamma}]$.

A representation of a pro- C^* -algebra $A[\tau_{\Gamma}]$ on a Hilbert space \mathcal{H} is a continuous *-morphism $\varphi: A[\tau_{\Gamma}] \to L(\mathcal{H})$. A representation (φ, \mathcal{H}) of $A[\tau_{\Gamma}]$ is nondegenerate if $[\varphi(A)\mathcal{H}] = \mathcal{H}$.

Definition 4.2. A covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$ on a Hilbert space \mathcal{H} is a triple $(\varphi, u, \mathcal{H})$ consisting of a representation (φ, \mathcal{H}) of $A[\tau_{\Gamma}]$ on \mathcal{H} and a unitary *-representation (u, \mathcal{H}) of G on \mathcal{H} such that

$$\varphi\left(\alpha_t\left(a\right)\right) = u_t \varphi\left(a\right) u_t^*$$

for all $a \in A$ and for all $t \in G$. A covariant representation $(\varphi, u, \mathcal{H})$ is nondegenerate if (φ, \mathcal{H}) is nondegenerate.

Two representations $(\varphi, u, \mathcal{H})$ and (ψ, v, \mathcal{K}) of $(G, \alpha, A[\tau_{\Gamma}])$ are unitarily equivalent if there is a unitary operator $U : \mathcal{H} \to \mathcal{K}$ such that $U\varphi(a) = \psi(a)U$ for all $a \in A$ and $Uu_t = v_tU$ for all $t \in G$.

For each $p_{\lambda} \in \Gamma$, we denote by $\mathcal{R}_{\lambda}(G, \alpha, A[\tau_{\Gamma}])$ the collection of all unitary equivalence classes of nondegenerate covariant representations $(\varphi, u, \mathcal{H})$ of $(G, \alpha, A[\tau_{\Gamma}])$ with the property that $\|\varphi(a)\| \leq p_{\lambda}(a)$ for all $a \in A$. Clearly,

$$\bigcup_{\lambda} \mathcal{R}_{\lambda} (G, \alpha, A [\tau_{\Gamma}]) = \mathcal{R} (G, \alpha, A [\tau_{\Gamma}]),$$

where $\mathcal{R}(G, \alpha, A[\tau_{\Gamma}])$ denotes the collection of all unitary equivalence classes of nondegenerate covariant representations of $(G, \alpha, A[\tau_{\Gamma}])$.

Remark 4.3. If α is an inverse limit action, then the map

$$(\varphi_{\lambda}, u, \mathcal{H}) \to (\varphi_{\lambda} \circ \pi_{\lambda}^{A}, u, \mathcal{H})$$

is a bijection between $\mathcal{R}\left(G,\alpha^{\lambda},A_{\lambda}\right)$ and $\mathcal{R}_{\lambda}\left(G,\alpha,A\left[\tau_{\Gamma}\right]\right)$ (see, [J2]).

By [J2], if α is an inverse limit action, then $\mathcal{R}(G, \alpha, A[\tau_{\Gamma}])$ is non empty. From this result and Remark 3.6, we conclude that if α is strongly bounded, then $\mathcal{R}(G, \alpha, A[\tau_{\Gamma}])$ is non empty too. In the following proposition we give another proof for this result.

Proposition 4.4. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. Then there is a covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$.

Proof. Let (φ, \mathcal{H}) be a representation of $A[\tau_{\Gamma}]$. Then there is $\lambda \in \Lambda$ such that $\|\varphi(a)\| \leq p_{\lambda}(a)$ for all $a \in A$. Let $a \in A$ and $\xi \in L^{2}(G, \mathcal{H})$. Since, there is $p_{\mu} \in \Gamma$ such that

$$\int_{G} \|\varphi(\alpha_{s^{-1}}(a))(\xi(s))\|^{2} ds \leq \int_{G} \|\varphi(\alpha_{s^{-1}}(a))\|^{2} \|\xi(s)\|^{2} ds
\leq \int_{G} p_{\lambda}(\alpha_{s^{-1}}(a))^{2} \|\xi(s)\|^{2} ds \leq p_{\mu}(a)^{2} \|\xi\|^{2},$$

the map $s \mapsto \varphi(\alpha_{s^{-1}}(a))(\xi(s))$ defines an element in $L^2(G, \mathcal{H})$. Therefore, there is $\widetilde{\varphi}(a) \in L(L^2(G, \mathcal{H}))$ such that

$$\widetilde{\varphi}(a)(\xi)(s) = \varphi(\alpha_{s^{-1}}(a))(\xi(s)).$$

In this way, we obtain a map $\widetilde{\varphi}: A \to L(L^2(G, \mathcal{H}))$. Moreover, $\widetilde{\varphi}$ is a continuous *-morphism, and then $(\widetilde{\varphi}, L^2(G, \mathcal{H}))$ is a representation of $A[\tau_{\Gamma}]$.

Let $(\lambda_G^{\mathcal{H}}, L^2(G, \mathcal{H}))$ be the unitary *-representation of G on $L^2(G, \mathcal{H})$ given by $(\lambda_G^{\mathcal{H}})_t(\xi)(s) = \xi(t^{-1}s)$. It is easy to verify that $(\widetilde{\varphi}, \lambda_G^{\mathcal{H}}, L^2(G, \mathcal{H}))$ is a covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$.

Remark 4.5. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system. Suppose that α is strongly bounded. Then, for each representation (φ, \mathcal{H}) of $A[\tau_{\Gamma}]$, $\ker \widetilde{\varphi} \subseteq \ker \varphi$. Indeed, if $\widetilde{\varphi}(a) = 0$, then $\varphi(\alpha_s(a))(\xi(s)) = 0$ for all $s \in G$ and for all $\xi \in L^2(G, \mathcal{H})$, whence $\varphi(a)(\xi(e)) = 0$ for all $\xi \in L^2(G, \mathcal{H})$ and so $\varphi(a) = 0$.

Definition 4.6. A covariant pro- C^* -morphism from $(G, \alpha, A[\tau_{\Gamma}])$ to a pro- C^* algebra $B[\tau_{\Gamma'}]$ is a pair (φ, u) consisting of a pro- C^* -morphism $\varphi : A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ and a strict continuous group morphism $u : G \to \mathcal{U}(M(B[\tau_{\Gamma'}]))$, the group of all unitaries of $M(B[\tau_{\Gamma'}])$, such that

$$\varphi\left(\alpha_{t}\left(a\right)\right)=u_{t}\varphi\left(a\right)u_{t}^{*}$$

for all $t \in G$ and for all $a \in A$. A covariant pro- C^* -morphism (φ, u) from $(G, \alpha, A[\tau_{\Gamma}])$ to $B[\tau_{\Gamma'}]$ is nondegenerate if $[\varphi(A)B] = B[\tau_{\Gamma'}]$.

Theorem 4.7. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system. If α is strongly bounded, then there is a locally Hilbert space \mathcal{H} and a covariant pro- C^* -morphism (i_A, i_G) from $(G, \alpha, A[\tau_{\Gamma}])$ to $\mathcal{L}(\mathcal{H})$. Moreover, i_A and i_G are injective.

Proof. Let $\lambda \in \Lambda$. By Proposition 4.4, $\mathcal{R}_{\lambda}(G, \alpha, A[\tau_{\Gamma}])$ is non empty. Let $(\varphi^{\lambda}, u^{\lambda}, H_{\lambda})$ be the direct sum of one representative $(\varphi, u, H_{\varphi,u})$ of each unitary equivalence class of nondegenerate covariant representations of $(G, \alpha, A[\tau_{\Gamma}])$ from

 $\mathcal{R}_{\lambda}\left(G,\alpha,A\left[\tau_{\Gamma}\right]\right)$. Then $\left(\varphi^{\lambda},u^{\lambda},H_{\lambda}\right)$ is a nondegenerate covariant representation of $\left(G,\alpha,A\left[\tau_{\Gamma}\right]\right)$ such that $\left\|\varphi^{\lambda}\left(a\right)\right\|\leq p_{\lambda}\left(a\right)$ for all $a\in A$.

Let $\mathcal{H}_{\lambda} = \bigoplus_{\mu \leq \lambda} \mathcal{H}_{\mu}$. Then $\mathcal{H} = \lim_{\lambda \to} \mathcal{H}_{\lambda}$ is a locally Hilbert space. For $a \in A$, the map $i_{A}^{\lambda}(a) : \mathcal{H}_{\lambda} \to \mathcal{H}_{\lambda}$ defined by

$$i_A^{\lambda}(a)\left(\bigoplus_{\mu\leq\lambda}\xi_{\mu}\right)=\bigoplus_{\mu\leq\lambda}\varphi^{\mu}\left(a\right)\xi_{\mu}$$

is an element in $L(\mathcal{H}_{\lambda})$ and $\|i_{A}^{\lambda}(a)\| \leq p_{\lambda}(a)$. Moreover, $i_{A}^{\lambda}(a^{*}) = i_{A}^{\lambda}(a)^{*}$ and $i_{A}^{\lambda}(ab) = i_{A}^{\lambda}(a)i_{A}^{\lambda}(b)$ for all $a, b \in A$. Clearly, $(i_{A}^{\lambda}(a))_{\lambda}$ is a direct system of bounded linear operators and $i_{A}(a) = \lim_{\lambda \to a} i_{A}^{\lambda}(a)$ is an element $\mathcal{L}(\mathcal{H})$ such that $i_{A}(a^{*}) = i_{A}(a)^{*}$ and $i_{A}(ab) = i_{A}(a)i_{A}(b)$ for all $a, b \in A$. Moreover,

$$p_{\lambda,\mathcal{L}(\mathcal{H})}(i_A(a)) = ||i_A^{\lambda}(a)|| \le p_{\lambda}(a)$$

for all $a \in A$ and for all $\lambda \in \Lambda$. Therefore, i_A is a pro- C^* -morphism.

