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A NEW LOOK AT THE CROSSED PRODUCTS OF
PRO-C*-ALGEBRAS
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Communicated by T. Loring

ABSTRACT. We give a new definition for the full crossed product, respectively
reduced crossed product, of a pro-C*-algebra A [rr] by an action « and, using
these new definitions, we investigate some of their properties.

1. INTRODUCTION

Given a C*-algebra A and a continuous action « of a locally compact group
G on A, we can construct a new C*-algebra, called the crossed product of A by
«, usually denoted by G x, A, and which contains, in some subtle sense, A and
G. The origin of this construction goes back to Murray and von Neumann and
their group measure space construction by which they associated a von Neumann
algebra to a countable group acting on a measure space. The analog of this con-
struction for the case of C*-algebras is due to Gelfand with co-authors Naimark
and Fomin. There is a vast literature on crossed products of C*-algebras (see,
for example, [W]), but the corresponding theory in the context of non-normed
topological x-algebras has still a long way to go.

Crossed product of pro-C*-algebras by inverse limit actions of locally compact
groups were considered by Phillips [P2] and Joita [J2, J3, J4]. If A[mr] is a pro-
C*-algebra with topology given by the family of C*-seminorms I' = {p)}ea, then
Almr] can be identified with an inverse limit of C*-algebras linf\l Ay (the Arens-

Michael decomposition of A [rr]), and if « is an inverse limit action of a locally
compact group G on A [rr], then oy = lirf\l a} for all t € G, where for each \ € A,

o is an action of G on the C*-algebra Ay. In [P2], the full (reduced) crossed
product of A[rmr] by « is defined as inverse limit of the full (reduced) crossed
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products of Ay by a*, A € A. In particular, for a given inverse limit automorphism
a of a pro-C*-algebra A ||, we can associate to the pair (A [m], ) a pro-C*-
algebra by the above crossed product construction, but if « is not an inverse limit
automorphism, this construction is not possible. In the case of C*-algebras, the
crossed product of a C*-algebra A by an action « is isomorphic to the enveloping
C*-algebra of the covariance algebra L'(G,a, A). If  is an inverse limit action
of G on Alrr], then the covariance algebra L'(G,«, A[rr]) has a structure of
locally m-convex x-algebra with topology given by the family of submultiplicative
seminorms {N,, }rea, where

N, (f) = / p(f (9)) do,

G

and the enveloping pro-C*-algebra of L' (G, o, A [rr]) can be identified with the in-
verse limit of the enveloping C*-algebras of the covariance algebras L'(G,a?, Ay).
Therefore, the full crossed product of A [mr] by « is isomorphic to the enveloping
pro-C*-algebra of the covariance algebra L'(G,a, A[rr]). If a is not an inverse
limit action, then the covariance algebra has not a structure of locally m-convex
«-algebra (NN, is not a submultiplicative *-seminorm). We remark that the above
definition of the full crossed product of a pro-C*-algebra A [rr] by an inverse limit
action depends of the Arens—Michael decomposition of A [rr], and so it is not good
to define the notion of full crossed product of a pro-C*-algebra A [1r] by an action
which is not an inverse limit action. It is well known that the full crossed product
of C*-algebras is a universal object for nondegenerate covariant representations
(see, for example, [R]). The full crossed product of pro-C*-algebras by inverse
limit actions has also the universal property with respect to the nondegenerate
covariant representations [J3]. In this paper, we define the full crossed product
of a pro-C*-algebra A [m]| by an action « of a locally compact group G as a uni-
versal object for nondegenerate covariant representations and we show that the
full crossed product of pro-C*-algebras exists for strong bounded actions. Strong
boundless of the action « is essential to prove the existence of a covariant rep-
resentation. Unfortunately, if the action o of G on A |[rr] is strongly bounded,
then there is another family of C*-seminorms on A [r7r] which induces the same
topology on A, and « is an inverse limit action with respect to this family of
C*-seminorms.

The organization of this paper is as follows. After preliminaries in Section
2, we present some examples of group actions on pro-C*-algebras in Section 3.
In Section 4, we show that for a strong bounded action « of a locally compact
group G on a pro-C*-algebra A || there is an injective covariant morphism
from A|m] to the pro-C*-algebra L(H) for some locally Hilbert space H. In
Section 5, the full pro-C*-crossed product of A[rm] by « is defined to be the
pro-C*-algebra G x, A[mr| generated by the images of 14 and g, where (14, t¢)
is a universal covariant morphism of A [rr], in the sense that for any covariant
morphism (j4, j¢) from A[m] to a pro-C*-algebra B[], there is a unique pro-
C*-morphism ® : G x, Almr] — B[] such that ® o1y = js and P o1z =
Ja. For inverse limit actions, this definition coincides with the definition from
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[P2, J2]. We show that the full pro-C*-crossed product of A[m] by « exists if
« is strongly bounded and it is invariant under the conjugacy of the actions. In
Section 6, the reduced pro-C*-crossed product of a pro-C*-algebra A[rmr] by a
strong bounded action « is defined to be the pro-C*-subalgebra of the multiplier
algebra M (A [rr] ®@min K (L*(G))) of the minimal tensor product of A [rr] and
K (L*(G)) generated by {a(a) (1® A¢ (f));a € A, f € C.(G)}, where & is the
pro-C*-morphism from A [rr] to M (A [rr] ®min Co(G)) induced by a. We show
that, for inverse limit actions, this definition coincides with the definition from
[P2, J2]. Also, we show that the reduced pro-C*-crossed product is invariant
under the conjugacy of the actions, and if G is amenable, then the full pro-
C*-crossed product of A || by « is isomorphic to the reduced pro-C*-crossed
product of A [mp] by a. Section 7 is dedicated the relation between the full pro-C*-
crossed product and the maximal tensor product of pro-C*-algebras, respectively
the reduced pro-C*-crossed product and the minimal tensor product of pro-C*-
algebras. We show that there is a property of ”associativity” between x, and
®max, respectively X, and Qmpin.

2. PRELIMINARIES

A seminorm p on a topological x-algebra A satisfies the C*-condition (or is a
C*-seminorm) if p (a*a) = p (a)® for all @ € A. It is known that such a seminorm
must be submultiplicative (p (ab) < p(a)p (b) for all a,b € A) and *-preserving
(p(a*) =p(a) for all a € A).

A pro-C*-algebra is a complete Hausdorff topological x-algebra A whose topol-
ogy is given by a directed family of C*-seminorms {py}rea. Other terms used
for pro-C*-algebras are: locally C*-algebras (A. Inoue, M. Fragoulopoulou, A.
Mallios, etc.), LM C*-algebras (G. Lassner, K. Schmiidgen), b*-algebras (C. Apos-
tol).

