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INNER FUNCTIONS AND WEIGHTED COMPOSITION
OPERATORS ON THE HARDY-HILBERT SPACE WITH THE

UNBOUNDED WEIGHTS

KEI JI IZUCHI1∗, KOU HEI IZUCHI2 AND YUKO IZUCHI3

Communicated by J. Esterle

Abstract. Let ϕ be an analytic self-map of the open unit disk. It is given
several sufficient conditions on ϕ for which there is u ∈ H2 \H∞ such that the
weighted composition operator MuCϕ on H2 is bounded.

1. Introduction

Let D be the open unit disk and m be the normalized Lebesgue measure on ∂D.
We denote by L2(∂D) the space of square integrable functions on ∂D with respect
to m. For 1 ≤ p <∞, let Hp be the space of analytic functions f on D satisfying

‖f‖pp := lim
r→1

∫
∂D
|f(reiθ)|p dm(eiθ) <∞.

The space Hp is called the Hardy space. We denote by H∞ the space of bounded
analytic functions on D with the supremum norm ‖f‖∞. For each f ∈ H2, there
is the boundary function f ∗ of f defined by f ∗(eiθ) = limr→1 f(reiθ) a.e. on ∂D.
We have f ∗ ∈ L2(∂D) (see [2, 3, 4]).

We denote by S the set of analytic self-maps of D. For each ϕ ∈ S, we
may define the composition operator Cϕ by Cϕf = f ◦ ϕ for f ∈ H2. By the
Littlewood subordination theorem [6], Cϕ is a bounded linear operator on H2.
Recently there are many researches on composition operators on various spaces
of analytic functions. For u ∈ H∞, we may define the weighted composition
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operator MuCϕ : H2 → H2 by (MuCϕ)f = u(f ◦ϕ). Of course, MuCϕ is bounded
on H2. See [1, 9] for the basic properties of (weighted) composition operators.

Let u ∈ H2 and ϕ ∈ S. For each f ∈ H2, we have

‖MuCϕf‖1 ≤ ‖u‖2‖Cϕf‖2 ≤ ‖u‖2‖Cϕ‖‖f‖2.

Hence MuCϕ : H2 → H1 is a bounded linear map. If ‖ϕ‖∞ < 1, then it is not
difficult to see that MuCϕ : H2 → H2 is bounded.

In this paper, for ϕ ∈ S with ‖ϕ‖∞ = 1 we shall study the boundedness of
MuCϕ : H2 → H2 (see [5, 8]). More precisely, we consider the following problem.

Problem 1.1. For which ϕ ∈ S, is there u ∈ H2\H∞ such thatMuCϕ : H2 → H2

is bounded?

A function ψ ∈ H∞ is called inner if |ψ∗| = 1 a.e. on ∂D. In [5, Corollary 2.2],
Nguyen, Ohno and the first author showed that if ϕ ∈ S is not inner, then there
is u ∈ H2 \ H∞ such that MuCϕ : H2 → H2 is bounded. So mainly we assume
that ϕ is an inner function. We denote by supp(ϕ) the set of eiθ ∈ ∂D at which
ϕ does not have a continuous extension. Then supp(ϕ) is a closed subset of ∂D.
It is known that supp(ϕ) = ∅ if and only if ϕ is a finite Blaschke product. It is
not difficult to see that if supp(ϕ) = ∅, then MuCϕ : H2 → H2 is unbounded for
every u ∈ H2 \H∞ (see [5, p. 1335]).

It is known that ϕ may be extended to a non-vanishing analytic function on
some neighborhood of each eiθ ∈ ∂D \ supp(ϕ). Hence we may think that ϕ∗ is
differentiable on ∂D \ supp(ϕ). In [5, Proposition 2.9], Nguyen, Ohno and the
first author essentially proved that if supz∈∂D\supp(ϕ) |ϕ∗′(z)| = ∞, then there is

u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.
In Section 2, we shall prove that if there is an open subarc U of ∂D such that

U ∩ supp(ϕ) 6= ∅ and U ∩ supp(ϕ) does not contain any interior points, then
supz∈∂D\supp(ϕ) |ϕ∗′(z)| = ∞, so there exists a function u ∈ H2 \ H∞ such that

MuCϕ : H2 → H2 is bounded.
For an inner function ϕ, we consider the following two conditions.