For $t \in G$, the map $i_G^{\lambda}(t) : \mathcal{H}_{\lambda} \to \mathcal{H}_{\lambda}$ defined by

$$i_G^{\lambda}(t) \left(\bigoplus_{\mu < \lambda} \xi_{\mu} \right) = \bigoplus_{\mu < \lambda} u^{\mu}(t) \xi_{\mu}$$

is a unitary element in $L(\mathcal{H}_{\lambda})$. Moreover, the map $t \mapsto i_{G}^{\lambda}(t)$ is a unitary *-representation of G on \mathcal{H}_{λ} . Clearly, $\left(i_{G}^{\lambda}(t)\right)_{\lambda}$ is a direct system of unitary operators, and then $i_{G}(t) = \lim_{\lambda \to 0} i_{G}^{\lambda}(t)$ is a unitary element $\mathcal{L}(\mathcal{H})$. Moreover, $t \mapsto i_{G}(t)$ is a group morphism from G to the group of unitary operators on \mathcal{H} , and since for each $\xi \in \mathcal{H}$, the map $t \mapsto i_{G}(t) \xi$ from G to \mathcal{H} is continuous, $t \mapsto i_{G}(t)$ is a unitary *-representation of G on \mathcal{H} . We have

$$i_{A}(\alpha_{t}(a))(\bigoplus_{\mu \leq \lambda} \xi_{\mu}) = i_{A}^{\lambda}(\alpha_{t}(a))(\bigoplus_{\mu \leq \lambda} \xi_{\mu}) = \bigoplus_{\mu \leq \lambda} \varphi^{\mu}(\alpha_{t}(a))(\xi_{\mu})$$

$$= \bigoplus_{\mu \leq \lambda} u^{\mu}(t) \varphi^{\mu}(a) u^{\mu}(t)^{*}(\xi_{\mu})$$

$$= i_{G}(t)i_{A}(a)i_{G}(t)^{*}(\bigoplus_{\mu \leq \lambda} \xi_{\mu})$$

for all $a \in A$, for all $t \in G$ and for all $\bigoplus_{\mu \leq \lambda} \xi_{\mu} \in \mathcal{H}_{\lambda}$, $\lambda \in \Lambda$, and so

$$i_A(\alpha_t(a)) = i_G(t)i_A(a)i_G(t)^*$$

for all $a \in A$ and for all $t \in G$.

Suppose that $i_A(a) = 0$. Then $i_A^{\lambda}(a) = 0$ for all $\lambda \in \Lambda$ and so $\varphi(a) = 0$ for all nondegenerate covariant representation $(\varphi, u, H_{\varphi,u})$ of $(G, \alpha, A[\tau_{\Gamma}])$. By Proposition 4.4 and Remark 4.5, $\psi(a) = 0$ for all representations ψ of A. Therefore, $p_{\lambda}(a) = 0$ for all $\lambda \in \Lambda$, and then a = 0.

Suppose that $i_G(t) = \mathrm{id}_{\mathcal{H}}$. Then $i_G^{\lambda}(t) = \mathrm{id}_{\mathcal{H}_{\lambda}}$ for all $\lambda \in \Lambda$, and so $u(t) = \mathrm{id}_{H_{\varphi,u}}$ for all nondegenerate covariant representation $(\varphi, u, H_{\varphi,u})$ of $(G, \alpha, A[\tau_{\Gamma}])$, whence we deduce that t = e.

The following proposition gives a characterization of inverse limit actions.

Proposition 4.8. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system. Then the following statements are equivalent.

- (1) α is an inverse limit action.
- (2) There is a locally Hilbert space \mathcal{H} and a covariant pro- C^* -morphism (i_A, i_G) from $(G, \alpha, A[\tau_{\Gamma}])$ to $\mathcal{L}(\mathcal{H})$ such that $p_{\lambda, \mathcal{L}(\mathcal{H})}(i_A(a)) = p_{\lambda}(a)$ for all $\lambda \in \Lambda$ and $a \in A$.

Proof. (1) \Rightarrow (2) See [J3, Proposition 3.1] and [I, Theorem 5.1]. (2) \Rightarrow (1) From

$$i_A(\alpha_t(a)) = i_G(t) i_A(a) i_G(t)^*$$

for all $t \in G$ and for all $a \in A$, and taking into account that $i_G(t)$ is a unitary element in $\mathcal{L}(\mathcal{H})$ for all $t \in G$, we deduce that

$$p_{\lambda}(\alpha_{t}(a)) = p_{\lambda,\mathcal{L}(\mathcal{H})}(i_{A}(\alpha_{t}(a))) = p_{\lambda,\mathcal{L}(\mathcal{H})}(i_{G}(t)i_{A}(a)i_{G}(t)^{*})$$
$$= p_{\lambda,\mathcal{L}(\mathcal{H})}(i_{A}(a)) = p_{\lambda}(a)$$

for all $t \in G$, for all $a \in A$ and for all $t \in G$. Therefore, α is an inverse limit action.

5. The full pro- C^* -crossed product

Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system and let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra whose topology is given by the family of C^* -seminorms $\Gamma' = \{q_{\delta}\}_{{\delta} \in \Delta}$.

If u is a strict continuous group morphism from G to $\mathcal{U}(M(B[\tau_{\Gamma'}]))$, then there is a *-morphism $u: C_c(G) \to M(B[\tau_{\Gamma'}])$ given by $u(f) = \int_G f(s)u_s ds$, where ds denotes the Haar measure on G (see [J2]).

Definition 5.1. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system. A pro- C^* -algebra, denoted by $G \times_{\alpha} A[\tau_{\Gamma}]$, together with a covariant pro- C^* -morphism (ι_A, ι_G) from $(G, \alpha, A[\tau_{\Gamma}])$ to $G \times_{\alpha} A[\tau_{\Gamma}]$ which verifies the following:

- (1) for each nondegenerate covariant representation $(\varphi, u, \mathcal{H})$ of $(G, \alpha, A[\tau_{\Gamma}])$, there is a nondegenerate representation (Φ, \mathcal{H}) of $G \times_{\alpha} A[\tau_{\Gamma}]$ such that $\overline{\Phi} \circ \iota_{A} = \varphi$ and $\overline{\Phi} \circ \iota_{G} = u$;
- $\overline{\Phi} \circ \iota_{A} = \varphi \text{ and } \overline{\Phi} \circ \iota_{G} = u;$ $(2) \overline{\operatorname{span}\{\iota_{A}(a)\iota_{G}(f); a \in A, f \in C_{c}(G)\}} = G \times_{\alpha} A[\tau_{\Gamma}];$

is called the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α .

Remark 5.2. The covariant morphism (ι_A, ι_G) from the above definition is non-degenerate.

Proposition 5.3. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that there is a full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α and (φ, u) a nondegenerate covariant morphism from $(G, \alpha, A[\tau_{\Gamma}])$ to a pro- C^* -algebra $B[\tau_{\Gamma'}]$. Then there is a unique nondegenerate pro- C^* -morphism $\varphi \times u : G \times_{\alpha} A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ such that

$$\overline{\varphi \times u} \circ \iota_A = \varphi \ \ and \ \overline{\varphi \times u} \circ \iota_G = u.$$

Moreover, the map $(\varphi, u) \to \varphi \times u$ is a bijection between nondegenerate covariant morphisms of $(G, \alpha, A[\tau_{\Gamma}])$ onto nondegenerate morphisms of $G \times_{\alpha} A[\tau_{\Gamma}]$.

Proof. Let $q_{\delta} \in \Gamma'$ and $(\psi_{\delta}, \mathcal{H})$ a faithful nondegenerate representation of B_{δ} . Then, $(\overline{\psi_{\delta}} \circ \overline{\pi_{\delta}^B} \circ \varphi, \overline{\psi_{\delta}} \circ \overline{\pi_{\delta}^B} \circ u, \mathcal{H})$ is a nondegenerate covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$, and by Definition 5.1, there is a nondegenerate representation $(\phi_{\delta}, \mathcal{H})$ of $G \times_{\alpha} A[\tau_{\Gamma}]$ such that

$$\overline{\phi_{\delta}} \circ \iota_{A} = \overline{\psi_{\delta}} \circ \overline{\pi_{\delta}^{B}} \circ \varphi \text{ and } \overline{\phi_{\delta}} \circ \iota_{G} = \overline{\psi_{\delta}} \circ \overline{\pi_{\delta}^{B}} \circ u.$$

Let $\Phi_{\delta} = \overline{\psi_{\delta}^{-1}} \circ \phi_{\delta}$. Then Φ_{δ} is a nondegenerate pro- C^* -morphism from $G \times_{\alpha} A[\tau_{\Gamma}]$ to $M(B_{\delta})$. Moreover, for $q_{\delta_1}, q_{\delta_2} \in \Gamma'$ with $q_{\delta_1} \geq q_{\delta_2}$, we have $\overline{\pi_{\delta_1 \delta_2}^B} \circ \Phi_{\delta_1} = \Phi_{\delta_2}$. Therefore, there is a nondegenerate pro- C^* -morphism $\varphi \times u : G \times_{\alpha} A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ such that

$$\overline{\pi^B_\delta} \circ \varphi \times u = \Phi_\delta$$

for all $q_{\delta} \in \Gamma'$. Moreover, $\overline{\varphi \times u} \circ \iota_{A} = \varphi$ and $\overline{\varphi \times u} \circ \iota_{G} = u$, and since $\{\iota_{A}(a) \iota_{G}(f); a \in A, f \in C_{c}(G)\}$ generates $G \times_{\alpha} A[\tau_{\Gamma}], \varphi \times u$ is unique with the above properties.