Let A[mr] be a pro-C*-algebra with topology given by I' = {py}rea and let
B [m] be a pro-C*-algebra with topology given by I = {gs}sca. A continuous
s-morphism ¢ : A[m] — B[m] (that is, ¢ is linear, ¢ (ab) = ¢(a)p(b) for all
a,b € A, p(a*) = p(a)* for all a € A and for each g5 € I”, there is py € I" such
that gs (p(a)) < pa(a) for all @ € A) is called a pro-C*-morphism. Two pro-
C*-algebras A[m] and B [r] are isomorphic if there is a pro-C*-isomorphism
¢ : Almr] — B|m] (that is, ¢ is invertible, ¢ and ¢! are pro-C*-morphisms).

If {Ax;Tautasprpuen is an inverse system of C*-algebras, then l(1_rrA1 A, with

topology given by the family of C*-seminorms {py}iea, with py ((aH)M€A> =

|ax|| 4, for all A € A, is a pro-C*-algebra.

Let A [rr] be a pro-C*-algebra with topology given by I' = {py}rea. For A € A,
ker py is a closed *-bilateral ideal and Ay = A/ ker p, is a C*-algebra in the C*-
norm |||, induced by py (that is, ||al,, = pi(a), for all a € A). The canonical

map from A to A, is denoted by 75!, 7! (a) = a+kerp, foralla € A. For A\, € A

with p < A there is a unique surjective C*-morphism 7rj\4u : Ay — A, such that
A

(a+kerpy) = a + kerp,, and then {A)\;qu})\#e/\ is an inverse system of
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C*-algebras. Moreover, pro-C*-algebras A [rr] and lirf\l A, are isomorphic (the

Arens—Michael decomposition of A [rr]).
Let {(Hx, (-,-),)}rea be a family of Hilbert spaces such that H, C H, and
(50l = (o), forall A, p € A with p <A\ H = l;mH,\ with inductive limit

topology is called a locally Hilbert space.

Let ,C(H) = {T cH — H; Ty = T|H/\ S L(H)\) and PAMT/\ = TAPAM for all
A € A with g < A}, where Py, is the projection of Hy on H,. Clearly, L(H)
is an algebra in an obvious way, and T — T* with T*|, = (T))" for all A € A is
an involution.

For each A € A, the map pyzm) : L(H) — [0,00) given by px oo (T) =
7131 L, is @ C*-seminorm on L£(H), and with topology given by the family
of C*-seminorms {py £(x) }rea, L(H) becomes a pro-C*-algebra.

Since L(H) is a pro-C*-algebra, it has an Arens—Michael decomposition, given
by the C*-algebras L(H)\ = L(H)/kerpx sy, A € A. Moreover, for each A €
A, the map ¢y : L(H)yx — L(H,) given by o) (T +kerpyzp)) = Tln, is an
isometric s-morphism. The canonical maps from L£(H) to L(H)r, A € A are
denoted by i, X € A, and m{(T) = T|y,. For a given pro-C*-algebra A [rr]
there is a locally Hilbert space H such that A [m] is isomorphic to a pro-C*-
subalgebra of L(H) (see [I, Theorem 5.1}).

A multiplier of A[rr] is a pair (I,7) of linear maps I, : A[m] — A[m] such
that are respectively left and right A-module homomorphisms and r(a)b = al(b)
for all a,b € A. The set M(A[mr]) of all multipliers of A [mr] is a pro-C*-algebra
with multiplication given by (l1,7r1) (la,72) = (l1l2,7971), the involution given
by (I,7)" = (r*,1*), where r*(a) = r(a*)" and [* (a) = [(a*)" for all a € A,
and the topology given by the family of C*-seminorms {px am(ajr)) }rea, where
pama)) (L) = sup{pr(l(a));pr(a) < 1}. Moreover, for each py € I', the
C*-algebras (M(A[m])), and M(A,) are isomorphic. The strict topology on
M(A[rr]) is given by the family of seminorms {pyq}a)eaxa, Where pyo (I,7) =
pa (I(a)) + pr(r(a)), M(Alm]) is complete with respect to the strict topology
and A [rr] is dense in M (A [mr]) (see [P1] and [J1, Proposition 3.4]).

A pro-C*-morphism ¢ : A[rr] — M(B[m]) is nondegenerate if [p (A) B] =
B[], where [p (A) B] denotes the closed subspace of B [r+] generated by {¢ (a) b;
a € A,b € B}. A nondegenerate pro-C*-morphism ¢ : A[m] — M(B [m]) ex-
tends to a unique pro-C*-morphism @ : M (A [rr]) — M(B [rr]).

3. GROUP ACTIONS ON PRO-C*-ALGEBRAS

Throughout this paper, A [mr] is a pro-C*-algebra with topology given by the
family of C*-seminorms I' = {py},ea and G is a locally compact group.

Definition 3.1. (1) An action of G on A|[rr| is a group morphism « from
G to Aut(A[mr]), the group of all automorphisms of A [rr], such that the
map t — oy (a) from G to A[mr] is continuous for each a € A.
(2) An action o of G on A [rr] is strongly bounded, if for each A € A there is
i € A such that

px (@i (a)) < pu(a)
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for all t € G and for all a € A.
(3) An action « is an inverse limit action, if py (o (a)) = py (a) for all a € A,

for all t € G and for all A € A.

Remark 3.2. (1) If « is an inverse limit action of G on A [rr], then for each
A € A, there is an action o of G on Ay such that o) o 7! = 7¢ 0 oy for

allt € G, and oy = lirg\laf‘ for all t € G.

(2) Any inverse limit action of G on A [rr] is strongly bounded.
(3) If A is a C*-algebra, then any action of G on A is strongly bounded.
(4) If G is a compact group, then any action of G on A [rr] is strongly bounded.

Let X be a compactly countably generated Hausdorff topological space (that
is, X is a direct limit of a countable family {K,},, of compact spaces). The *-
algebra C'(X) of all continuous complex valued functions on X is a pro-C*-algebra
with topology given by the family of C*-seminorms {pg, },, where pg, (f) =
sup{[f (z)[ ;2 € Kn}.

Example 3.3. Let (G, X) be a transformation group (that is, there is a continu-
ous map (t,z) — t-z from G x X to X such that e-x =z and s-(t - x) = (st) -z
for all s,¢t € G and for all z € X) with X = lim K,, a compactly countably

generated Hausdorff topological space. Then there is an action a of G on the
pro-C*-algebra C'(X), given by

wlf) @) = £ (£ ).
If for any positive integer n, there is a positive integer m such that G - K,, C K,,,
the action « is strongly bounded, since for each n, there is m such that

P, (e (f)) =sup{|f (7" - 2) |12 € Ko} <sup{|f ()]:y € K} = p,, (f)

for all f € C(X) and forallt € G. If G- K,, = K,, for all n, then « is an inverse
limit action. Take, for instance, R =lim[—n,n|. Suppose that Z, actions on R

by 0-2 =2 and1-z =2—z for all z € R. Then (Z,,R) is a transformation
group such that for each positive integer n, Zs - [-n,n| C [-n — 2,n + 2].

