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A NEW LOOK AT THE CROSSED PRODUCTS OF
PRO-C∗-ALGEBRAS

MARIA JOIŢA

Communicated by T. Loring

Abstract. We give a new definition for the full crossed product, respectively
reduced crossed product, of a pro-C∗-algebra A [τΓ] by an action α and, using
these new definitions, we investigate some of their properties.

1. Introduction

Given a C∗-algebra A and a continuous action α of a locally compact group
G on A, we can construct a new C∗-algebra, called the crossed product of A by
α, usually denoted by G×α A, and which contains, in some subtle sense, A and
G. The origin of this construction goes back to Murray and von Neumann and
their group measure space construction by which they associated a von Neumann
algebra to a countable group acting on a measure space. The analog of this con-
struction for the case of C∗-algebras is due to Gelfand with co-authors Naimark
and Fomin. There is a vast literature on crossed products of C∗-algebras (see,
for example, [W]), but the corresponding theory in the context of non-normed
topological ∗-algebras has still a long way to go.

Crossed product of pro-C∗-algebras by inverse limit actions of locally compact
groups were considered by Phillips [P2] and Joiţa [J2, J3, J4]. If A [τΓ] is a pro-
C∗-algebra with topology given by the family of C∗-seminorms Γ = {pλ}λ∈Λ, then
A [τΓ] can be identified with an inverse limit of C∗-algebras lim

←λ
Aλ (the Arens–

Michael decomposition of A [τΓ]), and if α is an inverse limit action of a locally
compact group G on A [τΓ], then αt = lim

←λ
αλt for all t ∈ G, where for each λ ∈ Λ,

αλ is an action of G on the C∗-algebra Aλ. In [P2], the full (reduced) crossed
product of A [τΓ] by α is defined as inverse limit of the full (reduced) crossed
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products of Aλ by αλ, λ ∈ Λ. In particular, for a given inverse limit automorphism
α of a pro-C∗-algebra A [τΓ], we can associate to the pair (A [τΓ] , α) a pro-C∗-
algebra by the above crossed product construction, but if α is not an inverse limit
automorphism, this construction is not possible. In the case of C∗-algebras, the
crossed product of a C∗-algebra A by an action α is isomorphic to the enveloping
C∗-algebra of the covariance algebra L1(G,α,A). If α is an inverse limit action
of G on A [τΓ], then the covariance algebra L1(G,α,A [τΓ]) has a structure of
locally m-convex ∗-algebra with topology given by the family of submultiplicative
seminorms {Npλ

}λ∈Λ, where

Npλ
(f) =

∫
G

pλ (f (g)) dg,

and the enveloping pro-C∗-algebra of L1(G,α,A [τΓ]) can be identified with the in-
verse limit of the enveloping C∗-algebras of the covariance algebras L1(G,αλ, Aλ).
Therefore, the full crossed product of A [τΓ] by α is isomorphic to the enveloping
pro-C∗-algebra of the covariance algebra L1(G,α,A [τΓ]). If α is not an inverse
limit action, then the covariance algebra has not a structure of locally m-convex
∗-algebra (Npλ

is not a submultiplicative ∗-seminorm). We remark that the above
definition of the full crossed product of a pro-C∗-algebra A [τΓ] by an inverse limit
action depends of the Arens–Michael decomposition of A [τΓ], and so it is not good
to define the notion of full crossed product of a pro-C∗-algebra A [τΓ] by an action
which is not an inverse limit action. It is well known that the full crossed product
of C∗-algebras is a universal object for nondegenerate covariant representations
(see, for example, [R]). The full crossed product of pro-C∗-algebras by inverse
limit actions has also the universal property with respect to the nondegenerate
covariant representations [J3]. In this paper, we define the full crossed product
of a pro-C∗-algebra A [τΓ] by an action α of a locally compact group G as a uni-
versal object for nondegenerate covariant representations and we show that the
full crossed product of pro-C∗-algebras exists for strong bounded actions. Strong
boundless of the action α is essential to prove the existence of a covariant rep-
resentation. Unfortunately, if the action α of G on A [τΓ] is strongly bounded,
then there is another family of C∗-seminorms on A [τΓ] which induces the same
topology on A, and α is an inverse limit action with respect to this family of
C∗-seminorms.

The organization of this paper is as follows. After preliminaries in Section
2, we present some examples of group actions on pro-C∗-algebras in Section 3.
In Section 4, we show that for a strong bounded action α of a locally compact
group G on a pro-C∗-algebra A [τΓ] there is an injective covariant morphism
from A [τΓ] to the pro-C∗-algebra L(H) for some locally Hilbert space H. In
Section 5, the full pro-C∗-crossed product of A [τΓ] by α is defined to be the
pro-C∗-algebra G×α A [τΓ] generated by the images of ιA and ιG, where (ιA, ιG)
is a universal covariant morphism of A [τΓ], in the sense that for any covariant
morphism (jA, jG) from A [τΓ] to a pro-C∗-algebra B [τΓ′ ], there is a unique pro-
C∗-morphism Φ : G ×α A [τΓ] → B [τΓ′ ] such that Φ ◦ ιA = jA and Φ ◦ ιG =
jG. For inverse limit actions, this definition coincides with the definition from
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[P2, J2]. We show that the full pro-C∗-crossed product of A [τΓ] by α exists if
α is strongly bounded and it is invariant under the conjugacy of the actions. In
Section 6, the reduced pro-C∗-crossed product of a pro-C∗-algebra A [τΓ] by a
strong bounded action α is defined to be the pro-C∗-subalgebra of the multiplier
algebra M(A [τΓ] ⊗min K (L2(G))) of the minimal tensor product of A [τΓ] and
K (L2(G)) generated by {α̃ (a) (1⊗ λG (f)) ; a ∈ A, f ∈ Cc (G)}, where α̃ is the
pro-C∗-morphism from A [τΓ] to M(A [τΓ] ⊗min C0(G)) induced by α. We show
that, for inverse limit actions, this definition coincides with the definition from
[P2, J2]. Also, we show that the reduced pro-C∗-crossed product is invariant
under the conjugacy of the actions, and if G is amenable, then the full pro-
C∗-crossed product of A [τΓ] by α is isomorphic to the reduced pro-C∗-crossed
product of A [τΓ] by α. Section 7 is dedicated the relation between the full pro-C∗-
crossed product and the maximal tensor product of pro-C∗-algebras, respectively
the reduced pro-C∗-crossed product and the minimal tensor product of pro-C∗-
algebras. We show that there is a property of ”associativity” between ×α and
⊗max, respectively ×α,r and ⊗min.

2. Preliminaries

A seminorm p on a topological ∗-algebra A satisfies the C∗-condition (or is a
C∗-seminorm) if p (a∗a) = p (a)2 for all a ∈ A. It is known that such a seminorm
must be submultiplicative (p (ab) ≤ p (a) p (b) for all a, b ∈ A) and ∗-preserving
(p (a∗) = p (a) for all a ∈ A).

A pro-C∗-algebra is a complete Hausdorff topological ∗-algebra A whose topol-
ogy is given by a directed family of C∗-seminorms {pλ}λ∈Λ. Other terms used
for pro-C∗-algebras are: locally C∗-algebras (A. Inoue, M. Fragoulopoulou, A.
Mallios, etc.), LMC∗-algebras (G. Lassner, K. Schmüdgen), b∗-algebras (C. Apos-
tol).

Let A [τΓ] be a pro-C∗-algebra with topology given by Γ = {pλ}λ∈Λ and let
B [τΓ′ ] be a pro-C∗-algebra with topology given by Γ′ = {qδ}δ∈∆. A continuous
∗-morphism ϕ : A [τΓ] → B [τΓ′ ] (that is, ϕ is linear, ϕ (ab) = ϕ(a)ϕ(b) for all
a, b ∈ A, ϕ(a∗) = ϕ(a)∗ for all a ∈ A and for each qδ ∈ Γ′, there is pλ ∈ Γ such
that qδ (ϕ(a)) ≤ pλ (a) for all a ∈ A) is called a pro-C∗-morphism. Two pro-
C∗-algebras A [τΓ] and B [τΓ′ ] are isomorphic if there is a pro-C∗-isomorphism
ϕ : A [τΓ] → B [τΓ′ ] (that is, ϕ is invertible, ϕ and ϕ−1 are pro-C∗-morphisms).

If {Aλ; πλµ}λ≥µ,λ,µ∈Λ is an inverse system of C∗-algebras, then lim
←λ

Aλ with

topology given by the family of C∗-seminorms {pλ}λ∈Λ, with pλ

(
(aµ)µ∈Λ

)
=

‖aλ‖Aλ
for all λ ∈ Λ, is a pro-C∗-algebra.