Let $\Phi: G \times_{\alpha} A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ be a nondegenerate pro- C^* -morphism. Then $\varphi = \overline{\Phi} \circ \iota_A$ is a nondegenerate pro- C^* -morphism from $A[\tau_{\Gamma}]$ to $M(B[\tau_{\Gamma'}])$ and $u = \overline{\Phi} \circ \iota_G$ is a strict continuous morphism from G to $U(M(B[\tau_{\Gamma'}]))$, since ι_G is a strict continuous morphism from G to $M(G \times_{\alpha} A[\tau_{\Gamma}])$ and $\overline{\Phi}$ is strongly continuous on the bounded subsets of $M(G \times_{\alpha} A[\tau_{\Gamma}])$. Moreover, (φ, u) is a nondegenerate covariant morphism from $A[\tau_{\Gamma}]$ to $B[\tau_{\Gamma'}]$, and $\varphi \times u = \Phi$. If (ψ, v) is another nondegenerate covariant morphism from $A[\tau_{\Gamma}]$ to $B[\tau_{\Gamma'}]$ such that $\psi \times v = \Phi$, then $\psi = \overline{\Phi} \circ \iota_A = \varphi$ and $v = \overline{\Phi} \circ \iota_G = u$.

The following corollary provides uniqueness of the full pro- C^* -crossed product.

Corollary 5.4. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that there is a full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α . Then the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is unique up to a pro- C^* -isomorphism.

Proof. Let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra and (j_A, j_G) a covariant pro- C^* -morphism from $(G, \alpha, A[\tau_{\Gamma}])$ to $B[\tau_{\Gamma'}]$ which satisfy the relations (1) - (2) from Definition 5.1. Then, by Proposition 5.3, there is a nondegenerate pro- C^* -morphism $\Phi: G \times_{\alpha} A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}])$ such that $\overline{\Phi} \circ \iota_A = j_A$ and $\overline{\Phi} \circ \iota_G = j_G$. Since $\{\iota_A(a)\iota_G(f); a \in A, f \in C_c(G)\}$ generates $G \times_{\alpha} A[\tau_{\Gamma}]$ and $\{j_A(a)j_G(f); a \in A, f \in C_c(G)\}$ generates $B[\tau_{\Gamma'}], \Phi(G \times_{\alpha} A[\tau_{\Gamma}]) \subseteq B$.

In the same way, there is a pro- C^* -morphism $\Psi: B[\tau_{\Gamma'}] \to G \times_{\alpha} A[\tau_{\Gamma}]$ such that $\overline{\Psi} \circ j_A = \iota_A$ and $\overline{\Psi} \circ j_G = \iota_G$. From these facts and Definition 5.1 (2), we deduce that $\Phi \circ \Psi = \mathrm{id}_B$ and $\Psi \circ \Phi = \mathrm{id}_{G \times_{\alpha} A[\tau_{\Gamma}]}$, and so Φ is a pro- C^* -isomorphism. \square

The following proposition relates the nondegenerate covariant representations of a pro- C^* -dynamical system $(G, \alpha, A[\tau_{\Gamma}])$ with the nondegenerate representations of the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α .

Proposition 5.5. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that there is the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α . Then there is a bijective correspondence between nondegenerate covariant representations of $(G, \alpha, A[\tau_{\Gamma}])$ and nondegenerate representations of $G \times_{\alpha} A[\tau_{\Gamma}]$.

Proof. Let $(\varphi, u, \mathcal{H})$ be a nondegenerate covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$. Then, by Definition 5.1, there is a nondegenerate representation $(\varphi \times u, \mathcal{H})$ of $G \times_{\alpha} A[\tau_{\Gamma}]$ such that $\overline{\varphi \times u} \circ \iota_{A} = \varphi$ and $\overline{\varphi \times u} \circ \iota_{G} = u$. Moreover, by Definition 5.1(2), $(\varphi \times u, \mathcal{H})$ is unique, and since φ is nondegenerate, it is nondegenerate too.

Let (Φ, \mathcal{H}) be a nondegenerate representation of $G \times_{\alpha} A[\tau_{\Gamma}]$. Then $(\overline{\Phi} \circ \iota_A, \overline{\Phi} \circ \iota_G, \mathcal{H})$ is a covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$, and moreover, $(\overline{\Phi} \circ \iota_A) \times (\overline{\Phi} \circ \iota_G) = \Phi$. Since ι_A and Φ are nondegenerate, the net $\{\overline{\Phi}(\iota_A(e_i))\}_i$, where $\{e_i\}_i$ is an approximate unit of $A[\tau_{\Gamma}]$, converges strictly to $\mathrm{id}_{\mathcal{H}}$, and so $\overline{\Phi} \circ \iota_A$ is nondegenerate.

Suppose that there is another nondegenerate covariant representation $(\varphi, u, \mathcal{H})$ of $(G, \alpha, A[\tau_{\Gamma}])$ such that $\varphi \times u = \Phi$. Then $\varphi = \overline{\varphi \times u} \circ \iota_{A} = \overline{\Phi} \circ \iota_{A}$ and $u = \overline{\varphi \times u} \circ \iota_{G} = \overline{\Phi} \circ \iota_{G}$. Therefore, the map $(\varphi, u, \mathcal{H}) \mapsto (\varphi \times u, \mathcal{H})$ is bijective. \square

Theorem 5.6. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. Then, there is the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α .

Proof. By Theorem 4.7, there is a locally Hilbert space \mathcal{H} and a covariant pro- C^* -morphism (i_A, i_G) from $A[\tau_{\Gamma}]$ to $\mathcal{L}(\mathcal{H})$.

Let $B = \overline{\operatorname{span}\{i_A(a) i_G(f); a \in A, f \in C_c(G)\}} \subseteq \mathcal{L}(\mathcal{H})$. To show that B is a pro- C^* -algebra, we must show that B is closed under taking adjoints and multiplication. For this, since $B = \lim_{\leftarrow \lambda} \overline{\pi_{\lambda}^{\mathcal{H}}(B)}$ ([M, Chapter III, Theorem 3.1]), it is sufficient to show that for each $\lambda \in \Lambda$, $\pi_{\lambda}^{\mathcal{H}}(i_A(b) i_G(f) i_A(a) i_G(h))$ and $\pi_{\lambda}^{\mathcal{H}}(i_G(f) i_A(a))$ are elements in the closure of $\pi_{\lambda}^{\mathcal{H}}(B)$ in $L(\mathcal{H}_{\lambda})$ for all $a, b \in A$ and for all $f, h \in C_c(G)$.

The map $s \to \pi_{\lambda}^{A}(f(s)\alpha_{s}(a))$ from G to A_{λ} defines an element in $C_{c}(G, A_{\lambda})$, and so there is a net $\{\pi_{\lambda}^{A}(a_{j}) \otimes f_{j}\}_{j \in J}$ in $A_{\lambda} \otimes_{\text{alg}} C_{c}(G)$ with $\text{supp} f_{j}$, $\text{supp} f \subseteq K$ for some compact subset K, which converges uniformly to this map.

By [J4, Lemma 3.7],

$$\pi_{\lambda}^{\mathcal{H}}(i_{G}(f) i_{A}(a)) = \int_{G} f(s) i^{\lambda}(s) ds \pi_{\lambda}^{\mathcal{H}}(i_{A}(a)) = \int_{G} f(s) \pi_{\lambda}^{\mathcal{H}}(i_{G}(s) i_{A}(a)) ds$$

$$= \int_{G} f(s) \pi_{\lambda}^{\mathcal{H}}(i_{A}(\alpha_{s}(a)) i_{G}(s)) ds$$

$$= \int_{G} f(s) i_{A}^{\lambda}(\alpha_{s}(a)) i_{G}^{\lambda}(s) ds$$

and

$$\pi_{\lambda}^{\mathcal{H}}\left(i_{A}\left(a_{j}\right)i_{G}\left(f_{j}\right)\right) = \pi_{\lambda}^{\mathcal{H}}\left(i_{A}\left(a_{j}\right)\right) \int_{G} f_{j}\left(s\right)i_{G}^{\lambda}(s)ds = \int_{G} i_{A}^{\lambda}(a_{j})f_{j}\left(s\right)i_{G}^{\lambda}(s)ds$$

for each $j \in J$. Then, we have

$$\begin{aligned} & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{G} \left(f \right) i_{A} \left(a \right) \right) - \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(a_{j} \right) i_{G} \left(f_{j} \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \\ & \leq \int_{G} \left\| f \left(s \right) i_{A}^{\lambda} (\alpha_{s}(a)) i_{G}^{\lambda}(s) - i_{A}^{\lambda} (a_{j}) f_{j} \left(s \right) i_{G}^{\lambda}(s) \right\|_{L(\mathcal{H}_{\lambda})} ds \\ & \leq M \sup \{ \left\| f \left(s \right) i_{A}^{\lambda} (\alpha_{s}(a)) i_{G}^{\lambda}(s) - i_{A}^{\lambda} (a_{j}) f_{j} \left(s \right) i_{G}^{\lambda}(s) \right\|_{L(\mathcal{H}_{\lambda})}, s \in K \} \\ & = M \sup \{ \left\| i_{A}^{\lambda} \left(f \left(s \right) \alpha_{s}(a) - f_{j} \left(s \right) a_{j} \right) \right\|_{L(\mathcal{H}_{\lambda})} \left\| i_{G}^{\lambda}(s) \right\|_{L(\mathcal{H}_{\lambda})}, s \in K \} \\ & \leq M \sup \{ \left\| \pi_{\lambda}^{A} \left(f \left(s \right) \alpha_{s}(a) - f_{j} \left(s \right) a_{j} \right), s \in K \} \\ & = M \sup \{ \left\| \pi_{\lambda}^{A} \left(f \left(s \right) \alpha_{s}(a) \right) - f_{j} \left(s \right) \pi_{\lambda}^{A} \left(a_{j} \right) \right\|_{A_{\lambda}}, s \in K \} \end{aligned}$$

for all $j \in J$, where $M = \int_{K} dg$, and so $\pi_{\lambda}^{\mathcal{H}}\left(i_{G}\left(f\right)i_{A}\left(a\right)\right) \in \overline{\pi_{\lambda}^{\mathcal{H}}(B)}$.