Example 3.4. Let X = lim K,, be a compactly countably generated Hausdorft

topological space and h : X — X a homeomorphism with the property that for
each positive integer n, there is a positive integer m such that h*(K,,) C K,, for all
integers k. Then the map n — «, from Z to Aut(C(X)), where a,(f) = foh",
is a strong bounded action of Z to C(X). If h(K,) = K, for all n, then « is
an inverse limit action. Take, for instance, R =lim[—n,n]. The map h: R — R

defined by h(z) = 1 — x is a homeomorphism such that for each positive integer
n, h*([-n,n]) C [-n — 1,n + 1] for all integers k.

Example 3.5. The x-algebra C[0, 1] equipped with the topology ’cc’ of uniform
convergence on countable compact subsets is a pro-C*-algebra denoted by C..[0, 1]
(see, for example, [I, p. 104]). The action of Z, on C,[0, 1] given by ag =ide, [0,1]
and o3 (f) (x) = f(1 —x) for all f € C.[0,1] and for all z € [0, 1] is strongly
bounded.
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Remark 3.6. (1) Let a be a strong bounded action of G on A[mr]. Then, for
each A\ € A, the map p* : A — [0, 00) given by

P (a) = sup{px (¢ (a)) s € G}

is a continuous C*-seminorm on A [rr]. Let T'¢ = {p*},ca. Since, for each
A € A, there is p € A such that

< p* < p,,

I'¢ defines on A a structure of pro-C*-algebra, and moreover, the pro-C*-
algebras A [rr] and A [r¢] are isomorphic.

(2) If the action v of G on A |[mr] is strongly bounded,, then « is an inverse
limit action of G on A [r¢].

4. COVARIANT REPRESENTATIONS

Definition 4.1. A pro-C*-dynamical system is a triple (G, o, A [r1]), where G is
a locally compact group, A|[mr| is a pro-C*-algebra and « is an action of G on
A [Tp}.

A representation of a pro-C*-algebra A [r] on a Hilbert space H is a continuous
s-morphism ¢ : A [mr] — L(H). A representation (¢, H) of A [mr] is nondegenerate
if [p (A)H] =H.

Definition 4.2. A covariant representation of (G, «, A[rmr]) on a Hilbert space
H is a triple (o, u, H) consisting of a representation (¢, H) of A[m] on H and a
unitary s-representation (u,H) of G on H such that

(o1 () = wp (a) vy

for all @ € A and for all t € G. A covariant representation (p, u, H) is nondegen-
erate if (o, H) is nondegenerate.

Two representations (¢, u, H) and (¢, v, K) of (G, a, A [rr]) are unitarily equiv-
alent if there is a unitary operator U : H — K such that Uy (a) = (a) U for all
a€ Aand Uu, = v,U for all t € G.

For each py € I', we denote by R, (G,a, A[mr]) the collection of all uni-
tary equivalence classes of nondegenerate covariant representations (¢, u, H) of
(G, a, A[mr]) with the property that ||¢ (a)|| < pa (a) for all a € A. Clearly,

R\ (G0, Alm]) = R (G, 0, Almr]),
A
where R (G, o, A[rr]) denotes the collection of all unitary equivalence classes of
nondegenerate covariant representations of (G, o, A [1r]).
Remark 4.3. If o is an inverse limit action, then the map
(pr,u, H) = (pro s, u, H)
is a bijection between R (G, a*, Ay) and Ry (G, a, A[mr]) (see, [J2]).
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By [J2], if « is an inverse limit action, then R (G, «, A [7r]) is non empty. From
this result and Remark 3.6, we conclude that if « is strongly bounded, then
R (G, a, Arr]) is non empty too. In the following proposition we give another
proof for this result.

Proposition 4.4. Let (G, «a, A[rr]) be a pro-C*-dynamical system such that o is
strongly bounded. Then there is a covariant representation of (G, a, A [1r]).

Proof. Let (p,H) be a representation of A[rp]. Then there is A € A such that
¢ (a)]| < pa(a) for all a € A. Let a € A and § € L*(G,H). Since, there is
pu € I' such that

/ o (s (@) (€ (5)[2ds < / o (e ()2 1€ ()2 ds
G G

< /px (a1 (a))* € ()” ds < i (@)* €N

the map s +— ¢ (-1 (a)) (£ (s)) defines an element in L?(G, H). Therefore, there
is ¢ (a) € L(L*(G,H)) such that

¢ (a) (§) (s) = ¢ (as-1 (a)) (§(s)) -
In this way, we obtain a map ¢ : A — L(L*(G,H)). Moreover, @ is a continuous
+-morphism, and then (@, L? (G, H)) is a representation of A [rr].
Let (A%, L* (G, H)) be the unitary s-representation of G on L? (G, ’H) given by
(AH), (€) (s) = £(t7's). Tt is easy to verify that (@, A\, L? (G, H)) is a covariant
representation of (G, a, A [1r]). O]

Remark 4.5. Let (G, «, A[mr]) be a pro-C*-dynamical system. Suppose that « is
strongly bounded. Then, for each representation (p, H) of A[mr], ker ¢ C ker ¢.
Indeed, if @ (a) = 0, then ¢ (a5 (a)) (£(s)) = 0 for all s € G and for all £ €
L? (G, H), whence ¢ (a) (£ (e)) = 0 for all £ € L? (G, H) and so ¢ (a) = 0.

Definition 4.6. A covariant pro-C*-morphism from (G, «, A[mr]) to a pro-C*-
algebra B [m] is a pair (p,u) consisting of a pro-C*-morphism ¢ : Alm] —
M (B |mr]) and a strict continuous group morphism v : G — U(M (B [mr])), the
group of all unitaries of M (B [r]), such that

¢ (s (a)) = upp (a) uf

for all t € G and for all a € A. A covariant pro-C*-morphism (¢, u) from
(G,a, Almr]) to B[] is nondegenerate if [p (A) B] = B [m].

Theorem 4.7. Let (G,«, A[mr]) be a pro-C*-dynamical system. If a is strongly
bounded, then there is a locally Hilbert space H and a covariant pro-C*-morphism
(1a,ic) from (G,a, Alrmr]) to L(H). Moreover, ia and ig are injective.

Proof. Let A\ € A. By Proposition 4.4, Ry (G,«a, A[rr]) is non empty. Let
(goA, u?, H,\) be the direct sum of one representative (¢, u, H,,) of each unitary
equivalence class of nondegenerate covariant representations of (G, a, A [mr]) from
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R (G,a, Almr]). Then (gp’\, u H A) is a nondegenerate covariant representation
of (G, v, A[rr]) such that ||¢* (a)|| < pa(a) for all a € A.
Let Hy = ®u<2H,. Then H = 1/\1m H, is a locally Hilbert space. For a € A,

the map i} (a) : Hy — Hy defined by

i (a) (Bueaéu) = Busay (a) &
is an element in L(H,) and ||i% (a)|| < pa(a). Moreover, i} (a*) = i (a)" and
i (ab) = @ (a) i (b) for all a,b € A. Clearly, (i} (a)),
bounded linear operators and i (a) = lim i% (a) is an element £(H) such that

is a direct system of

ia(a*) =14 (a)" and i (ab) =i4(a)ia (b) for all a,b € A. Moreover,

Paca (ia (@) = ||id ()| < pa(a)
for all a € A and for all A € A. Therefore, i, is a pro-C*-morphism.
For t € G, the map i} (t) : Hy — Hy defined by