Let A [τΓ] be a pro-C∗-algebra with topology given by Γ = {pλ}λ∈Λ. For λ ∈ Λ,
ker pλ is a closed ∗-bilateral ideal and Aλ = A/ ker pλ is a C∗-algebra in the C∗-
norm ‖·‖pλ

induced by pλ (that is, ‖a‖pλ
= pλ(a), for all a ∈ A). The canonical

map from A to Aλ is denoted by πAλ , π
A
λ (a) = a+ker pλ for all a ∈ A. For λ, µ ∈ Λ

with µ ≤ λ there is a unique surjective C∗-morphism πAλµ : Aλ → Aµ such that

πAλµ (a+ ker pλ) = a + ker pµ, and then {Aλ; πAλµ}λ,µ∈Λ is an inverse system of
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C∗-algebras. Moreover, pro-C∗-algebras A [τΓ] and lim
←λ

Aλ are isomorphic (the

Arens–Michael decomposition of A [τΓ]).
Let {(Hλ, 〈·, ·〉λ)}λ∈Λ be a family of Hilbert spaces such that Hµ ⊆ Hλ and

〈·, ·〉λ |Hµ = 〈·, ·〉µ for all λ, µ ∈ Λ with µ ≤ λ. H = lim
λ→

Hλ with inductive limit

topology is called a locally Hilbert space.
Let L(H) = {T : H → H;Tλ = T |Hλ

∈ L(Hλ) and PλµTλ = TλPλµ for all
λ, µ ∈ Λ with µ ≤ λ}, where Pλµ is the projection of Hλ on Hµ. Clearly, L(H)
is an algebra in an obvious way, and T → T ∗ with T ∗|Hλ

= (Tλ)
∗ for all λ ∈ Λ is

an involution.
For each λ ∈ Λ, the map pλ,L(H) : L(H) → [0,∞) given by pλ,L(H) (T ) =

‖T |Hλ
‖L(Hλ) is a C∗-seminorm on L(H), and with topology given by the family

of C∗-seminorms {pλ,L(H)}λ∈Λ, L(H) becomes a pro-C∗-algebra.
Since L(H) is a pro-C∗-algebra, it has an Arens–Michael decomposition, given

by the C∗-algebras L(H)λ = L(H)/ ker pλ,L(H), λ ∈ Λ. Moreover, for each λ ∈
Λ, the map ϕλ : L(H)λ → L(Hλ) given by ϕλ

(
T + ker pλ,L(H)

)
= T |Hλ

is an
isometric ∗-morphism. The canonical maps from L(H) to L(H)λ, λ ∈ Λ are
denoted by πHλ , λ ∈ Λ, and πHλ (T ) = T |Hλ

. For a given pro-C∗-algebra A [τΓ]
there is a locally Hilbert space H such that A [τΓ] is isomorphic to a pro-C∗-
subalgebra of L(H) (see [I, Theorem 5.1]).

A multiplier of A [τΓ] is a pair (l, r) of linear maps l, r : A [τΓ] → A [τΓ] such
that are respectively left and right A-module homomorphisms and r(a)b = al(b)
for all a, b ∈ A. The set M(A [τΓ]) of all multipliers of A [τΓ] is a pro-C∗-algebra
with multiplication given by (l1, r1) (l2, r2) = (l1l2, r2r1), the involution given
by (l, r)∗ = (r∗, l∗), where r∗ (a) = r (a∗)∗ and l∗ (a) = l (a∗)∗ for all a ∈ A,
and the topology given by the family of C∗-seminorms {pλ,M(A[τΓ])}λ∈Λ, where
pλ,M(A[τΓ]) (l, r) = sup{pλ(l(a)); pλ(a) ≤ 1}. Moreover, for each pλ ∈ Γ, the
C∗-algebras (M(A [τΓ]))λ and M(Aλ) are isomorphic. The strict topology on
M(A [τΓ]) is given by the family of seminorms {pλ,a}(λ,a)∈Λ×A, where pλ,a (l, r) =
pλ (l (a)) + pλ (r (a)), M(A [τΓ]) is complete with respect to the strict topology
and A [τΓ] is dense in M(A [τΓ]) (see [P1] and [J1, Proposition 3.4]).

A pro-C∗-morphism ϕ : A [τΓ] → M(B [τΓ′ ]) is nondegenerate if [ϕ (A)B] =
B [τΓ′ ], where [ϕ (A)B] denotes the closed subspace ofB [τΓ′ ] generated by {ϕ (a) b;
a ∈ A, b ∈ B}. A nondegenerate pro-C∗-morphism ϕ : A [τΓ] → M(B [τΓ′ ]) ex-
tends to a unique pro-C∗-morphism ϕ : M(A [τΓ]) →M(B [τΓ′ ]).

3. Group actions on pro-C∗-algebras

Throughout this paper, A [τΓ] is a pro-C∗-algebra with topology given by the
family of C∗-seminorms Γ = {pλ}λ∈Λ and G is a locally compact group.

Definition 3.1. (1) An action of G on A [τΓ] is a group morphism α from
G to Aut(A [τΓ]), the group of all automorphisms of A [τΓ], such that the
map t 7→ αt (a) from G to A [τΓ] is continuous for each a ∈ A.

(2) An action α of G on A [τΓ] is strongly bounded , if for each λ ∈ Λ there is
µ ∈ Λ such that

pλ (αt (a)) ≤ pµ (a)
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for all t ∈ G and for all a ∈ A.
(3) An action α is an inverse limit action, if pλ (αt (a)) = pλ (a) for all a ∈ A,

for all t ∈ G and for all λ ∈ Λ.

Remark 3.2. (1) If α is an inverse limit action of G on A [τΓ], then for each
λ ∈ Λ, there is an action αλ of G on Aλ such that αλt ◦ πAλ = πAλ ◦ αt for
all t ∈ G, and αt = lim

↼λ
αλt for all t ∈ G.

(2) Any inverse limit action of G on A [τΓ] is strongly bounded.
(3) If A is a C∗-algebra, then any action of G on A is strongly bounded.
(4) IfG is a compact group, then any action ofG onA [τΓ] is strongly bounded.

Let X be a compactly countably generated Hausdorff topological space (that
is, X is a direct limit of a countable family {Kn}n of compact spaces). The ∗-
algebra C(X) of all continuous complex valued functions on X is a pro-C∗-algebra
with topology given by the family of C∗-seminorms {pKn}n, where pKn (f) =
sup{|f (x)| ;x ∈ Kn}.
Example 3.3. Let (G,X) be a transformation group (that is, there is a continu-
ous map (t, x) 7→ t ·x from G×X to X such that e ·x = x and s · (t · x) = (st) ·x
for all s, t ∈ G and for all x ∈ X) with X = lim

n→
Kn a compactly countably

generated Hausdorff topological space. Then there is an action α of G on the
pro-C∗-algebra C(X), given by

αt (f) (x) = f
(
t−1 · x

)
.

If for any positive integer n, there is a positive integer m such that G ·Kn ⊆ Km,
the action α is strongly bounded, since for each n, there is m such that

pKn (αt (f)) = sup{
∣∣f (

t−1 · x
)∣∣ ;x ∈ Kn} ≤ sup{|f (y)| ; y ∈ Km} = pKm (f)

for all f ∈ C(X) and for all t ∈ G. If G ·Kn = Kn for all n, then α is an inverse
limit action. Take, for instance, R = lim

n→
[−n, n]. Suppose that Z2 actions on R

by 0̂ · x = x and 1̂ · x = 2 − x for all x ∈ R. Then (Z2,R) is a transformation
group such that for each positive integer n, Z2 · [−n, n] ⊆ [−n− 2, n+ 2].

Example 3.4. Let X = lim
n→

Kn be a compactly countably generated Hausdorff

topological space and h : X → X a homeomorphism with the property that for
each positive integer n, there is a positive integerm such that hk(Kn) ⊆ Km for all
integers k. Then the map n 7→ αn from Z to Aut(C(X)), where αn(f) = f ◦ hn,
is a strong bounded action of Z to C(X). If h(Kn) = Kn for all n, then α is
an inverse limit action. Take, for instance, R = lim

n→
[−n, n]. The map h : R → R

defined by h(x) = 1− x is a homeomorphism such that for each positive integer
n, hk([−n, n]) ⊆ [−n− 1, n+ 1] for all integers k.