On the other hand,

$$\begin{aligned} & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(b \right) i_{G} \left(f \right) i_{A} \left(a \right) i_{G} (h) \right) - \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(b a_{j} \right) i_{G} \left(f_{j} * h \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \\ &= & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(b \right) i_{G} \left(f \right) i_{A} \left(a \right) i_{G} (h) - i_{A} (b) i_{A} \left(a_{j} \right) i_{G} \left(f_{j} \right) i_{G} (h) \right) \right\|_{L(\mathcal{H}_{\lambda})} \\ &\leq & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(b \right) \right) \pi_{\lambda}^{\mathcal{H}} \left(i_{G} \left(f \right) i_{A} \left(a \right) - i_{A} \left(a_{j} \right) i_{G} \left(f_{j} \right) \right) \pi_{\lambda}^{\mathcal{H}} \left(i_{G} \left(h \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \\ &\leq & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(b \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{G} \left(h \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \\ & \left\| \pi_{\lambda}^{\mathcal{H}} \left(i_{G} \left(f \right) i_{A} \left(a \right) \right) - \pi_{\lambda}^{\mathcal{H}} \left(i_{A} \left(a_{j} \right) i_{G} \left(f_{j} \right) \right) \right\|_{L(\mathcal{H}_{\lambda})} \end{aligned}$$

whence, we deduce that $\pi_{\lambda}^{\mathcal{H}}(i_A(b)i_G(f)i_A(a)i_G(h)) \in \overline{\pi_{\lambda}^{\mathcal{H}}(B)}$. Thus, we showed that $\pi_{\lambda}^{\mathcal{H}}(i_G(f)i_A(a)), \pi_{\lambda}^{\mathcal{H}}(i_A(b)i_G(f)i_A(a)i_G(h)) \in \overline{\pi_{\lambda}^{\mathcal{H}}(B)}$ for each $\lambda \in \Lambda$, and so $i_G(f)i_A(a), i_A(b)i_G(f)i_A(a)i_G(h) \in B$. Therefore, B is a pro- C^* -algebra.

In the same manner, we show that for each $a \in A$, $i_A(a) i_A(b) i_G(f) \in B$ and $i_A(b) i_G(f) i_A(a) \in B$ for all $b \in A$ and for all $f \in C_c(G)$, and so $i_A(a) \in M(B)$. From,

$$i_G(t)i_A(a)i_G(f) = \int_C f(s)i_A(\alpha_t(a))i_G(ts)ds \in B$$

and

$$i_G(f)i_A\left(a\right)i_G(t) = \int\limits_G f(s)i_A\left(\alpha_s\left(a\right)\right)i_G(st)ds \in B$$

for all $a \in A$, for all $f \in C_c(G)$ and for all $t \in G$, we deduce that $i_G(t) \in M(B)$ for all $t \in G$.

Let $(\psi, v, H_{\psi,v})$ be a nondegenerate covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$. Then there is $(\varphi, u, H_{\varphi,u}) \in \mathcal{R}_{\lambda}(G, \alpha, A[\tau_{\Gamma}])$ such that $(\psi, v, H_{\psi,v})$ and $(\varphi, u, H_{\varphi,u})$ are unitarily equivalent. So there is a unitary operator $U: H_{\psi,v} \to H_{\varphi,u}$ such that $\psi(a) = U^*\varphi(a)U$ for all $a \in A$ and $v_t = U^*u_tU$ for all $t \in G$. The map $\Psi: \mathcal{L}(\mathcal{H}) \to L(H_{\lambda})$ given by

$$\Psi\left(T\right) = \pi_{\lambda}^{\mathcal{H}}\left(T\right)|_{H_{\lambda}}$$

is a representation of $\mathcal{L}(\mathcal{H})$ on H_{λ} (see the proof of Theorem 4.7). From

$$\Psi\left(i_{A}(a)\right)\left(H_{\varphi,u}\right) = i_{A}^{\lambda}(a)\left(H_{\varphi,u}\right) \subseteq H_{\varphi,u}$$

for all $a \in A$ and

$$\Psi\left(i_{G}(t)\right)\left(H_{\varphi,u}\right) = i_{G}^{\lambda}(t)\left(H_{\varphi,u}\right) \subseteq H_{\varphi,u}$$

for all $t \in G$, and taking into account that B is generated by $\{i_A(a)i_G(f); a \in A, f \in C_c(G)\}$, we deduce that $\Psi(B)(H_{\varphi,u}) \subseteq H_{\varphi,u}$. Let $\Phi: B \to L(H_{\psi,v})$ given by

$$\Phi\left(b\right) = U^{*}\Psi\left(b\right)|_{H_{\varphi,u}}U.$$

Clearly, Φ is a nondegenerate representation of B on $H_{\psi,v}$,

$$\overline{\Phi}\left(i_{A}(a)\right) = U^{*}\Psi\left(i_{A}(a)\right)|_{H_{\varphi,u}}U = U^{*}i_{A}^{\lambda}(a)|_{H_{\varphi,u}}U = U^{*}\varphi(a)U = \psi\left(a\right)$$

for all $a \in A$, and

$$\overline{\Phi}(i_G(t)) = U^* \Psi(i_G(t))|_{H_G} U = U^* i_G^{\lambda}(t)|_{H_G} U = U^* u_t U = v_t$$

for all $t \in G$.

Remark 5.7. The index of the family of seminorms which gives the topology on the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is the same with the index of the family of seminorms which gives the topology on $A[\tau_{\Gamma}]$.

Proposition 5.8. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is an inverse limit action. Then for each $\lambda \in \Lambda$, the C^* -algebra $(G \times_{\alpha} A[\tau_{\Gamma}])_{\lambda}$ is isomorphic to the full C^* -crossed product of A_{λ} by α^{λ} .

Proof. By Theorem 4.7, Proposition 4.8 and Corollary 5.4, there is a C^* -morphism $i_{A_{\lambda}}: A_{\lambda} \to M\left((G \times_{\alpha} A [\tau_{\Gamma}])_{\lambda}\right)$ such that $i_{A_{\lambda}} \circ \pi_{\lambda}^{A} = \overline{\pi_{\lambda}^{G \times_{\alpha} A [\tau_{\Gamma}]}} \circ i_{\underline{A}}$. Using the fact that α is an inverse limit action, it is easy to check that $\left(i_{A_{\lambda}}, \overline{\pi_{\lambda}^{G \times_{\alpha} A [\tau_{\Gamma}]}} \circ i_{G}\right)$ is a covariant C^* -morphism from $\left(G, \alpha^{\lambda}, A_{\lambda}\right)$ to $\left(G \times_{\alpha} A [\tau_{\Gamma}]\right)_{\lambda}$. Moreover,

$$\frac{\operatorname{span}\left\{i_{A_{\lambda}}\left(\pi_{\lambda}^{A}\left(a\right)\right)\overline{\pi_{\lambda}^{G\times_{\alpha}A[\tau_{\Gamma}]}}\left(i_{G}\left(f\right)\right); a \in A, f \in C_{c}\left(G\right)\right\}}{\operatorname{span}\left\{\overline{\pi_{\lambda}^{G\times_{\alpha}A[\tau_{\Gamma}]}}\left(i_{A}\left(a\right)i_{G}\left(f\right)\right); a \in A, f \in C_{c}\left(G\right)\right\}}$$

$$= \overline{\pi_{\lambda}^{G\times_{\alpha}A[\tau_{\Gamma}]}}\left(G\times_{\alpha}A\left[\tau_{\Gamma}\right]\right) = \left(G\times_{\alpha}A\left[\tau_{\Gamma}\right]\right)_{\lambda}.$$

Let $(\varphi, u, \mathcal{H})$ be a nondegenerate covariant representation of $(G, \alpha^{\lambda}, A_{\lambda})$. Then $(\varphi \circ \pi_{\lambda}^{A}, u, \mathcal{H})$ is a nondegenerate covariant representation of $(G, \alpha, A [\tau_{\Gamma}])$ and by Definition 5.1, there is a nondegenerate representation (Φ, \mathcal{H}) of $G \times_{\alpha} A [\tau_{\Gamma}]$ such that $\overline{\Phi} \circ i_{A} = \varphi \circ \pi_{\lambda}^{A}$ and $\overline{\Phi} \circ i_{G} = u$. Moreover, by the proof of Theorem 5.6,

$$\|\Phi(b)\| \le p_{\lambda,G \times_{\alpha} A[\tau_{\Gamma}]}(b)$$

for all $b \in G \times_{\alpha} A[\tau_{\Gamma}]$. Therefore, there is the C^* -morphism $\Phi_{\lambda} : (G \times_{\alpha} A[\tau_{\Gamma}])_{\lambda} \to L(\mathcal{H})$ such that $\Phi_{\lambda} \circ \overline{\pi_{\lambda}^{G \times_{\alpha} A[\tau_{\Gamma}]}} = \Phi$. Moreover, $(\Phi_{\lambda}, \mathcal{H})$ is a nondegenerate representation of $(G \times_{\alpha} A[\tau_{\Gamma}])_{\lambda}$ such that

$$\overline{\Phi}_{\lambda} \circ i_{A_{\lambda}} = \varphi \text{ and } \overline{\Phi_{\lambda}} \circ \left(\overline{\pi_{\lambda}^{G \times_{\alpha} A[\tau_{\Gamma}]}} \circ i_{G} \right) = u.$$

Thus, we showed that $(G \times_{\alpha} A[\tau_{\Gamma}])_{\lambda}$ is isomorphic to $G \times_{\alpha^{\lambda}} A_{\lambda}$.