igy (1) (Busabu) = Buatt (1) &,
is a unitary element in L(H,). Moreover, the map ¢ +— i ({) is a unitary x-
representation of G on H). Clearly, (Zg (t)) , Is a direct system of unitary opera-
tors, and then ig (t) = 1/\121 iy (t) is a unitary element £(H). Moreover, t s ig (t)
is a group morphism from G to the group of unitary operators on H, and since
for each £ € H, the map ¢ — i (t) € from G to H is continuous, t — ig (t) is a
unitary s-representation of G on H. We have

ia (ot (@) (Bunéy) = ig (ar (@) (Bu<r&y) = Burn” (ar (a)) (€u)
Suu () ¢ (a) v (8)" (&)
= ig(t)ia(a)ic(t)" (Buaby)
for all @ € A, for all t € G and for all ©,<,\{, € Hx, A € A, and so

ia (o (a)) = ia(t)ia(a)ia(t)"
for all a € A and for all t € G.

Suppose that i (a) = 0. Then % (a) = 0 for all A € A and so ¢ (a) = 0 for all
nondegenerate covariant representation (¢, u, H,,,) of (G,«a, A[rr]). By Propo-
sition 4.4 and Remark 4.5, ¥ (a) = 0 for all representations ) of A. Therefore,
px(a) =0 for all A € A, and then a = 0.

Suppose that i¢ (t) =idy. Then i (t) =idy, for all X € A, and so u (t) =idy,,
for all nondegenerate covariant representation (p, u, H, ) of (G, o, A [1r]), whence
we deduce that ¢t = e. O]

The following proposition gives a characterization of inverse limit actions.

Proposition 4.8. Let (G,a, A[mr]) be a pro-C*-dynamical system. Then the
following statements are equivalent.
(1) « is an inverse limit action.
(2) There is a locally Hilbert space H and a covariant pro-C*-morphism (i4,ic)
from (G, o, Alrr]) to L(H) such that py n) (ia (a)) = pa(a) for all X € A
and a € A.



192 M. JOITA

Proof. (1) = (2) See [J3, Proposition 3.1] and [I, Theorem 5.1].
(2) = (1) From
ia (0 (a)) =i (t)ia(a)ic ()"
for all t € G and for all @ € A, and taking into account that i (¢) is a unitary
element in £L(H) for all t € G, we deduce that

pa(ai(a)) = pacag (ialo(a))) = pacon (ic () ia(a)ic (1))
= pacen (ia (@) = pa(a)

for all t € G, for all a € A and for all t € G. Therefore, « is an inverse limit
action. ]

5. THE FULL PRO-C*-CROSSED PRODUCT

Let (G, a, Almr]) be a pro-C*-dynamical system and let B[] be a pro-C*-
algebra whose topology is given by the family of C*-seminorms I = {¢s}sen.
If w is a strict continuous group morphism from G to U (M (B [rr])), then there
is a «-morphism u : C, (G) — M (B [r]) given by u (f) = [ f(s)usds, where ds
G

denotes the Haar measure on G (see [J2]).

Definition 5.1. Let (G,a, A[mr]) be a pro-C*-dynamical system. A pro-C*-
algebra, denoted by G x, A[m], together with a covariant pro-C*-morphism
(ta,tq) from (G, o, Almr]) to G X, A [rr] which verifies the following:
(1) for each nondegenerate covariant representation (o, u, H) of (G, «, A [rr]),
there is a nondegenerate representation (®,H) of G x, A[mr] such that
Doy =¢and oy =u
(2) span{ea (a)ic (f)ia € A, f € C(G)} = G xa Alm];

is called the full pro-C*-crossed product of A [rr] by .

Remark 5.2. The covariant morphism (¢4, tg) from the above definition is non-
degenerate.

Proposition 5.3. Let (G, o, A[mr]) be a pro-C*-dynamical system such that there
is a full pro-C*-crossed product of A [mr] by a and (p,u) a nondegenerate covariant
morphism from (G, o, A[mr]) to a pro-C*-algebra B [tr]. Then there is a unique
nondegenerate pro-C*-morphism ¢ X u: G X, A [mr| — M(B [m]) such that

YXuUotLy =@ and ¢ X U0 Lg = U.

Moreover, the map (p,u) — ¢ X u is a bijection between nondegenerate covariant
morphisms of (G, a, A [1r]) onto nondegenerate morphisms of G X, A|mr].

Proof. Let ¢s € I and (¢5,H) a faithful nondegenerate representation of Bj.

Then, (% o % o, s o 78 o u,H) is a nondegenerate covariant representation
of (G,a, Almr]), and by Definition 5.1, there is a nondegenerate representation
(ps,H) of G x, Alrr] such that

ot =TsomPoypand Fowg=Tsorbou
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Let &5 = Fo ¢s. Then @4 is a nondegenerate pro-C*-morphism from G %, A [7]

to M(Bs). Moreover, for gs,,qs, € T" with g5, > gs,, we have 755 o &5, = @ .
Therefore, there is a nondegenerate pro-C*-morphism ¢ X u : G X, A[m] —
M (B [rr]) such that

P opxu="os

for all ¢gs € I". Moreover, p Xxuoty = ¢ and ¢ X u o 1g = u, and since
{ta(a)ic(f);a € A, f e C.(G)} generates G X, A ], ¢ X u is unique with the
above properties.

Let @ : G x4 A[mr] — M( B[m]) be a nondegenerate pro-C*-morphism. Then
¢ = ®ouy, is a nondegenerate pro-C*-morphism from A [rr] to M (B [rr]) and u =
®oyq is a strict continuous morphism from G to U(M (B [r])), since 1 is a strict
continuous morphism from G to M (G x, A [rr]) and @ is strongly continuous on
the bounded subsets of M(G x, Almr]). Moreover, (p,u) is a nondegenerate
covariant morphism from A || to B[m], and ¢ x u = ®. If (1,v) is another
nondegenerate covariant morphism from A [r| to B[m] such that ¥ x v = &,
then ) = oy =pand v =P o5 = u. ]

The following corollary provides uniqueness of the full pro-C*-crossed product.

Corollary 5.4. Let (G, Almr]) be a pro-C*-dynamical system such that there is
a full pro-C*-crossed product of A [rr| by ae. Then the full pro-C*-crossed product
of Almr] by a is unique up to a pro-C*-isomorphism.

Proof. Let B[] be a pro-C*-algebra and (ja, jo) a covariant pro-C*-morphism
from (G,a, A[mr]) to B[] which satisfy the relations (1) — (2) from Defini-
tion 5.1. Then, by Proposition 5.3, there is a nondegenerate pro-C*-morphism
® : G x4 Almr] — M(B[m]) such that ® o1y = j4 and ® 0 1¢ = jg. Since
{ta(a)ic(f);a€ A, feC.(G)} generates G x, A[rr] and {ja (a) jo (f);a € A,
f € C.(G)} generates B[], ® (G x, A[mr]) C B.