(α) There is a sequence of mutually disjoint measurable subsets {Cn}n≥1 of ∂D
and a sequence of positive numbers {δn}n≥1 satisfying

∑∞
n=1 δn < ∞ such that

m(Cn) > 0 and m(Cn ∩ ϕ∗(−1)(E)) ≤ δnm(E) for every measurable subset E of
∂D and for every n ≥ 1.

(β) There is a sequence of mutually disjoint measurable subsets {En}n≥1 of ∂D
such that m(En ∩ ϕ∗(−1)(E)) > 0 for every measurable subset E of ∂D satisfying
m(E) > 0 and for every n ≥ 1.

We do not know whether conditions (α) and (β) hold or not for every inner
function ϕ satisfying m(supp(ϕ)) > 0. In Section 3, we shall prove that if an
inner function ϕ satisfies condition (α), then there is u ∈ H2 \ H∞ such that
MuCϕ : H2 → H2 is bounded. We also show that if ϕ satisfies condition (β),
then ϕ satisfies condition (α).

The techniques used here will give us some light on further study of Problem
1.1.
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2. Bounded weighted composition operators

The following proposition was proven in [5, Corollary 2.2]. We shall give its
another proof.

Proposition 2.1. Let ϕ ∈ S. If ϕ is not inner, then there is u ∈ H2 \H∞ such
that MuCϕ : H2 → H2 is bounded.

Proof. For 0 < r < 1, we write {|ϕ∗| < r} = {eit ∈ ∂D : |ϕ∗(eit)| < r}. Take
0 < r < 1 satisfying m({|ϕ∗| < r}) > 0. Let η be a positive unbounded function
in L2(∂D) such that η = 1 on ∂D \ {|ϕ∗| < r} and η ≥ 1 a.e. on {|ϕ∗| < r}. By
[4, p. 53], there is u ∈ H2 satisfying |u∗| = η a.e. on ∂D. We have u /∈ H∞. For
f ∈ H2, by [2, p. 36] we have

|f(z)| ≤
√

2‖f‖2√
1− r

, |z| ≤ r.

Hence

|f(ϕ∗(eiθ))| ≤
√

2‖f‖2√
1− r

, eiθ ∈ {|ϕ∗| < r}.

Therefore

‖MuCϕf‖2
2

=

∫
∂D
|u∗|2|(f ◦ ϕ)∗|2 dm

=

∫
{|ϕ∗|<r}

|u∗|2|(f ◦ ϕ)∗|2 dm+

∫
∂D\{|ϕ∗|<r}

|u∗|2|(f ◦ ϕ)∗|2 dm

≤ 2‖f‖2
2

1− r

∫
∂D
|u∗|2 dm+

∫
∂D
|(f ◦ ϕ)∗|2 dm

≤
(2‖η‖2

2

1− r
+ ‖Cϕ‖2

)
‖f‖2

2.

Thus MuCϕ : H2 → H2 is bounded. �

Hereafter, to study Problem 1.1 we assume that ϕ is an inner function satisfying
supp(ϕ) 6= ∅. In [5, Proposition 2.9], Nguyen, Ohno and the first author proved
the following essentially.

Lemma 2.2. Let ϕ be an inner function. If supz∈∂D\supp(ϕ) |ϕ∗′(z)| = ∞, then

there exists a function u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.

Let ϕ be an inner function and I = {eit : t1 < t < t2} satisfy I ∩ supp(ϕ) = ∅.
Then there is a real valued differentiable function σ(t) such that ϕ∗(eit) = eiσ(t)

and σ′(t) > 0 on (t1, t2). Admitting the values ∞,−∞, we may define sk =
limt→tk σ(t) for k = 1, 2. Putting σ(tk) = sk, we think σ(t) of an extended real
valued continuous function on [t1, t2] and ϕ∗(I) = {eis : s1 < s < s1}.

For eit0 ∈ ∂D and ε > 0, we write Iε(e
it0) = {eit : t0 − ε < t < t0 + ε}.

Lemma 2.3. Let ϕ be an inner function. If supp(ϕ) = {eit0}, then

sup
z∈Iε(eit0 )\{eit0}

|ϕ∗′(z)| = ∞
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for every ε > 0.