Example 3.5. The ∗-algebra C[0, 1] equipped with the topology ’cc’ of uniform
convergence on countable compact subsets is a pro-C∗-algebra denoted by Ccc[0, 1]
(see, for example, [F, p. 104]). The action of Z2 on Ccc[0, 1] given by αb0 =idCcc[0,1]

and αb1 (f) (x) = f(1 − x) for all f ∈ Ccc[0, 1] and for all x ∈ [0, 1] is strongly
bounded.
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Remark 3.6. (1) Let α be a strong bounded action of G on A [τΓ]. Then, for
each λ ∈ Λ, the map pλ : A→ [0,∞) given by

pλ (a) = sup{pλ (αt (a)) ; t ∈ G}

is a continuous C∗-seminorm on A [τΓ]. Let ΓG = {pλ}λ∈Λ. Since, for each
λ ∈ Λ, there is µ ∈ Λ such that

pλ ≤ pλ ≤ pµ,

ΓG defines on A a structure of pro-C∗-algebra, and moreover, the pro-C∗-
algebras A [τΓ] and A

[
τGΓ

]
are isomorphic.

(2) If the action α of G on A [τΓ] is strongly bounded,, then α is an inverse
limit action of G on A

[
τGΓ

]
.

4. Covariant representations

Definition 4.1. A pro-C∗-dynamical system is a triple (G,α,A [τΓ]), where G is
a locally compact group, A [τΓ] is a pro-C∗-algebra and α is an action of G on
A [τΓ].

A representation of a pro-C∗-algebra A [τΓ] on a Hilbert spaceH is a continuous
∗-morphism ϕ : A [τΓ] → L(H). A representation (ϕ,H) of A [τΓ] is nondegenerate
if [ϕ (A)H] = H.

Definition 4.2. A covariant representation of (G,α,A [τΓ]) on a Hilbert space
H is a triple (ϕ, u,H) consisting of a representation (ϕ,H) of A [τΓ] on H and a
unitary ∗-representation (u,H) of G on H such that

ϕ (αt (a)) = utϕ (a)u∗t

for all a ∈ A and for all t ∈ G. A covariant representation (ϕ, u,H) is nondegen-
erate if (ϕ,H) is nondegenerate.

Two representations (ϕ, u,H) and (ψ, v,K) of (G,α,A [τΓ]) are unitarily equiv-
alent if there is a unitary operator U : H → K such that Uϕ (a) = ψ (a)U for all
a ∈ A and Uut = vtU for all t ∈ G.

For each pλ ∈ Γ, we denote by Rλ (G,α,A [τΓ]) the collection of all uni-
tary equivalence classes of nondegenerate covariant representations (ϕ, u,H) of
(G,α,A [τΓ]) with the property that ‖ϕ (a)‖ ≤ pλ (a) for all a ∈ A. Clearly,⋃

λ

Rλ (G,α,A [τΓ]) = R (G,α,A [τΓ]) ,

where R (G,α,A [τΓ]) denotes the collection of all unitary equivalence classes of
nondegenerate covariant representations of (G,α,A [τΓ]).

Remark 4.3. If α is an inverse limit action, then the map

(ϕλ, u,H) →
(
ϕλ ◦ πAλ , u,H

)
is a bijection between R

(
G,αλ, Aλ

)
and Rλ (G,α,A [τΓ]) (see, [J2]).
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By [J2], if α is an inverse limit action, then R (G,α,A [τΓ]) is non empty. From
this result and Remark 3.6, we conclude that if α is strongly bounded, then
R (G,α,A [τΓ]) is non empty too. In the following proposition we give another
proof for this result.

Proposition 4.4. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded. Then there is a covariant representation of (G,α,A [τΓ]).

Proof. Let (ϕ,H) be a representation of A [τΓ]. Then there is λ ∈ Λ such that
‖ϕ (a)‖ ≤ pλ (a) for all a ∈ A. Let a ∈ A and ξ ∈ L2(G,H). Since, there is
pµ ∈ Γ such that∫

G

‖ϕ (αs−1 (a)) (ξ (s))‖2 ds ≤
∫
G

‖ϕ (αs−1 (a))‖2 ‖ξ (s)‖2 ds

≤
∫
G

pλ (αs−1 (a))2 ‖ξ (s)‖2 ds ≤ pµ (a)2 ‖ξ‖2 ,

the map s 7→ ϕ (αs−1 (a)) (ξ (s)) defines an element in L2(G,H). Therefore, there
is ϕ̃ (a) ∈ L(L2(G,H)) such that

ϕ̃ (a) (ξ) (s) = ϕ (αs−1 (a)) (ξ (s)) .

In this way, we obtain a map ϕ̃ : A→ L(L2(G,H)). Moreover, ϕ̃ is a continuous
∗-morphism, and then (ϕ̃, L2 (G,H)) is a representation of A [τΓ].

Let
(
λHG , L

2 (G,H)
)

be the unitary ∗-representation of G on L2 (G,H) given by(
λHG

)
t
(ξ) (s) = ξ (t−1s). It is easy to verify that

(
ϕ̃, λHG , L

2 (G,H)
)

is a covariant
representation of (G,α,A [τΓ]). �

Remark 4.5. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system. Suppose that α is
strongly bounded. Then, for each representation (ϕ,H) of A [τΓ], ker ϕ̃ ⊆ kerϕ.
Indeed, if ϕ̃ (a) = 0, then ϕ (αs (a)) (ξ (s)) = 0 for all s ∈ G and for all ξ ∈
L2 (G,H), whence ϕ (a) (ξ (e)) = 0 for all ξ ∈ L2 (G,H) and so ϕ (a) = 0.

Definition 4.6. A covariant pro-C∗-morphism from (G,α,A [τΓ]) to a pro-C∗-
algebra B [τΓ′ ] is a pair (ϕ, u) consisting of a pro-C∗-morphism ϕ : A [τΓ] →
M(B [τΓ′ ]) and a strict continuous group morphism u : G → U(M(B [τΓ′ ])), the
group of all unitaries of M(B [τΓ′ ]), such that

ϕ (αt (a)) = utϕ (a)u∗t

for all t ∈ G and for all a ∈ A. A covariant pro-C∗-morphism (ϕ, u) from
(G,α,A [τΓ]) to B [τΓ′ ] is nondegenerate if [ϕ (A)B] = B [τΓ′ ].

Theorem 4.7. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system. If α is strongly
bounded, then there is a locally Hilbert space H and a covariant pro-C∗-morphism
(iA, iG) from (G,α,A [τΓ]) to L(H). Moreover, iA and iG are injective.

Proof. Let λ ∈ Λ. By Proposition 4.4, Rλ (G,α,A [τΓ]) is non empty. Let(
ϕλ, uλ, Hλ

)
be the direct sum of one representative (ϕ, u,Hϕ,u) of each unitary

equivalence class of nondegenerate covariant representations of (G,α,A [τΓ]) from
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Rλ (G,α,A [τΓ]). Then
(
ϕλ, uλ, Hλ

)
is a nondegenerate covariant representation

of (G,α,A [τΓ]) such that
∥∥ϕλ (a)

∥∥ ≤ pλ (a) for all a ∈ A.
Let Hλ = ⊕µ≤λHµ. Then H = lim

λ→
Hλ is a locally Hilbert space. For a ∈ A,

the map iλA (a) : Hλ → Hλ defined by

iλA (a) (⊕µ≤λξµ) = ⊕µ≤λϕ
µ (a) ξµ

is an element in L(Hλ) and
∥∥iλA (a)

∥∥ ≤ pλ(a). Moreover, iλA (a∗) = iλA (a)∗ and

iλA (ab) = iλA (a) iλA (b) for all a, b ∈ A. Clearly,
(
iλA (a)

)
λ

is a direct system of

bounded linear operators and iA (a) = lim
λ→

iλA (a) is an element L(H) such that

iA (a∗) = iA (a)∗ and iA (ab) = iA (a) iA (b) for all a, b ∈ A. Moreover,

pλ,L(H) (iA (a)) =
∥∥iλA (a)

∥∥ ≤ pλ(a)

for all a ∈ A and for all λ ∈ Λ. Therefore, iA is a pro-C∗-morphism.
For t ∈ G, the map iλG (t) : Hλ → Hλ defined by

iλG (t) (⊕µ≤λξµ) = ⊕µ≤λu
µ (t) ξµ

is a unitary element in L(Hλ). Moreover, the map t 7→ iλG (t) is a unitary ∗-
representation of G on Hλ. Clearly,

(
iλG (t)

)
λ

is a direct system of unitary opera-

tors, and then iG (t) = lim
λ→

iλG (t) is a unitary element L(H). Moreover, t 7→ iG (t)

is a group morphism from G to the group of unitary operators on H, and since
for each ξ ∈ H, the map t 7→ iG (t) ξ from G to H is continuous, t 7→ iG (t) is a
unitary ∗-representation of G on H. We have

iA (αt (a)) (⊕µ≤λξµ) = iλA (αt (a)) (⊕µ≤λξµ) = ⊕µ≤λϕ
µ (αt (a)) (ξµ)

= ⊕µ≤λu
µ (t)ϕµ (a)uµ (t)∗ (ξµ)

= iG(t)iA (a) iG(t)∗ (⊕µ≤λξµ)

for all a ∈ A, for all t ∈ G and for all ⊕µ≤λξµ ∈ Hλ, λ ∈ Λ, and so

iA (αt (a)) = iG(t)iA (a) iG(t)∗

for all a ∈ A and for all t ∈ G.
Suppose that iA (a) = 0. Then iλA (a) = 0 for all λ ∈ Λ and so ϕ (a) = 0 for all

nondegenerate covariant representation (ϕ, u,Hϕ,u) of (G,α,A [τΓ]). By Propo-
sition 4.4 and Remark 4.5, ψ (a) = 0 for all representations ψ of A. Therefore,
pλ (a) = 0 for all λ ∈ Λ, and then a = 0.