In the same way, there is a pro-C*-morphism ¥ : B [r/] — G X, A [mr] such that
Wojs=1t4and ¥oj; =g From these facts and Definition 5.1 (2), we deduce
that ® o ¥ =idp and ¥ o ® =idgyx, [, and so ® is a pro-C*-isomorphism. [

The following proposition relates the nondegenerate covariant representations
of a pro-C*-dynamical system (G, «, A [rr]) with the nondegenerate representa-
tions of the full pro-C*-crossed product of A [rr] by a.

Proposition 5.5. Let (G, o, A[1r]) be a pro-C*-dynamical system such that there
is the full pro-C*-crossed product of A [rr] by a. Then there is a bijective corre-
spondence between nondegenerate covariant representations of (G,«a, Almr]) and
nondegenerate representations of G X, A ).

Proof. Let (o, u, H) be a nondegenerate covariant representation of (G, a, A [1r]).
Then, by Definition 5.1, there is a nondegenerate representation (¢ X u,H) of
G X4 Almr] such that ¢ X uots = ¢ and ¢ X wotg = u. Moreover, by Definition
5.1(2), (¢ x u,’H) is unique, and since ¢ is nondegenerate, it is nondegenerate
too.
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Let (®,H) be a nondegenerate representation of G' x, A[rr]. Then (® o 14,
®oug, M) is a covariant representation of (G, a, A[rr]), and moreover, (® o 14) x
(®otg) = @. Since 14 and @ are nondegenerate, the net {® (v4 (e;))};, where
{e;}; is an approximate unit of A [], converges strictly to idy, and so @ o 14 is
nondegenerate.

Suppose that there is another nondegenerate covariant representation (¢, u, H)
of (G,a, Alrr]) such that ¢ x u = ®. Then ¢ = pxuoiy = ® o1y and
u = pxuoig = Porg. Therefore, the map (¢, u, H) — (¢ x u, H) is bijective. O

Theorem 5.6. Let (G, a, A[mr]) be a pro-C*-dynamical system such that o is
strongly bounded. Then, there is the full pro-C*-crossed product of A [mr| by «.

Proof. By Theorem 4.7, there is a locally Hilbert space ‘H and a covariant pro-
C*-morphism (i, ig) from Alm] to L(H).

Let B = span{ia (a)ic (f);a€ A, f € C.(G)} € L(H). To show that B is
a pro-C*-algebra, we must show that B is closed under taking adjoints and

multiplication. For this, since B = lin}\ it (B) ([M, Chapter III, Theorem

3.1]), it is sufficient to show that for each A € A, 73 (i (b)ig (f)ia (a)ic(h))
and 7 (i (f)ia(a)) are elements in the closure of 7} (B) in L (H,) for all
a,b e A and for all f,h € C.(G).

The map s — 75 (f (s) as(a)) from G to Ay defines an element in C.(G, Ay),
and so there is a net {m{}(a;) @ f;}jes in Ay ®ag Co(G) with suppf;, suppf C K
for some compact subset K, which converges uniformly to this map.

By [J4, Lemma 3.7,

7 lie (F)ia(a) = / £ () (s) dsnlt (ia(a)) = / £ (8) 7 (ic(s)ia(a)) ds
G G
= [ £ lialen @)ic() ds
G
- / £ (5) P (as(0))id(s)ds
G
and
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for each 7 € J. Then, we have

|73 (i (f)ia (@) = 73 (ia (a5) i (£)]] oo,

Di%(s) = K@) f5 () 55)]| e, 5

A
QA
=
w

A
~
wn
o
ol
-~
:

)i (s(a))ig(s) = h(az) f (5) ig(5)|| gy, - 5 € K}
= Msup{HzA (s)as(a) — fj(s)a HLHA HZG HLHU,SEK}
M sup{px(f ()as a) — fg() J)SEK}

— Msuwp{||rA(f (5) anla) — £ () 7f (0], 5 € K}

for all j € J, where M = [dg, and so 7}t (ic (f)ia (a)) € 7iH(B).
On the other hand, "
|73 (ia (b) i (f) ia (@) ig(h)) — 73 (ia (baj)ic (f5 % W)|| g0,
a(a)ia(

IA

= Hﬂ{ ia (b ig(h) —ia(b)ia (a;) ic (f)ic(h)) HL(HA)
< |75 Ga (0) 75 (i (f) ia (@) —ia (a)) ic (f;) 7} (ic (R)) HL(HA)

)
)HL(HA ”7&1 (ic () ||L(H>\)
i (f)ia (@) =73 (ia(ay)ic ()| e,y

whence, we deduce that m¢ (i4 (b) i (f)ia (a)ig(h)) € 73(B). Thus, we showed
that 7 (ic (f)ia (), 73 (ia (b)ic (f)ia (a)ic(h)) € 7i(B) for each A € A, and
s0 ig (f)ia(a), ia(b)ig (f)ia(a)ig(h) € B. Therefore, B is a pro-C*-algebra.
In the same manner, we show that for each a € A i (a)ia (b)ig(f) € B and
ia(b)ig(f)ia(a) € Bforallbe A and for all f € C.(G), and so i4 (a) € M(B).

From,

IA
ER
>
::. .
=

ic(t)ia(a)ic(f) = / F()ia (n(@)) ic(ts)ds € B
G

and

ic(f)ia(a)ig(t) = /f(s)z'A (s (a))ig(st)ds € B

e
for all a € A, for all f € C.(G) and for all t € G, we deduce that i¢(t) € M(B)
for all t € G.

Let (¢,v, Hy,) be a nondegenerate covariant representation of (G, «, A [mr)).
Then thereis (¢, u, H,.) € R (G, a, A[1r]) such that (¢, v, Hy,,) and (¢, u, H, )
are unitarily equivalent. So there is a unitary operator U : Hy, — H,, such
that ¢ (a) = U*¢(a)U for all a € A and v; = U*w,U for all t € G. The map
U : L(H) — L(H),) given by

U (T) =m(T) |,
is a representation of L(H) on H) (see the proof of Theorem 4.7). From
v (ZA(G)) (H%u) = Zi\l<a> (Hcp,u> - Htp,u
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for all a € A and

U (ic(t) (Hpw) = ig(t) (Hpw) € Hpu
for all ¢ € GG, and taking into account that B is generated by {is (a)ic (f);a €
A, f € C.(G)}, we deduce that ¥ (B) (H,,) € Hy,,. Let ®: B — L(Hy,) given
by

Q) =U"Y()|n,,U.
Clearly, ® is a nondegenerate representation of B on Hy ,,
D (ia(a)) = UV (ia(a)) |, U = Ui (a)|n, U = Up(a)U = ¢ (a)
for all a € A, and
D (ig(t) = UV (ic(t)) |n, U = Urig(t)|n, U =UwU = v,

forall t € G. O
Remark 5.7. The index of the family of seminorms which gives the topology on

the full pro-C*-crossed product of A [m] by « is the same with the index of the
family of seminorms which gives the topology on A [r].