Corollary 5.9. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is an inverse limit action. Then the pro- C^* -algebras $G \times_{\alpha} A[\tau_{\Gamma}]$ and $\lim_{\leftarrow \lambda} G \times_{\alpha^{\lambda}} A_{\lambda}$ are isomorphic.

Remark 5.10. If $(G, \alpha, A[\tau_{\Gamma}])$ is a pro- C^* -dynamical system such that α is an inverse limit action, then the notion of full pro- C^* -crossed product in the sense of Definition 5.1 coincides to the notion of full crossed product introduced by [P2, J4].

Definition 5.11. We say that $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ are conjugate if there is a pro- C^* -isomorphism $\varphi : A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ such that $\varphi \circ \alpha_t = \beta_t \circ \varphi$ for all $t \in G$.

Remark 5.12. If $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ are conjugate and α is strongly bounded, then β is strongly bounded too.

Proposition 5.13. Let $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ be two pro- C^* -dynamical systems such that α and β are strongly bounded. If $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ are conjugate, then the full pro- C^* -crossed products associated to these pro- C^* -dynamical systems are isomorphic.

Proof. Let $\varphi: A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ be a pro- C^* -isomorphism such that $\varphi \circ \alpha_t = \beta_t \circ \varphi$ for all $t \in G$. It is easy to check that $(\iota_B \circ \varphi, \iota_{G,B})$ is a nondegenerate covariant morphism from $(G, \alpha, A[\tau_{\Gamma}])$ to $G \times_{\beta} B[\tau_{\Gamma'}]$, where $(\iota_B, \iota_{G,B})$ is the covariant morphism from $(G, \beta, B[\tau_{\Gamma'}])$ to $G \times_{\beta} B[\tau_{\Gamma'}]$ which defines the full pro- C^* -crossed product of $B[\tau_{\Gamma'}]$ by β . Then, by Proposition 5.3, there is a nondegenerate pro- C^* -morphism $\Phi: G \times_{\alpha} A[\tau_{\Gamma}] \to M(G \times_{\beta} B[\tau_{\Gamma'}])$ such that $\overline{\Phi} \circ \iota_A = \iota_B \circ \varphi$ and $\overline{\Phi} \circ \iota_{G,A} = \iota_{G,B}$. Moreover, using Definition 5.1, it is easy to check that $\Phi(G \times_{\alpha} A[\tau_{\Gamma}]) \subseteq G \times_{\beta} B[\tau_{\Gamma'}]$. In the same manner, we obtain a nondegenerate pro- C^* -morphism $\Psi: G \times_{\beta} B[\tau_{\Gamma'}] \to M(G \times_{\alpha} A[\tau_{\Gamma}])$ such that $\overline{\Psi} \circ \iota_B = \iota_A \circ \varphi^{-1}$ and $\overline{\Psi} \circ \iota_{G,B} = \iota_{G,A}$.

From

$$(\Phi \circ \Psi) (\iota_B (b) \iota_{G,B} (f)) = \Phi (\iota_A \circ \varphi^{-1} (b) \iota_{G,A} (f)) = \iota_B (b) \iota_{G,B} (f)$$

and

$$(\Psi \circ \Phi) \left(\iota_{A} \left(a \right) \iota_{G,A} \left(f \right) \right) = \Psi \left(\iota_{B} \circ \varphi \left(a \right) \iota_{G,B} \left(f \right) \right) = \iota_{A} \left(a \right) \iota_{G,A} \left(f \right)$$

for all $b \in B[\tau_{\Gamma'}]$, $a \in A[\tau_{\Gamma}]$ and $f \in C_c(G)$ and Definition 5.1, we deduce that Φ and Ψ are pro- C^* -isomorphisms.

Corollary 5.14. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro-C*-dynamical system such that α is strongly bounded.

- (1) Pro-C*-algebras $G \times_{\alpha} A[\tau_{\Gamma}]$ and $G \times_{\alpha} A[\tau_{\Gamma^G}]$ are isomorphic.
- (2) $A[\tau_{\Gamma}]$ is isomorphic to a pro- C^* -subalgebra of $M(G \times_{\alpha} A[\tau_{\Gamma}])$.
 - 6. The reduced pro- C^* -crossed product

Let $A[\tau_{\Gamma}]$ and $B[\tau_{\Gamma'}]$ be two pro- C^* -algebras. For each $p_{\lambda} \in \Gamma$ and $q_{\delta} \in \Gamma'$, the map $\vartheta_{p_{\lambda},q_{\delta}}: A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}] \to [0,\infty)$ given by

$$\vartheta_{p_{\lambda},q_{\delta}}\left(z\right)=\sup\{\left\|\left(\varphi\otimes\psi\right)\left(z\right)\right\|;\varphi\in\mathcal{R}_{\lambda}\left(A\left[\tau_{\Gamma}\right]\right),\,\psi\in\mathcal{R}_{\delta}\left(B\left[\tau_{\Gamma'}\right]\right)\}$$

defines a C^* -seminorm on the algebraic tensor product $A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}]$. The completion of $A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}]$ with respect to the topology given by the family of C^* -seminorms $\{\vartheta_{p_{\lambda},q_{\delta}}; p_{\lambda} \in \Gamma, q_{\delta} \in \Gamma'\}$ is a pro- C^* -algebra, denoted by $A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}]$, and called the minimal or injective tensor product of the pro- C^* -algebras $A[\tau_{\Gamma}]$ and $B[\tau_{\Gamma'}]$ (see [F, Chapter VII]). Moreover, for each $p_{\lambda} \in \Gamma$ and $q_{\delta} \in \Gamma'$, the C^* -algebras $(A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}])_{(\lambda,\delta)}$ and $A_{\lambda} \otimes_{\min} B_{\delta}$ are isomorphic.

Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. Since α is strongly bounded, for each $a \in A$, the map $t \mapsto \alpha_{t^{-1}}(a)$ defines an element in $C_b(G, A[\tau_{\Gamma}])$, the pro- C^* -algebra of all bounded continuous functions from G to $A[\tau_{\Gamma}]$, and so there is a map $\widetilde{\alpha}: A[\tau_{\Gamma}] \to C_b(G, A[\tau_{\Gamma}])$ given by $\widetilde{\alpha}(a)(t) = \alpha_{t^{-1}}(a)$.

Lemma 6.1. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. Then $\widetilde{\alpha}$ is a nondegenerate faithful pro- C^* -morphism from $A[\tau_{\Gamma}]$ to $M(A[\tau_{\Gamma}] \otimes_{\min} C_0(G))$ with closed range. Moreover, if α is an inverse limit action, then $\widetilde{\alpha}$ is an inverse limit pro- C^* -morphism.

Proof. Clearly, $\widetilde{\alpha}$ is a *-morphism. For each $p_{\lambda} \in \Gamma$, there is $p_{\mu} \in \Gamma$ such that

$$p_{\lambda}\left(a\right) = p_{\lambda}\left(\alpha_{e}\left(a\right)\right) \leq \sup\{p_{\lambda}\left(\alpha_{t}\left(a\right)\right); t \in G\} = p_{\lambda, C_{b}\left(G, A\left[\tau_{\Gamma}\right]\right)}\left(\widetilde{\alpha}\left(a\right)\right) \leq p_{\mu}\left(a\right)$$

for all $a \in A$. Therefore, $\widetilde{\alpha}$ is an injective pro- C^* -morphism with closed range. By [J2, p. 76], $C_b(G, A[\tau_{\Gamma}])$ can be identified to a pro- C^* -subalgebra of $M(A[\tau_{\Gamma}] \otimes_{\min} C_0(G))$, and then $\widetilde{\alpha}$ can be regarded as a pro- C^* -morphism from $A[\tau_{\Gamma}]$ to $M(A[\tau_{\Gamma}] \otimes_{\min} C_0(G))$.