Proof. There is a real valued differentiable function σ(t) on (t0, t0 + 2π) such
that ϕ∗(eit) = eiσ(t) and σ′(t) > 0 for every t0 < t < t0 + 2π. Then either
limt→t0 σ(t) = −∞ or limt→t0+2π σ(t) = ∞ (see [3, p. 90–91]). Hence we get the
assertion. �

Lemma 2.4. Let ϕ1, ϕ2 be inner functions and I be an open subarc of ∂D such
that I ∩ supp(ϕ1ϕ2) = ∅. Then |(ϕ1ϕ2)

∗′| = |ϕ∗1′|+ |ϕ∗2′| on I.

Proof. Let I = {eit : t1 < t < t2}. There are real valued differentiable functions
σ1(t), σ2(t) on (t1, t2) such that ϕ∗1(e

it) = eiσ1(t), ϕ∗2(e
it) = eiσ2(t), σ′1(t) > 0 and

σ′2(t) > 0 for every t1 < t < t2. We have (ϕ1ϕ2)
∗(eit) = ei(σ1(t)+σ2(t)). Hence

(ϕ1ϕ2)
∗′(eit) = −ie−it d

dt
(ϕ1ϕ2)

∗(eit) = e−it(σ′1(t) + σ′2(t))e
i(σ1(t)+σ2(t))

for t1 < t < t2. Therefore

|(ϕ1ϕ2)
∗′(eit)| = σ′1(t) + σ′2(t) = |ϕ∗1′(eit)|+ |ϕ∗2′(eit)|.

�

For a subset E of ∂D, we denote by intE the interior of E in ∂D.

Theorem 2.5. Let ϕ be an inner function. If supp(ϕ) 6= int supp(ϕ), then
supz∈∂D\supp(ϕ) |ϕ∗′(z)| = ∞.

Proof. Take eit0 ∈ supp(ϕ) \ int supp(ϕ) and then take an open subarc I of

∂D such that eit0 ∈ I and I ∩ int supp(ϕ) = ∅. For each λ ∈ D, let τλ(z) =
(z − λ)/(1 − λz), z ∈ D. By Frostman’s theorem (see [3, p. 79]), there is λ ∈ D
such that ψ := τλ ◦ ϕ is a Blaschke product. We have supp(ψ) = supp(ϕ). Then
there is a sequence {ak}k≥1 in D such that ψ(ak) = 0 for every k ≥ 1 and ak → eit0

as k → ∞. Let ψ1 be the Blaschke subproduct of ψ with zeros {ak}k≥1. Then
supp(ψ1) = {eit0}. Let ψ2 = ψ/ψ1. Retaking a further subsequence of {ak}k≥1,
we may assume that supp(ψ2) = supp(ψ). Since eit0 ∈ I, we may take ε > 0
satisfying

Iε(e
it0) = {eit : t0 − ε < t < t0 + ε} ⊂ I.

By Lemma 2.3, we have supz∈Iε(eit0 )\{eit0} |ψ∗1 ′(z)| = ∞. Since I∩int supp(ψ) = ∅,
Iε(e

it0) \ supp(ψ) is dense in Iε(e
it0). Hence

sup
z∈Iε(eit0 )\supp(ψ)

|ψ∗1 ′(z)| = ∞.

Therefore by Lemma 2.4, we have

sup
z∈Iε(eit0 )\supp(ψ)

|ψ∗′(z)| = sup
z∈Iε(eit0 )\supp(ψ)

(|ψ∗1 ′(z)|+ |ψ∗2 ′(z)|)

≥ sup
z∈Iε(eit0 )\supp(ψ)

|ψ∗1 ′(z)| = ∞.

We have ϕ = τ−λ ◦ ψ and ϕ∗′ = ψ∗′(τ ′−λ ◦ ψ∗) on Iε(e
it0) \ supp(ψ). Since

infz∈∂D |τ ′−λ(z)| > 0, we have supz∈Iε(eit0 )\supp(ψ) |ϕ∗′(z)| = ∞. Since supp(ϕ) =
supp(ψ), we get the assertion. �
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By Lemma 2.2 and Theorem 2.5, we have the following theorem.