Suppose that iG (t) =idH. Then iλG (t) =idHλ
for all λ ∈ Λ, and so u (t) =idHϕ,u

for all nondegenerate covariant representation (ϕ, u,Hϕ,u) of (G,α,A [τΓ]), whence
we deduce that t = e. �

The following proposition gives a characterization of inverse limit actions.

Proposition 4.8. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system. Then the
following statements are equivalent.

(1) α is an inverse limit action.
(2) There is a locally Hilbert spaceH and a covariant pro-C∗-morphism (iA, iG)

from (G,α,A [τΓ]) to L(H) such that pλ,L(H) (iA (a)) = pλ (a) for all λ ∈ Λ
and a ∈ A.
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Proof. (1) ⇒ (2) See [J3, Proposition 3.1] and [I, Theorem 5.1].
(2) ⇒ (1) From

iA (αt (a)) = iG (t) iA (a) iG (t)∗

for all t ∈ G and for all a ∈ A, and taking into account that iG (t) is a unitary
element in L(H) for all t ∈ G, we deduce that

pλ (αt (a)) = pλ,L(H) (iA (αt (a))) = pλ,L(H) (iG (t) iA (a) iG (t)∗)

= pλ,L(H) (iA (a)) = pλ(a)

for all t ∈ G, for all a ∈ A and for all t ∈ G. Therefore, α is an inverse limit
action. �

5. The full pro-C∗-crossed product

Let (G,α,A [τΓ]) be a pro-C∗-dynamical system and let B [τΓ′ ] be a pro-C∗-
algebra whose topology is given by the family of C∗-seminorms Γ′ = {qδ}δ∈∆.

If u is a strict continuous group morphism from G to U (M (B [τΓ′ ])), then there
is a ∗-morphism u : Cc (G) → M (B [τΓ′ ]) given by u (f) =

∫
G

f(s)usds, where ds

denotes the Haar measure on G (see [J2]).

Definition 5.1. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system. A pro-C∗-
algebra, denoted by G ×α A [τΓ], together with a covariant pro-C∗-morphism
(ιA, ιG) from (G,α,A [τΓ]) to G×α A [τΓ] which verifies the following:

(1) for each nondegenerate covariant representation (ϕ, u,H) of (G,α,A [τΓ]),
there is a nondegenerate representation (Φ,H) of G ×α A [τΓ] such that
Φ ◦ ιA = ϕ and Φ ◦ ιG = u;

(2) span{ιA (a) ιG (f) ; a ∈ A, f ∈ Cc (G)} = G×α A [τΓ] ;

is called the full pro-C∗-crossed product of A [τΓ] by α.

Remark 5.2. The covariant morphism (ιA, ιG) from the above definition is non-
degenerate.

Proposition 5.3. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that there
is a full pro-C∗-crossed product of A [τΓ] by α and (ϕ, u) a nondegenerate covariant
morphism from (G,α,A [τΓ]) to a pro-C∗-algebra B [τΓ′ ]. Then there is a unique
nondegenerate pro-C∗-morphism ϕ× u : G×α A [τΓ] →M(B [τΓ′ ]) such that

ϕ× u ◦ ιA = ϕ and ϕ× u ◦ ιG = u.

Moreover, the map (ϕ, u) → ϕ×u is a bijection between nondegenerate covariant
morphisms of (G,α,A [τΓ]) onto nondegenerate morphisms of G×α A [τΓ].

Proof. Let qδ ∈ Γ′ and (ψδ,H) a faithful nondegenerate representation of Bδ.

Then, (ψδ ◦ πBδ ◦ ϕ, ψδ ◦ πBδ ◦ u,H) is a nondegenerate covariant representation
of (G,α,A [τΓ]), and by Definition 5.1, there is a nondegenerate representation
(φδ,H) of G×α A [τΓ] such that

φδ ◦ ιA = ψδ ◦ πBδ ◦ ϕ and φδ ◦ ιG = ψδ ◦ πBδ ◦ u.
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Let Φδ = ψ−1
δ ◦φδ. Then Φδ is a nondegenerate pro-C∗-morphism from G×αA [τΓ]

to M(Bδ). Moreover, for qδ1 , qδ2 ∈ Γ′ with qδ1 ≥ qδ2 , we have πBδ1δ2 ◦ Φδ1 = Φ
δ2

.
Therefore, there is a nondegenerate pro-C∗-morphism ϕ × u : G ×α A [τΓ] →
M(B [τΓ′ ]) such that

πBδ ◦ ϕ× u = Φδ

for all qδ ∈ Γ′. Moreover, ϕ× u ◦ ιA = ϕ and ϕ× u ◦ ιG = u, and since
{ιA (a) ιG (f) ; a ∈ A, f ∈ Cc (G)} generates G×αA [τΓ], ϕ× u is unique with the
above properties.

Let Φ : G×αA [τΓ] →M( B [τΓ′ ]) be a nondegenerate pro-C∗-morphism. Then
ϕ = Φ◦ιA is a nondegenerate pro-C∗-morphism from A [τΓ] to M(B [τΓ′ ]) and u =
Φ◦ιG is a strict continuous morphism from G to U(M(B [τΓ′ ])), since ιG is a strict
continuous morphism from G to M(G×αA [τΓ]) and Φ is strongly continuous on
the bounded subsets of M(G ×α A [τΓ]). Moreover, (ϕ, u) is a nondegenerate
covariant morphism from A [τΓ] to B [τΓ′ ], and ϕ × u = Φ. If (ψ, v) is another
nondegenerate covariant morphism from A [τΓ] to B [τΓ′ ] such that ψ × v = Φ,
then ψ = Φ ◦ ιA = ϕ and v = Φ ◦ ιG = u. �

The following corollary provides uniqueness of the full pro-C∗-crossed product.

Corollary 5.4. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that there is
a full pro-C∗-crossed product of A [τΓ] by α. Then the full pro-C∗-crossed product
of A [τΓ] by α is unique up to a pro-C∗-isomorphism.

Proof. Let B [τΓ′ ] be a pro-C∗-algebra and (jA, jG) a covariant pro-C∗-morphism
from (G,α,A [τΓ]) to B [τΓ′ ] which satisfy the relations (1) − (2) from Defini-
tion 5.1. Then, by Proposition 5.3, there is a nondegenerate pro-C∗-morphism
Φ : G ×α A [τΓ] → M(B [τΓ′ ]) such that Φ ◦ ιA = jA and Φ ◦ ιG = jG. Since
{ιA (a) ιG (f) ; a ∈ A, f ∈ Cc (G)} generates G×αA [τΓ] and {jA (a) jG (f) ; a ∈ A,
f ∈ Cc (G)} generates B [τΓ′ ] , Φ (G×α A [τΓ]) ⊆ B.

In the same way, there is a pro-C∗-morphism Ψ : B [τΓ′ ] → G×αA [τΓ] such that
Ψ ◦ jA = ιA and Ψ ◦ jG = ιG. From these facts and Definition 5.1 (2), we deduce
that Φ ◦Ψ =idB and Ψ ◦ Φ =idG×αA[τΓ], and so Φ is a pro-C∗-isomorphism. �

The following proposition relates the nondegenerate covariant representations
of a pro-C∗-dynamical system (G,α,A [τΓ]) with the nondegenerate representa-
tions of the full pro-C∗-crossed product of A [τΓ] by α.

Proposition 5.5. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that there
is the full pro-C∗-crossed product of A [τΓ] by α. Then there is a bijective corre-
spondence between nondegenerate covariant representations of (G,α,A [τΓ]) and
nondegenerate representations of G×α A [τΓ].

Proof. Let (ϕ, u,H) be a nondegenerate covariant representation of (G,α,A [τΓ]).
Then, by Definition 5.1, there is a nondegenerate representation (ϕ× u,H) of
G×αA [τΓ] such that ϕ× u ◦ ιA = ϕ and ϕ× u ◦ ιG = u. Moreover, by Definition
5.1(2), (ϕ× u,H) is unique, and since ϕ is nondegenerate, it is nondegenerate
too.
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Let (Φ,H) be a nondegenerate representation of G ×α A [τΓ]. Then (Φ ◦ ιA,
Φ◦ ιG,H) is a covariant representation of (G,α,A [τΓ]), and moreover,

(
Φ ◦ ιA

)
×(

Φ ◦ ιG
)

= Φ. Since ιA and Φ are nondegenerate, the net {Φ (ιA (ei))}i, where

{ei}i is an approximate unit of A [τΓ], converges strictly to idH, and so Φ ◦ ιA is
nondegenerate.