To show that $\widetilde{\alpha}$ is nondegenerate, let $\{e_i\}_{i\in I}$ be an approximate unit for $A[\tau_{\Gamma}]$. In the same manner as in [V, Proposition 5.1.5], we show that $\{\widetilde{\alpha}(e_i)\}_{i\in I}$ is strictly convergent. Indeed, let $a\in A, f\in C_c(G)$ and $p_{\lambda}\in \Gamma$. Then

$$\begin{aligned} & p_{\lambda,C_{b}(G,A[\tau_{\Gamma}])}\left(\widetilde{\alpha}\left(e_{i}\right)\left(a\otimes f\right)-a\otimes f\right) \\ &=& \sup\{p_{\lambda}\left(\alpha_{t^{-1}}\left(e_{i}\right)af\left(t\right)-af\left(t\right)\right);t\in G\} \\ &\leq& \|f\|_{\infty}\sup\{p_{\lambda}\left(\alpha_{t^{-1}}\left(e_{i}\alpha_{t}\left(a\right)-\alpha_{t}\left(a\right)\right)\right);t\in \operatorname{supp}\left(f\right)\} \\ &\leq& \|f\|_{\infty}\sup\{p_{\mu}\left(e_{i}\alpha_{t}\left(a\right)-\alpha_{t}\left(a\right)\right);t\in \operatorname{supp}\left(f\right)\} \end{aligned}$$

for some $p_{\mu} \in \Gamma$. For each $i \in I$, consider the function $f_i : G \to \mathbb{C}$, $f_i(t) = p_{\mu}(e_i\alpha_t(a) - \alpha_t(a))$. Clearly, $\{f_i\}_{i\in I}$ is a net of continuous functions on G which is uniformly bounded and equicontinuous. Then, by Arzelà–Ascoli's theorem, it is uniformly convergent on compact subsets of G. Therefore, $\{\widetilde{\alpha}(e_i)\}_{i\in I}$ is strictly convergent, and so the pro- C^* -morphism $\widetilde{\alpha}$ is nondegenerate.

Suppose that $\alpha_t = \lim_{\leftarrow \lambda} \alpha_t^{\lambda}$ for each $t \in G$. Then $\left(\widetilde{\alpha^{\lambda}}\right)_{\lambda}$ is an inverse system of C^* -morphisms and $\widetilde{\alpha} = \lim_{\leftarrow \lambda} \widetilde{\alpha^{\lambda}}$.

Let $\varphi: A\left[\tau_{\Gamma}\right] \to M(B\left[\tau_{\Gamma'}\right])$ be a nondegenerate pro- C^* -morphism and let $M: C_0(G) \to L(L^2(G))$ be the representation by multiplication operators. Then there is a nondegenerate pro- C^* -morphism $\varphi \otimes M: A\left[\tau_{\Gamma}\right] \otimes_{\min} C_0(G) \to M(B\left[\tau_{\Gamma'}\right] \otimes_{\min} \mathcal{K}(L^2(G))$ such that $(\varphi \otimes M) \ (a \otimes f) = \varphi \ (a) \otimes M_f$, were $\mathcal{K}(L^2(G))$ denotes the C^* -algebra of all compact operators on the Hilbert space $L^2(G)$. Since $\widetilde{\alpha}$ is a nondegenerate pro- C^* -morphism from $A\left[\tau_{\Gamma}\right]$ to $M(A\left[\tau_{\Gamma}\right] \otimes_{\min} C_0(G)), \ \widetilde{\varphi} = 0$

 $\overline{\varphi \otimes M} \circ \widetilde{\alpha}$ is a nondegenerate pro- C^* -morphism from $A[\tau_{\Gamma}]$ to $M(B[\tau_{\Gamma'}] \otimes_{\min} \mathcal{K}(L^2(G))$.

Let $\lambda_G: G \to \mathcal{U}(L^2(G))$ be the left representation of G on $L^2(G)$ given by $(\lambda_G)_t(\xi)(s) = \xi(t^{-1}s)$. Then $1 \otimes \lambda_G: G \to \mathcal{U}(M(B[\tau_{\Gamma'}] \otimes \mathcal{K}(L^2(G)))$, where $(1 \otimes \lambda_G)_t(b \otimes \xi)(s) = b\xi(t^{-1}s)$, is a strict continuous group morphism from G to $\mathcal{U}(M(B[\tau_{\Gamma'}] \otimes_{\min} \mathcal{K}(L^2(G)))$, and $(\widetilde{\varphi}, 1 \otimes \lambda_G)$ is a nondegenerate covariant morphism of $(G, \alpha, A[\tau_{\Gamma}])$ to $B[\tau_{\Gamma'}] \otimes_{\min} \mathcal{K}(L^2(G))$. By Proposition 5.3, there is a unique nondegenerate pro- C^* -morphism $\widetilde{\varphi} \times (1 \otimes \lambda_G): G \times_{\alpha} A[\tau_{\Gamma}] \to M(B[\tau_{\Gamma'}] \otimes_{\min} \mathcal{K}(L^2(G))$ such that $\widetilde{\varphi} \times (1 \otimes \lambda_G) \circ \iota_A = \widetilde{\varphi}$ and $\widetilde{\varphi} \times (1 \otimes \lambda_G) \circ \iota_G = 1 \otimes \lambda_G$.

If $\varphi = \mathrm{id}_A$, the nondegenerate pro- C^* -morphism $\mathrm{id}_A \times (1 \otimes \lambda_G) : G \times_\alpha A[\tau_\Gamma] \to \underline{M(A[\tau_\Gamma] \otimes_{\min} \mathcal{K}(L^2(G)))}$ is denoted by Λ_A^G . It is easy to check that $\widetilde{\varphi} \times (1 \otimes \lambda_G) = \underline{\varphi \otimes \mathrm{id}_{\mathcal{K}(L^2(G))}} \circ \Lambda_A^G$.

If α is an inverse limit action, $\alpha_t = \lim_{\substack{\leftarrow \lambda \\ \leftarrow \lambda}} \alpha_t^{\lambda}$ for each $t \in G$, then it is easy to check that Λ_A^G is an inverse limit pro- C^* -morphism, $\Lambda_A^G = \lim_{\substack{\leftarrow \lambda \\ \leftarrow \lambda}} \Lambda_{A_{\lambda}}^G$.

Definition 6.2. The reduced pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is the pro- C^* -subalgebra $G \times_{\alpha,r} A[\tau_{\Gamma}]$ of $M(A[\tau_{\Gamma}] \otimes_{\min} \mathcal{K}(L^2(G)))$ generated by the range of Λ_A^G .

Remark 6.3. From

$$\Lambda_{A}^{G}\left(\iota_{A}\left(a\right)\iota_{G}\left(f\right)\right) = \left(\overline{\mathrm{id}_{A}\otimes M}\circ\widetilde{\alpha}\right)\left(a\right)\left(1\otimes\lambda_{G}\right)\left(f\right) = \widetilde{\alpha}\left(a\right)\left(1\otimes\lambda_{G}\left(f\right)\right)$$

for all $a \in A$ and for all $f \in C_c(G)$, and taking into account that $G \times_{\alpha} A[\tau_{\Gamma}]$ is generated by $\{\iota_A(a)\iota_G(f); a \in A, f \in C_c(G)\}$, we conclude that $G \times_{\alpha,r} A[\tau_{\Gamma}]$ is the pro- C^* -subalgebra of $M(A[\tau_{\Gamma}] \otimes_{\min} \mathcal{K}(L^2(G)))$ generated by $\{\widetilde{\alpha}(a)(1 \otimes \lambda_G(f)); a \in A, f \in C_c(G)\}$.

Remark 6.4. If α is an inverse limit action, $\alpha_t = \lim_{t \to \lambda} \alpha_t^{\lambda}$ for each $t \in G$, then

$$G \times_{\alpha,r} A \left[\tau_{\Gamma} \right] = \overline{\Lambda_{A}^{G} \left(G \times_{\alpha} A \left[\tau_{\Gamma} \right] \right)} = \lim_{\leftarrow \lambda} \overline{\Lambda_{A_{\lambda}}^{G} \left(G \times_{\alpha^{\lambda}} A_{\lambda} \right)} = \lim_{\leftarrow \lambda} G \times_{\alpha^{\lambda},r} A_{\lambda}$$

and moreover, for each $p_{\lambda} \in \Gamma$, the C^* -algebras $(G \times_{\alpha,r} A[\tau_{\Gamma}])_{\lambda}$ and $G \times_{\alpha^{\lambda},r} A_{\lambda}$ are isomorphic.

Remark 6.5. Since the trivial action of a locally compact group G on a pro- C^* -algebra $A[\tau_{\Gamma}]$ is an inverse limit action, the reduced pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by the trivial action is the inverse limit of the reduced crossed products of A_{λ} by the trivial action, and so it is isomorphic to the pro- C^* -algebra $A[\tau_{\Gamma}] \otimes_{\min} C^*_r(G)$, where $C^*_r(G)$ is the reduced group C^* -algebra of G.

Proposition 6.6. Let $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ be two pro- C^* -dynamical systems such that α and β are strongly bounded. If $(G, \alpha, A[\tau_{\Gamma}])$ and $(G, \beta, B[\tau_{\Gamma'}])$ are conjugate, then the reduced pro- C^* -crossed products associated to these pro- C^* -dynamical systems are isomorphic.