Theorem 2.6. Let ϕ be an inner function. If supp(ϕ) 6= int supp(ϕ), then there
exists a function u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.

There are many examples of inner functions ϕ such that supp(ϕ) = int supp(ϕ)
and there exists a function u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.
For example, let ϕ1 be an inner function satisfying supp(ϕ1) = {eit : 0 ≤ t ≤ π}.
Let

ϕ2(z) = exp
(z + 1

z − 1
+
z − 1

z + 1

)
.

Then ϕ2 is a singular inner function satisfying supp(ϕ2) = {1,−1}. Put ϕ = ϕ1ϕ2.
Then we have that supp(ϕ) = {eit : 0 ≤ t ≤ π} and

sup
π<t<2π

|ϕ∗′(eit)| = ∞.

Hence there exists a function u ∈ H2 \ H∞ such that MuCϕ : H2 → H2 is
bounded.

Let ψ be an inner function with supp(ψ) = ∂D. By the above fact, Cψ(MuCϕ) =
Mu◦ψCϕ◦ψ is bounded onH2. We have that supp(ϕ◦ψ) = ∂D and u◦ψ ∈ H2\H∞.
Hence there are an inner function η with supp(η) = ∂D and v ∈ H2 \ H∞ such
that MvCη : H2 → H2 is bounded.

We shall give another sufficient condition. One may check the following easily.

Lemma 2.7. Let ϕ1, ϕ2 be inner functions and I be an open subarc of ∂D such
that I ∩ supp(ϕ1ϕ2) = ∅. Then m(ϕ∗1(I)) ≤ m((ϕ1ϕ2)

∗(I)).

Lemma 2.8. Let ϕ be an inner function and I be an open subarc of ∂D such
that I ∩ supp(ϕ) = ∅. We write I = {eit : t1 < t < t2}. Let σ(t) be an
extended real valued continuous function on [t1, t2] such that ϕ∗(eit) = eiσ(t), σ(t)
is differentiable and σ′(t) > 0 on (t1, t2). If σ(t2) − σ(t1) < ∞, then for each
ε > 0, there is an inner function ψ such that ϕ/ψ is inner, supp(ψ) = supp(ϕ)
and m(ψ∗(I)) < ε.

Proof. By the assumption, −∞ < σ(t1) < σ(t2) < ∞. Take a positive integer n
satisfying (σ(t2)− σ(t1))/2nπ < ε. It is not difficult to see the existence of inner
functions ϕ1, ϕ2, · · · , ϕn such that ϕ = ϕ1ϕ2 · · ·ϕn and supp(ϕj) = supp(ϕ) for
every 1 ≤ j ≤ n. For each 1 ≤ j ≤ n, there is a real valued continuous function
σj(t) on [t1, t2] such that ϕ∗j(e

it) = eiσj(t), σj(t) is differentiable and σ′j(t) > 0 on
(t1, t2). We have

σ(t2)− σ(t1) =
n∑
j=1

(σj(t2)− σj(t1)).

Then (σj0(t2)− σj0(t1))/2π < ε for some 1 ≤ j0 ≤ n. Hence m(ϕ∗j0(I)) < ε. Put
ψ = ϕj0 . Then ϕ/ψ is inner, supp(ψ) = supp(ϕ) and m(ψ∗(I)) < ε. �

For an inner function ϕ and a measurable subset E ⊂ ∂D, we put

ϕ∗(−1)(E) =
{
eiθ ∈ ∂D : ϕ∗(eiθ) ∈ E

}
.
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If ϕ(0) = 0, then it is known that

m(ϕ∗(−1)(E)) = m(E)

for any measurable subset E of ∂D.

Theorem 2.9. Let ϕ be an inner function. Suppose that there is a sequence of
mutually disjoint open subarcs {In}n≥1 of ∂D such that

⋃∞
n=1 In = ∂D \ supp(ϕ).

For each n ≥ 1, let In = {eit : tn,1 < t < tn,2} and σn(t) be an extended real valued
continuous function on [tn,1, tn,2] such that ϕ∗n(e

it) = eiσn(t), σn(t) is differentiable
and σ′n(t) > 0 on (tn,1, tn,2). Then we have the following.