Proposition 5.8. Let (G, a, A[rr]) be a pro-C*-dynamical system such that o is
an inverse limit action. Then for each X € A, the C*-algebra (G xo A[rr]), is
isomorphic to the full C*-crossed product of Ay by o,

Proof. By Theorem 4.7, Proposition 4.8 and Corollary 5.4, there is a C*-morphism

ia, : Ay — M ((G x, Alrr]),) such that i4, omy = WSX“A[TF] oiy4. Using the fact
that « is an inverse limit action, it is easy to check that <z AA,WSXQA[TT] o z’G) is

a covariant C*-morphism from (G, a*, A,) to (G x4 A[mr]),. Moreover,

span{ia, (m{ () 7y (i (1)) ;50 € A, f € C.(G))
= span{my " (ia (a)ic (f))ia € A, f € C.(G)}
_ WAGX&A[TT} (G %o Almr]) = (G %0 Almr]), -

Let (p,u,H) be a nondegenerate covariant representation of (G, at, A,\). Then
(gp omy,u, H) is a nondegenerate covariant representation of (G, «, A [1r]) and by
Definition 5.1, there is a nondegenerate representation (®, H) of G x, A [7r] such
that @ oiy = p o 14 and ® oig = u. Moreover, by the proof of Theorem 5.6,

12 (D)l < prcxaaim) (B)
for all b € G x,A[mr|. Therefore, there is the C*-morphism @) : (G x, A[mr]), —

L(H) such that &) o WSXQA[TT] = ®. Moreover, (®,,H) is a nondegenerate repre-
sentation of (G' X, A[mr]), such that

P, 0 ia, = ¢ and D, 0 <7er“A[TF] o i(;> = u.

Thus, we showed that (G x, A[m]), is isomorphic to G X Aj. O
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Corollary 5.9. Let (G,«a, Almr]) be a pro-C*-dynamical system such that o is
an inverse limit action. Then the pro-C*-algebras G X, A[mr| and hn}’\lG X on A

are isomorphic.

Remark 5.10. If (G,«a, A[mr]) is a pro-C*-dynamical system such that « is an
inverse limit action, then the notion of full pro-C*-crossed product in the sense
of Definition 5.1 coincides to the notion of full crossed product introduced by
(P2, J4].

Definition 5.11. We say that (G,«, A[mr]) and (G, 3, B [rr]) are conjugate if
there is a pro-C*-isomorphism ¢ : A[r] — B[m] such that ¢ o ay = ;0 ¢ for
all t € G.

Remark 5.12. If (G, a, A[mr]) and (G, 3, B [mv]) are conjugate and « is strongly
bounded, then [ is strongly bounded too.

Proposition 5.13. Let (G, a, A[mr]) and (G, 3, B [1r/]) be two pro-C*-dynamical
systems such that o and 3 are strongly bounded. If (G, a, A[mr]) and (G, 3, B [mr])
are conjugate, then the full pro-C*-crossed products associated to these pro-C*-
dynamical systems are isomorphic.

Proof. Let ¢ : Almr| — B[m] be a pro-C*-isomorphism such that ¢ oy = 0 ¢
for all t € G. It is easy to check that (150 ¢, 1 p) is a nondegenerate covariant
morphism from (G, o, A[mr]) to G xg B[m|, where (tp,tq ) is the covariant
morphism from (G, 3, B [r1]) to G X g B [mv] which defines the full pro-C*-crossed
product of B[] by . Then, by Proposition 5.3, there is a nondegenerate pro-
C*-morphism ® : G x, A[rr] — M (G x5 B[r]) such that ® o1y = 1po ¢
and ® o tg,A = tg,B- Moreover, using Definition 5.1, it is easy to check that
® (G x4 Almr]) € G x5 B[m]. In the same manner, we obtain a nondegenerate
pro-C*-morphism W : G X3 B [rp/] — M (G X, A[rr]) such that Woip = 140p™!
and ¥ o LGB = LG,A-
From

(®oW) (1 (b) e (f) =P (tacy™ (b)igalf) =ts®) iz (f)
and
(Wo@)(eala)gal(f) =V (sop(a)ics(f)) =rala)icalf)
for all b € B[m], a € Almr] and f € C.(G) and Definition 5.1, we deduce that
® and ¥ are pro-C*-isomorphisms. O

Corollary 5.14. Let (G,«a, A[rmr]) be a pro-C*-dynamical system such that « is
strongly bounded.

(1) Pro-C*-algebras G x o Almr] and G x Almre] are isomorphic.

(2) Almr] is isomorphic to a pro-C*-subalgebra of M(G X, A[mr]).

6. THE REDUCED PRO-C*-CROSSED PRODUCT

Let A[mr] and B[] be two pro-C*-algebras. For each p) € I" and g5 € I”, the
map Up, 4, © A[71] Qag B [1rv] — [0, 00) given by

45

Dpras (2) = sup{[[(0 @) (2)[l ;90 € Ra (A[rr]), ¥ € Rs (B[rr])}
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defines a C*-seminorm on the algebraic tensor product A [1r] ®ag B [rr/]. The
completion of A [7r]®a1, B [1r/] with respect to the topology given by the family of
C*-seminorms {V,, ,;px € I',¢s € I''} is a pro-C*-algebra, denoted by A [71] @min
B [m], and called the minimal or injective tensor product of the pro-C*-algebras
Alm] and B[] (see [F, Chapter VII]). Moreover, for each p) € I' and g5 € I",
the C*-algebras (A [1r] ®min B [117]) 5 and Ay @min Bs are isomorphic.

Let (G, a, A [mr]) be a pro-C*-dynamical system such that « is strongly bounded.
Since « is strongly bounded, for each a € A, the map t — ;-1 (a) defines an
element in Cy(G, A[mr]), the pro-C*-algebra of all bounded continuous functions
from G to A[mr|, and so there is a map a : A[mr| — Cy(G, A[mr]) given by

a(a) (t) = ag-1 (a).

Lemma 6.1. Let (G,a, Almr]|) be a pro-C*-dynamical system such that o is
strongly bounded. Then « is a nondegenerate faithful pro-C*-morphism from
Alrr] to M(A[mr] @min Co (G)) with closed range. Moreover, if o is an inverse
limit action, then & is an inverse limit pro-C*-morphism.

Proof. Clearly, o is a *-morphism. For each py € I, there is p, € I" such that

pa(a) = pa (e (a) < supfpa (s (a)) it € G} = pacyc.am) (@(a) < pu(a)
for all a € A. Therefore, a is an injective pro-C*-morphism with closed range. By
[J2, p. 76], Cy(G, A[1r]) can be identified to a pro-C*-subalgebra of M (A [7r] ®min
Co (GQ)), and then & can be regarded as a pro-C*-morphism from A [rr] to M (A [rr]
®minCO (G))

To show that & is nondegenerate, let {e;};c; be an approximate unit for A [rr].
In the same manner as in [V, Proposition 5.1.5], we show that {a (e;)}icr is
strictly convergent. Indeed, let a € A, f € C.(G) and py € I'. Then

Prcy(G A (@ (e) (a® f) —a® f)

sup{px (a1 (&) af (t) —af (t));t € G}

11l sup{pa (@11 (esa (@) — a (a))) 5t € supp (f)}
[ fll oo sup{py (icu (a) — cu (a)) ;T € supp (f)}

for some p, € I'. For each ¢ € I, consider the function f; : G — C, fi(t) =
pu (eia (a) — oy (a)). Clearly, {f;}ier is a net of continuous functions on G' which
is uniformly bounded and equicontinuous. Then, by Arzela—Ascoli’s theorem, it
is uniformly convergent on compact subsets of G. Therefore, {& (e;) }ies is strictly
convergent, and so the pro-C*-morphism « is nondegenerate.