Proof. Let $\varphi: A[\tau_{\Gamma}] \to B[\tau_{\Gamma'}]$ be a pro- C^* -isomorphism such that $\varphi \circ \alpha_t = \beta_t \circ \varphi$ for all $t \in G$. It is easy to check that $\overline{\varphi \otimes \operatorname{id}_{\mathcal{K}(L^2(G))}} \circ \widetilde{\alpha} = \widetilde{\beta} \circ \varphi$. From

$$\overline{\varphi \otimes \operatorname{id}_{\mathcal{K}(L^{2}(G))}} \left(\widetilde{\alpha} \left(a \right) \left(1 \otimes \lambda_{G} \left(f \right) \right) \right) = \widetilde{\beta} \left(\varphi \left(a \right) \right) \left(1 \otimes \lambda_{G} \left(f \right) \right)$$

for all $a \in A$ and for all $f \in C_c(G)$, and taking into account that

$$\overline{\operatorname{span}\{\widetilde{\alpha}(a)(1\otimes\lambda_{G}(f));a\in A,f\in C_{c}(G)\}}=G\times_{\alpha,r}A[\tau_{\Gamma}]$$

and

$$\overline{\operatorname{span}\{\widetilde{\beta}(a)\left(1\otimes\lambda_{G}(f)\right);a\in B,f\in C_{c}\left(G\right)\}}=G\times_{\beta,r}B\left[\tau_{\Gamma'}\right],$$

we conclude that $\Phi_1 = \overline{\varphi \otimes \operatorname{id}_{\mathcal{K}(L^2(G))}}|_{G \times_{\alpha,r} A[\tau_{\Gamma}]}$ is a pro- C^* -morphism from $G \times_{\alpha,r} A[\tau_{\Gamma}]$ to $G \times_{\beta,r} B[\tau_{\Gamma'}]$.

In the same manner, we conclude that $\Phi_2 = \overline{\varphi^{-1} \otimes \operatorname{id}_{\mathcal{K}(L^2(G))}}|_{G \times_{\beta,r} B[\tau_{\Gamma'}]}$ is a pro- C^* -morphism from $G \times_{\beta,r} B[\tau_{\Gamma'}]$ to $G \times_{\alpha,r} A[\tau_{\Gamma}]$. Moreover, $\Phi_1 \circ \Phi_2 = \operatorname{id}_{G \times_{\beta,r} B[\tau_{\Gamma'}]}$ and $\Phi_2 \circ \Phi_1 = \operatorname{id}_{G \times_{\alpha,r} A[\tau_{\Gamma}]}$, since

$$\Phi_{1} \circ \Phi_{2} \left(\widetilde{\beta} \left(b \right) \left(1 \otimes \lambda_{G} \left(f \right) \right) \right) = \widetilde{\beta} \left(b \right) \left(1 \otimes \lambda_{G} \left(f \right) \right)$$

for all $b \in B$ and for all $f \in C_c(G)$ and

$$\Phi_{2} \circ \Phi_{1}\left(\widetilde{\alpha}\left(a\right)\left(1 \otimes \lambda_{G}\left(f\right)\right)\right) = \widetilde{\alpha}\left(a\right)\left(1 \otimes \lambda_{G}\left(f\right)\right)$$

for all $a \in A$ and for all $f \in C_c(G)$. Therefore, the pro- C^* -algebras $G \times_{\alpha,r} A[\tau_{\Gamma}]$ and $G \times_{\beta,r} B[\tau_{\Gamma'}]$ are isomorphic.

Corollary 6.7. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. Then the pro- C^* -algebras $G \times_{\alpha,r} A[\tau_{\Gamma}]$ and $G \times_{\alpha,r} A[\tau_{\Gamma^G}]$ are isomorphic.

Remark 6.8. If α is an action of an amenable locally compact group G on a C^* -algebra A, then the C^* -morphism Λ_A^G is injective and the full crossed product A by α is isomorphic to the reduced crossed product of A by α . If α is an inverse limit action of G on a pro- C^* -algebra $A[\tau_{\Gamma}]$ and G is amenable, then Λ_A^G = $\lim_{\epsilon \to A} \Lambda_{A_{\lambda}}^G$, and so Λ_A^G is an injective pro- C^* -morphism with closed range and its inverse is continuous. Therefore, if G is amenable and α is an inverse limit action, then the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is isomorphic to the reduced pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α .

Proposition 6.9. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded. If G is amenable then the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α is isomorphic to the reduced pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by α .

Proof. It follows from Corollaries 5.14 and 6.7, and Remark 6.8.

7. Pro- C^* -crossed products and tensor products

Let $A[\tau_{\Gamma}]$ and $B[\tau_{\Gamma'}]$ be two pro- C^* -algebras. For each $p_{\lambda} \in \Gamma$ and $q_{\delta} \in \Gamma'$, the map $t_{p_{\lambda},q_{\delta}}: A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}] \to [0,\infty)$ given by

$$t_{p_{\lambda},q_{\delta}}\left(z\right)=\sup\{\left\|\varphi\circ\pi_{p_{\lambda},q_{\delta}}\left(z\right)\right\|;\varphi\text{ is a}\ast\text{-representation of }A_{\lambda}\otimes_{\mathrm{alg}}B_{\delta}\},$$

where $\pi_{p_{\lambda},q_{\delta}}$ $(a \otimes b) = \pi_{\lambda}^{A}(a) \otimes \pi_{\delta}^{B}(b)$, defines a C^{*} -seminorm on the algebraic tensor product $A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}]$. The completion of $A[\tau_{\Gamma}] \otimes_{\text{alg}} B[\tau_{\Gamma'}]$ with respect to the topology given by the family of C^{*} -seminorms $\{t_{p_{\lambda},q_{\delta}}; p_{\lambda} \in \Gamma, q_{\delta} \in \Gamma'\}$ is a pro- C^{*} -algebra, denoted by $A[\tau_{\Gamma}] \otimes_{\text{max}} B[\tau_{\Gamma'}]$, and called the maximal or projective tensor product of the pro- C^{*} -algebras $A[\tau_{\Gamma}]$ and $B[\tau_{\Gamma'}]$ (see [F, Chapter VII]).

Moreover, for each $p_{\lambda} \in \Gamma$ and $q_{\delta} \in \Gamma'$, the C^* -algebras $(A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}])_{(\lambda,\delta)}$ and $A_{\lambda} \otimes_{\max} B_{\delta}$ are isomorphic.

Remark 7.1. The trivial action of G on $A[\tau_{\Gamma}]$ is an inverse limit action, and so the full pro- C^* -crossed product of $A[\tau_{\Gamma}]$ by the trivial action is isomorphic to $A[\tau_{\Gamma}] \otimes_{\max} C^*(G)$, where $C^*(G)$ is the group C^* -algebra of G, [J2, Corollary 1.3.9].

Let $(G, \alpha, A [\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded and let $B [\tau_{\Gamma'}]$ be a pro- C^* -algebra. Then $t \mapsto (\alpha \otimes \mathrm{id})_t$, where $(\alpha \otimes \mathrm{id})_t (a \otimes b) = \alpha_t(a) \otimes b$, is a strong bounded action of G on $A [\tau_{\Gamma}] \otimes_{\max} B [\tau_{\Gamma'}]$.

The following theorem gives an "associativity" between \times_{α} and \otimes_{\max} .

Theorem 7.2. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded and let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra. Then the pro- C^* -algebras $G \times_{\alpha \otimes id} (A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}])$ and $(G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}]$ are isomorphic.

Proof. Let $\rho_{G \times_{\alpha} A[\tau_{\Gamma}]} : G \times_{\alpha} A[\tau_{\Gamma}] \to M((G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}])$ and $\rho_{B} : B[\tau_{\Gamma'}] \to M((G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}])$ be the canonical maps. Then $\overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} \circ \iota_{A} : A[\tau_{\Gamma}] \to M((G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}])$ and $\rho_{B} : B[\tau_{\Gamma'}] \to M((G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}])$ are nondegenerate pro- C^* -morphisms with commuting ranges.

Let $j_{G \times_{\alpha \otimes \operatorname{id}} A[\tau_{\Gamma}] \otimes_{\operatorname{max}} B[\tau_{\Gamma'}]} = \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} \circ \iota_{A} \otimes \rho_{B}$ and $j_{G} = \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} \circ \iota_{G}$. A simple calculus shows that $(j_{G \times_{\alpha \otimes \operatorname{id}} A[\tau_{\Gamma}] \otimes_{\operatorname{max}} B[\tau_{\Gamma'}]}, j_{G})$ is a nondegenerate covariant pro- C^* -morphism from $(G, \alpha \otimes \operatorname{id}, A[\tau_{\Gamma}] \otimes_{\operatorname{max}} B[\tau_{\Gamma'}])$ to $M((G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\operatorname{max}} B[\tau_{\Gamma'}])$. Moreover, from

$$j_{G \times_{\alpha \otimes \operatorname{id}} A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]} (a \otimes b) j_{G}(f)$$

$$= \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} (\iota_{A}(a)) \rho_{B}(b) \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} (\iota_{G}(f))$$

$$= \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} (\iota_{A}(a)) \overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} (\iota_{G}(f)) \rho_{B}(b)$$

$$= \rho_{G \times_{\alpha} A[\tau_{\Gamma}]} (\iota_{A}(a) \iota_{G}(f)) \rho_{B}(b)$$

for all $a \in A$, for all $b \in B$ and for all $f \in C_c(G)$, and taking into account that $\{\iota_A(a) \iota_G(f); a \in A, f \in C_c(G)\}$ generates $G \times_{\alpha} A[\tau_{\Gamma}]$ and $\{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}(z) \rho_B(b); z \in G \times_{\alpha} A[\tau_{\Gamma}], b \in B\}$ generates $(G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}]$, we conclude that

$$\overline{\operatorname{span}\{j_{G\times_{\alpha\otimes\operatorname{id}}A[\tau_{\Gamma}]\otimes_{\operatorname{max}}B[\tau_{\Gamma'}]}(a\otimes b)j_{G}(f);a\in A,b\in b,f\in C_{c}(G)\}}$$

$$= (G\times_{\alpha}A[\tau_{\Gamma}])\otimes_{\operatorname{max}}B[\tau_{\Gamma'}].$$