Suppose that there is another nondegenerate covariant representation (ϕ, u,H)
of (G,α,A [τΓ]) such that ϕ × u = Φ. Then ϕ = ϕ× u ◦ ιA = Φ ◦ ιA and
u = ϕ×u◦ιG = Φ◦ιG. Therefore, the map (ϕ, u,H) 7→ (ϕ× u,H) is bijective. �

Theorem 5.6. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded. Then, there is the full pro-C∗-crossed product of A [τΓ] by α.

Proof. By Theorem 4.7, there is a locally Hilbert space H and a covariant pro-
C∗-morphism (iA, iG) from A[τΓ] to L(H).

Let B = span{iA (a) iG (f) ; a ∈ A, f ∈ Cc (G)} ⊆ L(H). To show that B is
a pro-C∗-algebra, we must show that B is closed under taking adjoints and

multiplication. For this, since B = lim
←−λ

πHλ (B) ([M, Chapter III, Theorem

3.1]), it is sufficient to show that for each λ ∈ Λ, πHλ (iA (b) iG (f) iA (a) iG(h))
and πHλ (iG (f) iA (a)) are elements in the closure of πHλ (B) in L (Hλ) for all
a, b ∈ A and for all f, h ∈ Cc(G).

The map s → πAλ (f (s)αs(a)) from G to Aλ defines an element in Cc(G,Aλ),
and so there is a net {πAλ (aj)⊗ fj}j∈J in Aλ⊗alg Cc(G) with suppfj, suppf ⊆ K
for some compact subset K, which converges uniformly to this map.

By [J4, Lemma 3.7],

πHλ (iG (f) iA (a)) =

∫
G

f (s) iλ (s) dsπHλ (iA(a)) =

∫
G

f (s)πHλ (iG(s)iA(a)) ds

=

∫
G

f (s)πHλ (iA(αs (a))iG(s)) ds

=

∫
G

f (s) iλA(αs(a))i
λ
G(s)ds

and

πHλ (iA (aj) iG (fj)) = πHλ (iA (aj))

∫
G

fj (s) iλG(s)ds =

∫
G

iλA(aj)fj (s) iλG(s)ds
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for each j ∈ J . Then, we have∥∥πHλ (iG (f) iA (a))− πHλ (iA (aj) iG (fj))
∥∥
L(Hλ)

≤
∫
G

∥∥f (s) iλA(αs(a))i
λ
G(s)− iλA(aj)fj (s) iλG(s)

∥∥
L(Hλ)

ds

≤ M sup{
∥∥f (s) iλA(αs(a))i

λ
G(s)− iλA(aj)fj (s) iλG(s)

∥∥
L(Hλ)

, s ∈ K}

= M sup{
∥∥iλA(f (s)αs(a)− fj (s) aj)

∥∥
L(Hλ)

∥∥iλG(s)
∥∥
L(Hλ)

, s ∈ K}
≤ M sup{pλ(f (s)αs(a)− fj (s) aj), s ∈ K}
= M sup{

∥∥πAλ (f (s)αs(a))− fj (s)πAλ (aj)
∥∥
Aλ
, s ∈ K}

for all j ∈ J , where M =
∫
K

dg, and so πHλ (iG (f) iA (a)) ∈ πHλ (B).

On the other hand,∥∥πHλ (iA (b) iG (f) iA (a) iG(h))− πHλ (iA (baj) iG (fj ∗ h))
∥∥
L(Hλ)

=
∥∥πHλ (iA (b) iG (f) iA (a) iG(h)− iA(b)iA (aj) iG (fj) iG(h))

∥∥
L(Hλ)

≤
∥∥πHλ (iA (b))πHλ (iG (f) iA (a)− iA (aj) iG (fj))π

H
λ (iG (h))

∥∥
L(Hλ)

≤
∥∥πHλ (iA (b))

∥∥
L(Hλ)

∥∥πHλ (iG (h))
∥∥
L(Hλ)∥∥πHλ (iG (f) iA (a))− πHλ (iA (aj) iG (fj))

∥∥
L(Hλ)

whence, we deduce that πHλ (iA (b) iG (f) iA (a) iG(h)) ∈ πHλ (B). Thus, we showed

that πHλ (iG (f) iA (a)) , πHλ (iA (b) iG (f) iA (a) iG(h)) ∈ πHλ (B) for each λ ∈ Λ, and
so iG (f) iA (a), iA (b) iG (f) iA (a) iG(h) ∈ B. Therefore, B is a pro-C∗-algebra.

In the same manner, we show that for each a ∈ A, iA (a) iA (b) iG(f) ∈ B and
iA (b) iG(f)iA (a) ∈ B for all b ∈ A and for all f ∈ Cc(G), and so iA (a) ∈M(B).

From,

iG(t)iA (a) iG(f) =

∫
G

f(s)iA (αt(a)) iG(ts)ds ∈ B

and

iG(f)iA (a) iG(t) =

∫
G

f(s)iA (αs (a)) iG(st)ds ∈ B

for all a ∈ A, for all f ∈ Cc(G) and for all t ∈ G, we deduce that iG(t) ∈ M(B)
for all t ∈ G.

Let (ψ, v,Hψ,v) be a nondegenerate covariant representation of (G,α,A [τΓ]).
Then there is (ϕ, u,Hϕ,u) ∈ Rλ (G,α,A [τΓ]) such that (ψ, v,Hψ,v) and (ϕ, u,Hϕ,u)
are unitarily equivalent. So there is a unitary operator U : Hψ,v → Hϕ,u such
that ψ (a) = U∗ϕ(a)U for all a ∈ A and vt = U∗utU for all t ∈ G. The map
Ψ : L(H) → L(Hλ) given by

Ψ (T ) = πHλ (T ) |Hλ

is a representation of L(H) on Hλ (see the proof of Theorem 4.7). From

Ψ (iA(a)) (Hϕ,u) = iλA(a) (Hϕ,u) ⊆ Hϕ,u
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for all a ∈ A and

Ψ (iG(t)) (Hϕ,u) = iλG(t) (Hϕ,u) ⊆ Hϕ,u

for all t ∈ G, and taking into account that B is generated by {iA (a) iG (f) ; a ∈
A, f ∈ Cc (G)}, we deduce that Ψ (B) (Hϕ,u) ⊆ Hϕ,u. Let Φ : B → L(Hψ,v) given
by

Φ (b) = U∗Ψ (b) |Hϕ,uU.

Clearly, Φ is a nondegenerate representation of B on Hψ,v,

Φ (iA(a)) = U∗Ψ (iA(a)) |Hϕ,uU = U∗iλA(a)|Hϕ,uU = U∗ϕ(a)U = ψ (a)

for all a ∈ A, and

Φ (iG(t)) = U∗Ψ (iG(t)) |Hϕ,uU = U∗iλG(t)|Hϕ,uU = U∗utU = vt

for all t ∈ G. �

Remark 5.7. The index of the family of seminorms which gives the topology on
the full pro-C∗-crossed product of A [τΓ] by α is the same with the index of the
family of seminorms which gives the topology on A [τΓ].

Proposition 5.8. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
an inverse limit action. Then for each λ ∈ Λ, the C∗-algebra (G×α A [τΓ])λ is
isomorphic to the full C∗-crossed product of Aλ by αλ.

Proof. By Theorem 4.7, Proposition 4.8 and Corollary 5.4, there is a C∗-morphism

iAλ
: Aλ →M ((G×α A [τΓ])λ) such that iAλ

◦πAλ = π
G×αA[τΓ]
λ ◦ iA. Using the fact

that α is an inverse limit action, it is easy to check that
(
iAλ

, π
G×αA[τΓ]
λ ◦ iG

)
is

a covariant C∗-morphism from
(
G,αλ, Aλ

)
to (G×α A [τΓ])λ. Moreover,

span{iAλ
(πAλ (a))π

G×αA[τΓ]
λ (iG (f)) ; a ∈ A, f ∈ Cc (G)}

= span{πG×αA[τΓ]
λ (iA (a) iG (f)) ; a ∈ A, f ∈ Cc (G)}

= π
G×αA[τΓ]
λ (G×α A [τΓ]) = (G×α A [τΓ])λ .