<
<

Suppose that oy = lirgl ap for each t € G. Then (J) is an inverse system of
— A

C*-morphisms and a = lim o?. O

Let ¢ : Almr] — M(B [m]) be a nondegenerate pro-C*-morphism and let M :
Co(G) — L(L?*(@)) be the representation by multiplication operators. Then there
is a nondegenerate pro-C*-morphism ¢ @ M : A [17] ®uin Co(G) — M (B [11/] @min
K(L*(G)) such that (¢ @ M) (a® f) = ¢ (a) @ My, were K(L*(G)) denotes the
C*-algebra of all compact operators on the Hilbert space L*(G). Since & is
a nondegenerate pro-C*-morphism from A[mr] to M(A[mr] ®@mn Co (G)), & =
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¢ ® M o« is a nondegenerate pro-C*-morphism from A |[m| to M (B[] @min
K(L*(@)).

Let \¢ : G — U(L*(G@)) be the left representation of G on L?(G) given
by (M), (&) (s) = &(t7's). Then 1 ®@ A\ : G — U (M(B[m] @ K(L*(G))),
where (1® Ag), (b®¢)(s) = b (t71s), is a strict continuous group morphism
from G to U (M (B [11/] Qumin K(L*(G))), and ($,1 ® Ag) is a nondegenerate co-
variant morphism of (G, «, A [rr]) to B[] @min K(L*(G). By Proposition 5.3,
there is a unique nondegenerate pro-C*-morphism ¢ x (1 ® Ag) : G X, A[mr| —
M (B [11r] @min K(L*(Q)) such that g x (1@ A\g)ots =@ and ¢ X (1 @ A\g)oig =
1© M. N

If ¢ =id4, the nondegenerate pro-C*-morphism idy X (1 ® A\g) : G X, A ] —
M (A [17] @min K(L3(G)) is denoted by AG. Tt is easy to check that ¢ x (1 ® \g) =
Y2 & idIC(LQ(G)) o Ag

If a is an inverse limit action, oy = 11:1)\1 a} for each t € G, then it is easy to

check that AS is an inverse limit pro-C*-morphism, A§ = 11I§\1 A .

Definition 6.2. The reduced pro-C*-crossed product of A [rmr] by « is the pro-
C*-subalgebra G X, A[rr] of M(A[mr] ®min K(L*(G))) generated by the range
of AG.

Remark 6.3. From

AG (tala) e () = (ida® Mo a) (a) (1© Ag) (f) = a(a) (1® g (f))
for all @ € A and for all f € C.(G), and taking into account that G x,
Alm] is generated by {ta(a)ic(f);a € A, f € C.(G)}, we conclude that
G Xo, Alrr] is the pro-C*-subalgebra of M (A [1r] @min K(L*(G))) generated by
(@@ (1A (f):ae A feC(G)

Remark 6.4. If « is an inverse limit action, oy = lilg\l ap for each t € G, then

G Xa,r A [Tp] = Ag (G Xa A [Tp]) = llll;lAg)\ (G X A A)\> = hII)\lG XA A)\

and moreover, for each py € I, the C*-algebras (G xq, A[m]), and G X, , Ay
are isomorphic.

Remark 6.5. Since the trivial action of a locally compact group G on a pro-C*-
algebra A [rr| is an inverse limit action, the reduced pro-C*-crossed product of
A[rr] by the trivial action is the inverse limit of the reduced crossed products of
A, by the trivial action, and so it is isomorphic to the pro-C*-algebra A [71] ®@min
C* (G), where C¥ (@) is the reduced group C*-algebra of G.

Proposition 6.6. Let (G,«a, A[mr]) and (G, 3, B[m]) be two pro-C*-dynamical
systems such that o and (3 are strongly bounded. If (G, a, A [1r]) and (G, 3, B [m1/])
are conjugate, then the reduced pro-C*-crossed products associated to these pro-
C*-dynamical systems are isomorphic.

Proof. Let ¢ : A[mr| — B [m] be a pro-C*-isomorphism such that g ooy = G0
for all t € G. It is easy to check that ¢ ® idi(z2(q)) 0@ = B o p. From

p @ idicr2ay (@ (a) (1@ Aa (f) = B¢ (@) (1© A (f))
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for all @ € A and for all f € C. (G), and taking into account that
span{a (a) (L@ Ag (f));a € A, f € C.(G)} = G xqo, Al

and

span{f3 (a) (1 ® A¢ (f));a € B, f € C.(G)} = G x5, B[],
we conclude that ®1 = ¢ ® idx(r2(¢))|Gxa., Al 15 @ pro-C*-morphism from G X,
Alm] to G xg, B[m].
In the same manner, we conclude that ®; = ¢~ ® idxL2()) ‘GX,B,TB[TF’] is a pro-
C*-morphism from G x g, B[] to G X, A [1r]. Moreover, ®; 0 ®; =idgyx,, Blr]
and ®; o ®; =idgx,, , A[], since

@100, (F0) (1826 () = ) (1826 (£)
for all b € B and for all f € C.(G) and

Py 0 (a(a) (1®Ac (f))) = ala)(1® e (f))

for all a € A and for all f € C, (G). Therefore, the pro-C*-algebras G x,, A [mr]
and G X, B[] are isomorphic. O

Corollary 6.7. Let (G,«a, Almr]) be a pro-C*-dynamical system such that o is
strongly bounded. Then the pro-C*-algebras G X, Almr] and G X, Almre] are
isomorphic.

Remark 6.8. If a is an action of an amenable locally compact group G on a C*-
algebra A, then the C*-morphism A§ is injective and the full crossed product
A by « is isomorphic to the reduced crossed product of A by a. If o is an
inverse limit action of G on a pro-C*-algebra A [rp] and G is amenable, then A§
= 1(13\1 Aﬁk, and so A§ is an injective pro-C*-morphism with closed range and its
inverse is continuous. Therefore, if G is amenable and « is an inverse limit action,

then the full pro-C*-crossed product of A [1r] by « is isomorphic to the reduced
pro-C*-crossed product of A [mr] by a.

Proposition 6.9. Let (G,a, A[mr]) be a pro-C*-dynamical system such that o is
strongly bounded. If G is amenable then the full pro-C*-crossed product of A[mr]
by « is isomorphic to the reduced pro-C*-crossed product of Al[mr] by a.