Let $(\varphi, u, \mathcal{H})$ be a nondegenerate covariant representation of $(G, \alpha \otimes \mathrm{id}, A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}])$. Then (φ, \mathcal{H}) is a nondegenerate representation of $A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]$, and so there is a nondegenerate representation $(\varphi_{(\lambda,\delta)}, \mathcal{H})$ of $A_{\lambda} \otimes_{\max} B_{\delta}$ such that $\varphi_{(\lambda,\delta)} \circ \pi_{(\lambda,\delta)}^{A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]} = \varphi$. Let $(\varphi_{\lambda}, \mathcal{H})$ and $(\varphi_{\delta}, \mathcal{H})$ be the nondegenerate representations of A_{λ} , respectively B_{δ} with commuting ranges such that $\varphi_{(\lambda,\delta)}(a \otimes b) = \varphi_{\lambda}(a) \varphi_{\delta}(b)$ for all $a \in A_{\lambda}$ and $b \in B_{\delta}$. Then $(\varphi_{\lambda} \circ \pi_{\lambda}^{A}, u, \mathcal{H})$ is a nondegenerate covariant representation of $(G, \alpha, A[\tau_{\Gamma}])$, and so there is a nondegenerate representation (Φ_{1}, \mathcal{H}) of $G \times_{\alpha} A[\tau_{\Gamma}]$ such that $\overline{\Phi_{1}} \circ \iota_{A} = \varphi_{\lambda} \circ \pi_{\lambda}^{A}$ and $\overline{\Phi_{1}} \circ \iota_{G} = u$. It is easy to check that (Φ_{1}, \mathcal{H}) and (Φ_{2}, \mathcal{H}) , where $\Phi_{2} = \varphi_{\delta} \circ \pi_{\delta}^{B}$, are nondegenerate representations of $G \times_{\alpha} A[\tau_{\Gamma}]$ respectively $B[\tau_{\Gamma'}]$ with commuting ranges. Let

 (Φ, \mathcal{H}) be the nondegenerate representation of $(G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}]$ given by $\Phi(z \otimes b) = \Phi_1(z) \Phi_2(b)$. Then

$$\overline{\Phi} \left(j_{G \times_{\alpha \otimes \operatorname{id}} A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]} \left(a \otimes b \right) \right)
= \overline{\Phi} \left(\overline{\rho_{G \times_{\alpha} A[\tau_{\Gamma}]}} \left(\iota_{A} \left(a \right) \right) \rho_{B} \left(b \right) \right) = \overline{\Phi}_{1} \left(\left(\iota_{A} \left(a \right) \right) \overline{\Phi}_{2} \left(\rho_{B} \left(b \right) \right) \right)
= \left(\varphi_{\lambda} \circ \pi_{\lambda}^{A} \left(a \right) \right) \left(\varphi_{\delta} \circ \pi_{\delta}^{B} \left(b \right) \right) = \varphi_{(\lambda,\delta)} \left(\pi_{\lambda}^{A} \left(a \right) \otimes \pi_{\delta}^{B} \left(b \right) \right)
= \varphi_{(\lambda,\delta)} \circ \pi_{(\lambda,\delta)}^{A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]} \left(a \otimes b \right) = \varphi \left(a \otimes b \right)$$

for all $a \in A$ and $b \in B$, and

$$\overline{\Phi}\left(j_{G}\left(f\right)\right) = \overline{\Phi}\left(\overline{\rho_{G\times_{\alpha}A\left[\tau_{\Gamma}\right]}} \circ \iota_{G}\left(f\right)\right) = \overline{\Phi_{1}}\left(\iota_{G}\left(f\right)\right) = u\left(f\right)$$

for all $f \in C_c(G)$. Therefore, by Definition 5.1 and Corollary 5.4, the pro- C^* -algebras $G \times_{\alpha \otimes \operatorname{id}} A[\tau_{\Gamma}] \otimes_{\max} B[\tau_{\Gamma'}]$ and $(G \times_{\alpha} A[\tau_{\Gamma}]) \otimes_{\max} B[\tau_{\Gamma'}]$ are isomorphic.

Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded and let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra. Then $t \mapsto (\alpha \otimes \mathrm{id})_t$, where $(\alpha \otimes \mathrm{id})_t$ $(a \otimes b) = \alpha_t(a) \otimes b$, is a strong bounded action of G on $A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}]$.

The following theorem gives an "associativity" between $\times_{\alpha,r}$ and \otimes_{\min} .

Theorem 7.3. Let $(G, \alpha, A[\tau_{\Gamma}])$ be a pro- C^* -dynamical system such that α is strongly bounded and let $B[\tau_{\Gamma'}]$ be a pro- C^* -algebra. Then the pro- C^* -algebras $G \times_{\alpha \otimes id,r} (A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}])$ and $(G \times_{\alpha,r} A[\tau_{\Gamma}]) \otimes_{\min} B[\tau_{\Gamma'}]$ are isomorphic.

Proof. The map $\mathrm{id}_A \otimes \sigma_{B,\mathcal{K}(L^2(G))} : A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}] \otimes_{\min} \mathcal{K}(L^2(G)) \to A[\tau_{\Gamma}] \otimes_{\min} \mathcal{K}(L^2(G)) \otimes_{\min} B[\tau_{\Gamma'}]$ given by

$$id_A \otimes \sigma_{B,\mathcal{K}(L^2(G))} (a \otimes b \otimes T) = a \otimes T \otimes b$$

is a pro- C^* -isomorphism. Moreover, $\mathrm{id}_A \otimes \sigma_{B,\mathcal{K}(L^2(G))}$ is an inverse limit of C^* -isomorphisms. From

$$\widetilde{\mathrm{id}_{A}\otimes\sigma_{B,\mathcal{K}(L^{2}(G))}}\left(\widetilde{\alpha\otimes\mathrm{id}}\left(a\otimes b\right)\left(1\otimes\lambda_{G}(f)\right)=\widetilde{\alpha}\left(a\right)\left(1_{M(A[\tau_{\Gamma}])}\otimes\lambda_{G}(f)\otimes b\right)$$

for all $a \in A$, for all $b \in B$ and for all $f \in C_c(G)$, and Remark 6.3, we deduce that

$$\overline{\mathrm{id}_A \otimes \sigma_{B,\mathcal{K}(L^2(G))}}|_{G \times_{\alpha \otimes \mathrm{id},r} A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}]}$$

is a pro- C^* -isomorphism from $G \times_{\alpha \otimes \mathrm{id},r} (A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}])$ onto $(G \times_{\alpha,r} A[\tau_{\Gamma}]) \otimes_{\min} B[\tau_{\Gamma'}]$. Therefore, the pro- C^* -algebras $(G \times_{\alpha,r} A[\tau_{\Gamma}]) \otimes_{\min} B[\tau_{\Gamma'}]$ and $G \times_{\alpha \otimes \mathrm{id},r} (A[\tau_{\Gamma}] \otimes_{\min} B[\tau_{\Gamma'}])$ are isomorphic. \square

Acknowledgement. The author was supported by the grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0201.

References

- A. C. Apostol, b*-algebras and their representation, J. London Math. Soc. (2) 3 (1971), no. 1, 30–38.
- E. S. Echterhoff, Crossed products, the Mackey-Rieffel-Green machine and applications, arXiv:1006.4975v2.
- F. M. Fragoulopoulou, *Topological algebras with involution*, North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005.
- I. A. Inoue, Locally C*-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A 25 (1971), 197–235.
- J1. M. Joiţa, On bounded module maps between Hilbert modules over locally C*-algebras, Acta Math. Univ. Comenianae **74**(2005), no. 1, 71–78.
- J2. M. Joiţa, Crossed products of locally C*-algebras, Editura Academiei Române, Bucharest, 2007.
- J3. M. Joiţa, Crossed products of pro-C*-algebras and Hilbert pro-C*-modules, Bull. Malays. Math. Sci. Soc. (to appear).
- J4. M. Joiţa, Crossed products of locally C*-algebras, Rocky Mountain J. Math. **37**(2007), no. 5, 1623–1644.
- M. A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
- P1. N.C. Phillips, Inverse limits of C^* -algebras, J. Operator Theory 19(1988), no. 1, 159–195.
- P2. N.C. Phillips, Representable K-theory for σ -C*-algebras, K-Theory **3**(1989), no. 5, 441–478.
- R. I. Raeburn, On crossed products and Takai duality, Proc. Edinburgh Math. Soc. (2) **31**(1988), no. 2, 321–330.
- V. J.M. Vallin, C*-algébres de Hopf et C*-algébres de Kac, Proc. London Math. Soc.(3) 50 (1985), no. 1, 131–174.
- W. D.P. Williams, *Crossed products of C*-algebras*. Mathematical Surveys and Monographs, Vol 134, Amer. Math. Soc., 2007.

DEPARTMENT OF MATHEMATICS, FACULTY OF APPLIED SCIENCES, UNIVERSITY POLITEHNICA OF BUCHAREST, SPL. INDEPENDENTEI NR. 313, BUCHAREST, 060042, ROMANIA; SIMION STOILOW INSTITUTE OF MATHEMATICS OF THE ROUMANIAN ACADEMY, 21 CALEA GRIVITEI STREET, 010702 BUCHAREST, ROMANIA.

 $E ext{-}mail\ address: mjoita@fmi.unibuc.ro}$

URL: http://sites.google.com/a/g.unibuc.ro/maria-joita/