Let (ϕ, u,H) be a nondegenerate covariant representation of
(
G,αλ, Aλ

)
. Then(

ϕ ◦ πAλ , u,H
)

is a nondegenerate covariant representation of (G,α,A [τΓ]) and by
Definition 5.1, there is a nondegenerate representation (Φ,H) of G×αA [τΓ] such
that Φ ◦ iA = ϕ ◦ πAλ and Φ ◦ iG = u. Moreover, by the proof of Theorem 5.6,

‖Φ (b)‖ ≤ pλ,G×αA[τΓ] (b)

for all b ∈ G×αA [τΓ]. Therefore, there is the C∗-morphism Φλ : (G×α A [τΓ])λ →
L(H) such that Φλ ◦ πG×αA[τΓ]

λ = Φ. Moreover, (Φλ,H) is a nondegenerate repre-
sentation of (G×α A [τΓ])λ such that

Φλ ◦ iAλ
= ϕ and Φλ ◦

(
π
G×αA[τΓ]
λ ◦ iG

)
= u.

Thus, we showed that (G×α A [τΓ])λ is isomorphic to G×αλ Aλ. �
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Corollary 5.9. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
an inverse limit action. Then the pro-C∗-algebras G×α A [τΓ] and lim

←λ
G×αλ Aλ

are isomorphic.

Remark 5.10. If (G,α,A [τΓ]) is a pro-C∗-dynamical system such that α is an
inverse limit action, then the notion of full pro-C∗-crossed product in the sense
of Definition 5.1 coincides to the notion of full crossed product introduced by
[P2, J4].

Definition 5.11. We say that (G,α,A [τΓ]) and (G, β,B [τΓ′ ]) are conjugate if
there is a pro-C∗-isomorphism ϕ : A [τΓ] → B [τΓ′ ] such that ϕ ◦ αt = βt ◦ ϕ for
all t ∈ G.

Remark 5.12. If (G,α,A [τΓ]) and (G, β,B [τΓ′ ]) are conjugate and α is strongly
bounded, then β is strongly bounded too.

Proposition 5.13. Let (G,α,A [τΓ]) and (G, β,B [τΓ′ ]) be two pro-C∗-dynamical
systems such that α and β are strongly bounded. If (G,α,A [τΓ]) and (G, β,B [τΓ′ ])
are conjugate, then the full pro-C∗-crossed products associated to these pro-C∗-
dynamical systems are isomorphic.

Proof. Let ϕ : A [τΓ] → B [τΓ′ ] be a pro-C∗-isomorphism such that ϕ ◦αt = βt ◦ϕ
for all t ∈ G. It is easy to check that (ιB ◦ ϕ, ιG,B) is a nondegenerate covariant
morphism from (G,α,A [τΓ]) to G ×β B [τΓ′ ], where (ιB, ιG,B) is the covariant
morphism from (G, β,B [τΓ′ ]) to G×βB [τΓ′ ] which defines the full pro-C∗-crossed
product of B [τΓ′ ] by β. Then, by Proposition 5.3, there is a nondegenerate pro-
C∗-morphism Φ : G ×α A [τΓ] → M (G×β B [τΓ′ ]) such that Φ ◦ ιA = ιB ◦ ϕ
and Φ ◦ ιG,A = ιG,B. Moreover, using Definition 5.1, it is easy to check that
Φ (G×α A [τΓ]) ⊆ G×β B [τΓ′ ]. In the same manner, we obtain a nondegenerate
pro-C∗-morphism Ψ : G×β B [τΓ′ ] →M (G×α A [τΓ]) such that Ψ◦ ιB = ιA ◦ϕ−1

and Ψ ◦ ιG,B = ιG,A.
From

(Φ ◦Ψ) (ιB (b) ιG,B (f)) = Φ
(
ιA ◦ ϕ−1 (b) ιG,A (f)

)
= ιB (b) ιG,B (f)

and
(Ψ ◦ Φ) (ιA (a) ιG,A (f)) = Ψ (ιB ◦ ϕ (a) ιG,B (f)) = ιA (a) ιG,A (f)

for all b ∈ B [τΓ′ ] , a ∈ A [τΓ] and f ∈ Cc(G) and Definition 5.1, we deduce that
Φ and Ψ are pro-C∗-isomorphisms. �

Corollary 5.14. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded.

(1) Pro-C∗-algebras G×α A [τΓ] and G×α A [τΓG ] are isomorphic.
(2) A [τΓ] is isomorphic to a pro-C∗-subalgebra of M(G×α A [τΓ]).

6. The reduced pro-C∗-crossed product

Let A [τΓ] and B [τΓ′ ] be two pro-C∗-algebras. For each pλ ∈ Γ and qδ ∈ Γ′, the
map ϑpλ,qδ : A [τΓ]⊗alg B [τΓ′ ] → [0,∞) given by

ϑpλ,qδ (z) = sup{‖(ϕ⊗ ψ) (z)‖ ;ϕ ∈ Rλ (A [τΓ]) , ψ ∈ Rδ (B [τΓ′ ])}
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defines a C∗-seminorm on the algebraic tensor product A [τΓ] ⊗alg B [τΓ′ ]. The
completion of A [τΓ]⊗algB [τΓ′ ] with respect to the topology given by the family of
C∗-seminorms {ϑpλ,qδ ; pλ ∈ Γ, qδ ∈ Γ′} is a pro-C∗-algebra, denoted by A [τΓ]⊗min

B [τΓ′ ], and called the minimal or injective tensor product of the pro-C∗-algebras
A [τΓ] and B [τΓ′ ] (see [F, Chapter VII]). Moreover, for each pλ ∈ Γ and qδ ∈ Γ′,
the C∗-algebras (A [τΓ]⊗min B [τΓ′ ])(λ,δ) and Aλ ⊗min Bδ are isomorphic.

Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is strongly bounded.
Since α is strongly bounded, for each a ∈ A, the map t 7→ αt−1 (a) defines an
element in Cb(G,A [τΓ]), the pro-C∗-algebra of all bounded continuous functions
from G to A [τΓ], and so there is a map α̃ : A [τΓ] → Cb(G,A [τΓ]) given by
α̃ (a) (t) = αt−1 (a).

Lemma 6.1. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded. Then α̃ is a nondegenerate faithful pro-C∗-morphism from
A [τΓ] to M(A [τΓ] ⊗min C0 (G)) with closed range. Moreover, if α is an inverse
limit action, then α̃ is an inverse limit pro-C∗-morphism.

Proof. Clearly, α̃ is a ∗-morphism. For each pλ ∈ Γ, there is pµ ∈ Γ such that

pλ (a) = pλ (αe (a)) ≤ sup{pλ (αt (a)) ; t ∈ G} = pλ,Cb(G,A[τΓ]) (α̃ (a)) ≤ pµ (a)

for all a ∈ A. Therefore, α̃ is an injective pro-C∗-morphism with closed range. By
[J2, p. 76], Cb(G,A [τΓ]) can be identified to a pro-C∗-subalgebra of M(A [τΓ]⊗min

C0 (G)), and then α̃ can be regarded as a pro-C∗-morphism fromA [τΓ] toM(A [τΓ]
⊗minC0 (G)).

To show that α̃ is nondegenerate, let {ei}i∈I be an approximate unit for A [τΓ].
In the same manner as in [V, Proposition 5.1.5], we show that {α̃ (ei)}i∈I is
strictly convergent. Indeed, let a ∈ A, f ∈ Cc (G) and pλ ∈ Γ. Then

pλ,Cb(G,A[τΓ]) (α̃ (ei) (a⊗ f)− a⊗ f)

= sup{pλ (αt−1 (ei) af (t)− af (t)) ; t ∈ G}
≤ ‖f‖∞ sup{pλ (αt−1 (eiαt (a)− αt (a))) ; t ∈ supp (f)}
≤ ‖f‖∞ sup{pµ (eiαt (a)− αt (a)) ; t ∈ supp (f)}

for some pµ ∈ Γ. For each i ∈ I, consider the function fi : G → C, fi(t) =
pµ (eiαt (a)− αt (a)). Clearly, {fi}i∈I is a net of continuous functions on G which
is uniformly bounded and equicontinuous. Then, by Arzelà–Ascoli’s theorem, it
is uniformly convergent on compact subsets of G. Therefore, {α̃ (ei)}i∈I is strictly
convergent, and so the pro-C∗-morphism α̃ is nondegenerate.