Proof. 1t follows from Corollaries 5.14 and 6.7, and Remark 6.8. 0

7. PRO-C*-CROSSED PRODUCTS AND TENSOR PRODUCTS

Let A[mr] and B[] be two pro-C*-algebras. For each p) € " and g5 € T”, the
map tp, ¢ © A[mr] @ag B [1rv] — [0, 00) given by

tpyas (2) = sup{||¢ o mp, 45 (2)||; ¢ is a* -representation of Ay ®a, Bs},

where ,, 4, (a ®b) = 74! (a) @78 (b), defines a C*-seminorm on the algebraic ten-
sor product A [7] ®a1 B [11v]. The completion of A [7p] ®ae B [1rv] with respect to
the topology given by the family of C*-seminorms {t,, ,;px» € I',¢s € I''} is a pro-
C*-algebra, denoted by A 1] ®max B[], and called the maximal or projective
tensor product of the pro-C*-algebras A[mr] and B[] (see [IF, Chapter VII]).
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Moreover, for each p) € T' and g5 € T”, the C*-algebras (A [7r] ®max B [TF/])(M)
and Ay ®max Bs are isomorphic.

Remark 7.1. The trivial action of G on A[rr| is an inverse limit action, and so
the full pro-C*-crossed product of A[r| by the trivial action is isomorphic to
A7) @max C*(G), where C*(G) is the group C*-algebra of G, [J2, Corollary
1.3.9].

Let (G, v, A [rr]) be a pro-C*-dynamical system such that « is strongly bounded
and let B [1/] be a pro-C*-algebra. Then ¢t — (a ® id),, where (a ® id), (a ® b) =
oy (a) ® b, is a strong bounded action of G on A [177] @uax B [m1].

The following theorem gives an ”associativity” between X, and ®pax.

Theorem 7.2. Let (G,«a, Almr]) be a pro-C*-dynamical system such that o is
strongly bounded and let B[] be a pro-C*-algebra. Then the pro-C*-algebras
G Xagid (ATr] @max Bm]) and (G X4 A[1r]) @max B [1r7] are isomorphic.

Proof. Let paxoapm] @ G Xa Almr] — M((G Xo A[mr]) @max Blmr]) and pp -
B ] — M((G X4 A [71]) @max B [7r/]) be the canonical maps. Then pgx, A ©
ta s Almr] = M((G X4 Almr]) @max B [mrv]) and pp : B ] — M((G x4 Almr])
®maxB [117]) are nondegenerate pro-C*-morphisms with commuting ranges.

Let jrxworudlmlmaeBlr] = Paradi] © ta @ pp and jg = Paraim] © ta: A
simple calculus shows that ( JGx awia Alrr]@max Blrper]» jg) is a nondegenerate covariant
pro-C*-morphism from (G,a ® id, A [7r] @max B [m17]) to M((G Xa A[Tr]) @max
B [rr]). Moreover, from

JGx agiaAlrr]@maxBlr] (@ @ b) ja (f)

PGxaalm] (ta (@) pB (D) DGxpaim) (ta (f
= Paxaaim (L4 (@) Poxaarm (ta (f)) ps (
= Paxaam (ta (@) e (f)) ps (D)

for all a € A, for all b € B and for all f € C.(G), and taking into account that

{ta(a)a(f)ia € A, f e C(G)} generates G X, A1) and {pax,aim (2) p5 (D) ;
z € G x4 Almr],b € B} generates (G Xq A[Tr]) ®max B[], we conclude that

Span{jGXa@idA[Tr]@)maxB[TF/} (CL & b) jG (f) ja € A7 be b? f € CC<G)}
= (G Xa A [TF]) ®max B [Tpl] .

Let (¢, u, H) be a nondegenerate covariant representation of (G, a®id, A [7r] @max
B [mr]). Then (¢, H) is a nondegenerate representation of A [1r| @max B[], and

so there is a nondegenerate representation (go(,\(; H) of Ay ®max Bs such that

O © W(A[;F)@maxB[TF'] = . Let (¢, H) and (s, H) be the nondegenerate repre-

sentations of Ay, respectively Bs with commuting ranges such that ¢y 5) (a ® b) =
vy (a) ps (b) for all a € Ay and b € Bs. Then (gp,\ o, u, H) is a nondegenerate
covariant representation of (G, «, A [mr]), and so there is a nondegenerate repre-
sentation (1, H) of G x,, A [rr] such that ®; 014 = py o7y and & 01g = u. It is
easy to check that (®;,H) and (@, H), where ®; = ;5 o 72, are nondegenerate
representations of G X, A|[m| respectively B [r] with commuting ranges. Let

)
b)
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(®,H) be the nondegenerate representation of (G X, A [7r]) @max B [7r7] given by
O (2®b) =Dy (2) Py (b). Then

P (jGXa@idA[TF]@)maxB[TF’] (CL ® b))
B (e (14 (@) () = B (14 ()

= (promi(a) (gsomy (b)) = v (73 (a) @ 75 (b))

A[1r]|®max BT
— @()\75)071'()\[7;)]@ [F](a®b):¢(a®b)

for all a € A and b € B, and

@ (ja (f)) = @ (Poxaam © ta (f) = 1 (e (f) = u(f)

for all f € C.(G). Therefore, by Definition 5.1 and Corollary 5.4, the pro-C*-
algebras G X agid A [T7] @max B [1r7] and (G X4 A [17]) ®@max B [71v] are isomorphic.
O

Let (G, v, A [r]) be a pro-C*-dynamical system such that « is strongly bounded
and let B [1/| be a pro-C*-algebra. Then ¢t — (a ® id),, where (a ® id), (a ® b) =
oy (a) ® b, is a strong bounded action of G on A [1r]| @umin B [11].

The following theorem gives an ”associativity” between X, , and ®mp;y,.

Theorem 7.3. Let (G,a, A[mr]) be a pro-C*-dynamical system such that o is
strongly bounded and let B || be a pro-C*-algebra. Then the pro-C*-algebras
G Xawidr (A7) @min B [1r7]) and (G X o, A[1r]) @min B [1r/] are isomorphic.

PTOOf. The map idA ®UB,K(L2(G)) A [Tp] R min B [TF’] ®min’C(L2(G)) A [TF] Prnin
K(L*(G)) @min B [1r/] given by

ida ® opx2G) (@®@DRT)=a@T ®b

is a pro-C*-isomorphism. Moreover, idy ® opx(r2(g)) is an inverse limit of C*-
isomorphisms. From

ida ® 05 c(12(0)) (a ®id(a®b) (1® >\G<f)> = a (a) (Lacap @ Aa(f) @ b)

for all a € A, for all b € B and for all f € C.(G), and Remark 6.3, we deduce
that

idg ® 0B x(L2(@)) |G><a®id,7»A[Tr]®minB[Tr/]

is a pro-C*-isomorphism from G X 4gidr (A [77] @min B [1rv]) onto (G X4, Almr])
®min B [117]. Therefore, the pro-C*-algebras (G X4, A [17])®@min B[] and G X agid
(A [mr] @min B [1rv]) are isomorphic. O
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