Suppose that αt = lim
←λ

αλt for each t ∈ G. Then
(
α̃λ

)
λ

is an inverse system of

C∗-morphisms and α̃ = lim
←λ

α̃λ. �

Let ϕ : A [τΓ] → M(B [τΓ′ ]) be a nondegenerate pro-C∗-morphism and let M :
C0(G) → L(L2(G)) be the representation by multiplication operators. Then there
is a nondegenerate pro-C∗-morphism ϕ⊗M : A [τΓ]⊗minC0(G) →M(B [τΓ′ ]⊗min

K(L2(G)) such that (ϕ⊗M) (a⊗ f) = ϕ (a) ⊗Mf , were K(L2(G)) denotes the
C∗-algebra of all compact operators on the Hilbert space L2(G). Since α̃ is
a nondegenerate pro-C∗-morphism from A [τΓ] to M(A [τΓ] ⊗min C0 (G)), ϕ̃ =
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ϕ⊗M ◦ α̃ is a nondegenerate pro-C∗-morphism from A [τΓ] to M(B [τΓ′ ] ⊗min

K(L2(G)).
Let λG : G → U(L2(G)) be the left representation of G on L2(G) given

by (λG)t (ξ) (s) = ξ (t−1s). Then 1 ⊗ λG : G → U (M(B [τΓ′ ]⊗K(L2(G))),
where (1⊗ λG)t (b⊗ ξ) (s) = bξ (t−1s), is a strict continuous group morphism
from G to U (M(B [τΓ′ ]⊗min K(L2(G))), and (ϕ̃, 1⊗ λG) is a nondegenerate co-
variant morphism of (G,α,A [τΓ]) to B [τΓ′ ] ⊗min K(L2(G). By Proposition 5.3,
there is a unique nondegenerate pro-C∗-morphism ϕ̃× (1⊗ λG) : G×α A [τΓ] →
M(B [τΓ′ ]⊗minK(L2(G)) such that ϕ̃× (1⊗ λG)◦ ιA = ϕ̃ and ϕ̃× (1⊗ λG)◦ ιG =
1⊗ λG.

If ϕ =idA, the nondegenerate pro-C∗-morphism ĩdA× (1⊗ λG) : G×αA [τΓ] →
M(A [τΓ]⊗minK(L2(G)) is denoted by ΛG

A. It is easy to check that ϕ̃×(1⊗ λG) =
ϕ⊗ idK(L2(G)) ◦ ΛG

A.
If α is an inverse limit action, αt = lim

←λ
αλt for each t ∈ G, then it is easy to

check that ΛG
A is an inverse limit pro-C∗-morphism, ΛG

A = lim
←λ

ΛG
Aλ
.

Definition 6.2. The reduced pro-C∗-crossed product of A [τΓ] by α is the pro-
C∗-subalgebra G ×α,r A [τΓ] of M(A [τΓ] ⊗min K(L2(G))) generated by the range
of ΛG

A.

Remark 6.3. From

ΛG
A (ιA (a) ιG (f)) =

(
idA ⊗M ◦ α̃

)
(a) (1⊗ λG) (f) = α̃ (a) (1⊗ λG (f))

for all a ∈ A and for all f ∈ Cc (G), and taking into account that G ×α

A [τΓ] is generated by {ιA (a) ιG (f) ; a ∈ A, f ∈ Cc (G)}, we conclude that
G ×α,r A [τΓ] is the pro-C∗-subalgebra of M(A [τΓ] ⊗min K(L2(G))) generated by
{α̃ (a) (1⊗ λG (f)) ; a ∈ A, f ∈ Cc (G)}.
Remark 6.4. If α is an inverse limit action, αt = lim

←λ
αλt for each t ∈ G, then

G×α,r A [τΓ] = ΛG
A (G×α A [τΓ]) = lim

←λ
ΛG
Aλ

(G×αλ Aλ) = lim
←λ

G×αλ,r Aλ

and moreover, for each pλ ∈ Γ, the C∗-algebras (G×α,r A [τΓ])λ and G ×αλ,r Aλ
are isomorphic.

Remark 6.5. Since the trivial action of a locally compact group G on a pro-C∗-
algebra A [τΓ] is an inverse limit action, the reduced pro-C∗-crossed product of
A [τΓ] by the trivial action is the inverse limit of the reduced crossed products of
Aλ by the trivial action, and so it is isomorphic to the pro-C∗-algebra A [τΓ]⊗min

C∗r (G), where C∗r (G) is the reduced group C∗-algebra of G.

Proposition 6.6. Let (G,α,A [τΓ]) and (G, β,B [τΓ′ ]) be two pro-C∗-dynamical
systems such that α and β are strongly bounded. If (G,α,A [τΓ]) and (G, β,B [τΓ′ ])
are conjugate, then the reduced pro-C∗-crossed products associated to these pro-
C∗-dynamical systems are isomorphic.

Proof. Let ϕ : A [τΓ] → B [τΓ′ ] be a pro-C∗-isomorphism such that ϕ ◦αt = βt ◦ϕ
for all t ∈ G. It is easy to check that ϕ⊗ idK(L2(G)) ◦ α̃ = β̃ ◦ ϕ. From

ϕ⊗ idK(L2(G)) (α̃ (a) (1⊗ λG (f))) = β̃ (ϕ (a)) (1⊗ λG (f))



200 M. JOIŢA

for all a ∈ A and for all f ∈ Cc (G), and taking into account that

span{α̃ (a) (1⊗ λG (f)) ; a ∈ A, f ∈ Cc (G)} = G×α,r A [τΓ]

and

span{β̃ (a) (1⊗ λG (f)) ; a ∈ B, f ∈ Cc (G)} = G×β,r B [τΓ′ ] ,

we conclude that Φ1 = ϕ⊗ idK(L2(G))|G×α,rA[τΓ] is a pro-C∗-morphism from G×α,r

A [τΓ] to G×β,r B [τΓ′ ].

In the same manner, we conclude that Φ2 = ϕ−1 ⊗ idK(L2(G))|G×β,rB[τΓ′ ]
is a pro-

C∗-morphism from G×β,rB [τΓ′ ] to G×α,rA [τΓ]. Moreover, Φ1 ◦Φ2 =idG×β,rB[τΓ′ ]

and Φ2 ◦ Φ1 =idG×α,rA[τΓ], since

Φ1 ◦ Φ2

(
β̃ (b) (1⊗ λG (f))

)
= β̃ (b) (1⊗ λG (f))

for all b ∈ B and for all f ∈ Cc (G) and

Φ2 ◦ Φ1 (α̃ (a) (1⊗ λG (f))) = α̃ (a) (1⊗ λG (f))

for all a ∈ A and for all f ∈ Cc (G). Therefore, the pro-C∗-algebras G×α,r A [τΓ]
and G×β,r B [τΓ′ ] are isomorphic. �

Corollary 6.7. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded. Then the pro-C∗-algebras G ×α,r A [τΓ] and G ×α,r A [τΓG ] are
isomorphic.

Remark 6.8. If α is an action of an amenable locally compact group G on a C∗-
algebra A, then the C∗-morphism ΛG

A is injective and the full crossed product
A by α is isomorphic to the reduced crossed product of A by α. If α is an
inverse limit action of G on a pro-C∗-algebra A [τΓ] and G is amenable, then ΛG

A

= lim
←λ

ΛG
Aλ

, and so ΛG
A is an injective pro-C∗-morphism with closed range and its

inverse is continuous. Therefore, if G is amenable and α is an inverse limit action,
then the full pro-C∗-crossed product of A [τΓ] by α is isomorphic to the reduced
pro-C∗-crossed product of A [τΓ] by α.

Proposition 6.9. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded. If G is amenable then the full pro-C∗-crossed product of A [τΓ]
by α is isomorphic to the reduced pro-C∗-crossed product of A [τΓ] by α.

Proof. It follows from Corollaries 5.14 and 6.7, and Remark 6.8. �

7. Pro-C∗-crossed products and tensor products

Let A [τΓ] and B [τΓ′ ] be two pro-C∗-algebras. For each pλ ∈ Γ and qδ ∈ Γ′, the
map tpλ,qδ : A [τΓ]⊗alg B [τΓ′ ] → [0,∞) given by

tpλ,qδ (z) = sup{‖ϕ ◦ πpλ,qδ (z)‖ ;ϕ is a ∗ -representation of Aλ ⊗alg Bδ},
where πpλ,qδ (a⊗ b) = πAλ (a)⊗πBδ (b), defines a C∗-seminorm on the algebraic ten-
sor product A [τΓ]⊗algB [τΓ′ ]. The completion of A [τΓ]⊗algB [τΓ′ ] with respect to
the topology given by the family of C∗-seminorms {tpλ,qδ ; pλ ∈ Γ, qδ ∈ Γ′} is a pro-
C∗-algebra, denoted by A [τΓ] ⊗max B [τΓ′ ], and called the maximal or projective
tensor product of the pro-C∗-algebras A [τΓ] and B [τΓ′ ] (see [F, Chapter VII]).
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Moreover, for each pλ ∈ Γ and qδ ∈ Γ′, the C∗-algebras (A [τΓ]⊗max B [τΓ′ ])(λ,δ)

and Aλ ⊗max Bδ are isomorphic.

Remark 7.1. The trivial action of G on A [τΓ] is an inverse limit action, and so
the full pro-C∗-crossed product of A [τΓ] by the trivial action is isomorphic to
A [τΓ] ⊗max C

∗(G), where C∗(G) is the group C∗-algebra of G, [J2, Corollary
1.3.9].

Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is strongly bounded
and let B [τΓ′ ] be a pro-C∗-algebra. Then t 7→ (α⊗ id)t, where (α⊗ id)t (a⊗ b) =
αt (a)⊗ b, is a strong bounded action of G on A [τΓ]⊗max B [τΓ′ ].

The following theorem gives an ”associativity” between ×α and ⊗max.

Theorem 7.2. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded and let B [τΓ′ ] be a pro-C∗-algebra. Then the pro-C∗-algebras
G×α⊗id (A [τΓ]⊗max B [τΓ′ ]) and (G×α A [τΓ])⊗max B [τΓ′ ] are isomorphic.

Proof. Let ρG×αA[τΓ] : G ×α A [τΓ] → M((G×α A [τΓ]) ⊗max B [τΓ′ ]) and ρB :
B [τΓ′ ] →M((G×α A [τΓ])⊗max B [τΓ′ ]) be the canonical maps. Then ρG×αA[τΓ] ◦
ιA : A [τΓ] → M((G×α A [τΓ]) ⊗max B [τΓ′ ]) and ρB : B [τΓ′ ] → M((G×α A [τΓ])
⊗maxB [τΓ′ ]) are nondegenerate pro-C∗-morphisms with commuting ranges.

Let jG×α⊗idA[τΓ]⊗maxB[τΓ′ ]
= ρG×αA[τΓ] ◦ ιA ⊗ ρB and jG = ρG×αA[τΓ] ◦ ιG. A

simple calculus shows that
(
jG×α⊗idA[τΓ]⊗maxB[τΓ′ ]

, jG
)

is a nondegenerate covariant
pro-C∗-morphism from (G,α⊗ id, A [τΓ]⊗max B [τΓ′ ]) to M((G×α A [τΓ]) ⊗max

B [τΓ′ ]). Moreover, from

jG×α⊗idA[τΓ]⊗maxB[τΓ′ ]
(a⊗ b) jG (f)

= ρG×αA[τΓ] (ιA (a)) ρB (b) ρG×αA[τΓ] (ιG (f))

= ρG×αA[τΓ] (ιA (a)) ρG×αA[τΓ] (ιG (f)) ρB (b)

= ρG×αA[τΓ] (ιA (a) ιG (f)) ρB (b)

for all a ∈ A, for all b ∈ B and for all f ∈ Cc(G), and taking into account that
{ιA (a) ιG (f) ; a ∈ A, f ∈ Cc(G)} generates G×α A [τΓ] and {ρG×αA[τΓ] (z) ρB (b) ;
z ∈ G×α A [τΓ] , b ∈ B} generates (G×α A [τΓ])⊗max B [τΓ′ ], we conclude that

span{jG×α⊗idA[τΓ]⊗maxB[τΓ′ ]
(a⊗ b) jG (f) ; a ∈ A, b ∈ b, f ∈ Cc(G)}

= (G×α A [τΓ])⊗max B [τΓ′ ] .

Let (ϕ, u,H) be a nondegenerate covariant representation of (G,α⊗id, A [τΓ]⊗max

B [τΓ′ ]). Then (ϕ,H) is a nondegenerate representation of A [τΓ]⊗maxB [τΓ′ ], and
so there is a nondegenerate representation

(
ϕ(λ,δ),H

)
of Aλ ⊗max Bδ such that

ϕ(λ,δ) ◦ π
A[τΓ]⊗maxB[τΓ′ ]
(λ,δ) = ϕ. Let (ϕλ,H) and (ϕδ,H) be the nondegenerate repre-

sentations of Aλ, respectively Bδ with commuting ranges such that ϕ(λ,δ) (a⊗ b) =

ϕλ (a)ϕδ (b) for all a ∈ Aλ and b ∈ Bδ. Then
(
ϕλ ◦ πAλ , u,H

)
is a nondegenerate

covariant representation of (G,α,A [τΓ]), and so there is a nondegenerate repre-
sentation (Φ1,H) of G×αA [τΓ] such that Φ1 ◦ ιA = ϕλ ◦πAλ and Φ1 ◦ ιG = u. It is
easy to check that (Φ1,H) and (Φ2,H), where Φ2 = ϕδ ◦ πBδ , are nondegenerate
representations of G ×α A [τΓ] respectively B [τΓ′ ] with commuting ranges. Let
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(Φ,H) be the nondegenerate representation of (G×α A [τΓ])⊗maxB [τΓ′ ] given by
Φ (z ⊗ b) = Φ1 (z) Φ2 (b). Then

Φ
(
jG×α⊗idA[τΓ]⊗maxB[τΓ′ ]

(a⊗ b)
)

= Φ
(
ρG×αA[τΓ] (ιA (a)) ρB (b)

)
= Φ1

(
(ιA (a)) Φ2(ρB (b)

)
=

(
ϕλ ◦ πAλ (a)

) (
ϕδ ◦ πBδ (b)

)
= ϕ(λ,δ)

(
πAλ (a)⊗ πBδ (b)

)
= ϕ(λ,δ) ◦ π

A[τΓ]⊗maxB[τΓ′ ]
(λ,δ) (a⊗ b) = ϕ (a⊗ b)

for all a ∈ A and b ∈ B, and

Φ (jG (f)) = Φ
(
ρG×αA[τΓ] ◦ ιG (f)

)
= Φ1 (ιG (f)) = u (f)

for all f ∈ Cc (G). Therefore, by Definition 5.1 and Corollary 5.4, the pro-C∗-
algebras G×α⊗idA [τΓ]⊗maxB [τΓ′ ] and (G×α A [τΓ])⊗maxB [τΓ′ ] are isomorphic.

�

Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is strongly bounded
and let B [τΓ′ ] be a pro-C∗-algebra. Then t 7→ (α⊗ id)t, where (α⊗ id)t (a⊗ b) =
αt (a)⊗ b, is a strong bounded action of G on A [τΓ]⊗min B [τΓ′ ].

The following theorem gives an ”associativity” between ×α,r and ⊗min.

Theorem 7.3. Let (G,α,A [τΓ]) be a pro-C∗-dynamical system such that α is
strongly bounded and let B [τΓ′ ] be a pro-C∗-algebra. Then the pro-C∗-algebras
G×α⊗id,r (A [τΓ]⊗min B [τΓ′ ]) and (G×α,r A [τΓ])⊗min B [τΓ′ ] are isomorphic.

Proof. The map idA⊗σB,K(L2(G)) : A [τΓ]⊗minB [τΓ′ ]⊗minK(L2(G)) → A [τΓ]⊗min

K(L2(G))⊗min B [τΓ′ ] given by

idA ⊗ σB,K(L2(G)) (a⊗ b⊗ T ) = a⊗ T ⊗ b

is a pro-C∗-isomorphism. Moreover, idA ⊗ σB,K(L2(G)) is an inverse limit of C∗-
isomorphisms. From

idA ⊗ σB,K(L2(G))

(
α̃⊗ id (a⊗ b) (1⊗ λG(f)

)
= α̃ (a)

(
1M(A[τΓ]) ⊗ λG(f

)
⊗ b)

for all a ∈ A, for all b ∈ B and for all f ∈ Cc(G), and Remark 6.3, we deduce
that

idA ⊗ σB,K(L2(G))|G×α⊗id,rA[τΓ]⊗minB[τΓ′ ]

is a pro-C∗-isomorphism from G×α⊗id,r (A [τΓ]⊗min B [τΓ′ ]) onto (G×α,r A [τΓ])
⊗minB [τΓ′ ]. Therefore, the pro-C∗-algebras (G×α,r A [τΓ])⊗minB [τΓ′ ] andG×α⊗id,r

(A [τΓ]⊗min B [τΓ′ ]) are isomorphic. �
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(1985), no. 1, 131–174.
W. D.P. Williams, Crossed products of C∗-algebras. Mathematical Surveys and Monographs,

Vol 134, Amer. Math. Soc., 2007.

Department of Mathematics, Faculty of Applied Sciences, University Politehnica
of Bucharest, Spl. Independentei nr. 313, Bucharest, 060042, Romania;
Simion Stoilow Institute of Mathematics of the Roumanian Academy, 21 Calea
Grivitei Street, 010702 Bucharest, Romania.

E-mail address: mjoita@fmi.unibuc.ro
URL: http://sites.google.com/a/g.unibuc.ro/maria-joita/


	1. Introduction
	2. Preliminaries
	3. Group actions on pro-C-algebras
	4. Covariant representations
	5. The full pro-C-crossed product
	6. The reduced pro-C-crossed product
	7. Pro-C-crossed products and tensor products
	References