(i) If σn(tn,2)− σn(tn,1) = ∞, then supz∈In |ϕ∗′(z)| = ∞.
(ii) Suppose that σn(tn,2)− σn(tn,1) <∞ for every n ≥ 1. If

∑∞
n=1(σn(tn,2)−

σn(tn,1)) = ∞, then

sup
z∈∂D\supp(ϕ)

|ϕ∗′(z)| = ∞.

(iii) Suppose that σn(tn,2)− σn(tn,1) <∞ for every n ≥ 1. If m(supp(ϕ)) = 0,
then

∑∞
n=1(σn(tn,2)− σn(tn,1)) = ∞.

If one of the assumptions of (i), (ii) and (iii) holds, then there exists u ∈ H2\H∞

such that MuCϕ : H2 → H2 is bounded.

Proof. (i) follows from the mean valued theorem.
(ii) For each positive integer j, there is nj such that

j ≤
σnj

(tnj ,2)− σnj
(tnj ,1)

tnj ,2 − tnj ,1

.

For, if not, then there is j0 such that

σn(tn,2)− σn(tn,1)

tn,2 − tn,1
< j0

for every n ≥ 1. Then we have

∞ =
∞∑
n=1

(σn(tn,2)− σn(tn,1)) < j0

∞∑
n=1

(tn,2 − tn,1) ≤ 2πj0.

This is a contradiction.
By the mean valued theorem, there is tnj ,1 < θj < tnj ,2 satisfying j ≤ σ′nj

(θj) =

|ϕ∗′(eiθj)| for every j. Therefore we get

sup
z∈∂D\supp(ϕ)

|ϕ∗′(z)| = sup
n≥1

sup
z∈In

|ϕ∗′(z)| = ∞.

(iii) To prove (iii), suppose that
∑∞

n=1(σn(tn,2) − σn(tn,1)) < ∞. We shall
lead a contradiction. By the assumption, there is n0 such that

∑∞
n=n0

(σn(tn,2)−
σn(tn,1)) < 1. By Lemmas 2.7 and 2.8, there is an inner function ψ such that
ϕ/ψ is inner, supp(ψ) = supp(ϕ) and

∑∞
n=1m(ψ∗(In)) < 1. Therefore

m
(
ψ∗

( ∞⋃
n=1

In

))
= m

( ∞⋃
n=1

ψ∗(In)
)
≤

∞∑
n=1

m(ψ∗(In)) < 1.
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Let λ = ψ(0) and τλ(z) = (z − λ)/(1 − λz). Set η(z) = τλ ◦ ψ. Since τλ is
an automorphism, m(E) = 0 if and only if m(τ ∗λ(E)) = 0 for every measurable
subset E of ∂D. Then we have

m
(
η∗

( ∞⋃
n=1

In

))
= m

(
τ ∗λ

(
ψ∗

( ∞⋃
n=1

In

)))
< 1.

Since η is an inner function and η(0) = 0, we have

m
( ∞⋃
n=1

In

)
≤ m

(
η∗(−1)

(
η∗

( ∞⋃
n=1

In

)))
= m

(
η∗

( ∞⋃
n=1

In

))
< 1.

Since m(supp(ϕ)) = 0, we have m(
⋃∞
n=1 In) = 1. Thus we get a contradiction.

The last part of the assertion follows from Lemma 2.2. �

3. Other sufficient conditions

For an inner function ϕ, first we consider the following condition.

(α) There is a sequence of mutually disjoint measurable subsets {Cn}n≥1 of ∂D
and a sequence of positive numbers {δn}n≥1 satisfying

∑∞
n=1 δn < ∞ such that

m(Cn) > 0 and m(Cn ∩ ϕ∗(−1)(E)) ≤ δnm(E) for every measurable subset E of
∂D and for every n ≥ 1.

We do not know whether condition (α) holds or not for any inner function ϕ
satisfying m(supp(ϕ)) > 0. We shall show the following theorem.

Theorem 3.1. Let ϕ be an inner function satisfying condition (α). Then there
is u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.

Proof. Since {Cn}n≥1 is a sequence of mutually disjoint measurable subsets of
∂D, we have

∑∞
n=1m(Cn) ≤ m(∂D) = 1. Then there is a sequence of positive

numbers {an}n≥1 such that an ≥ 1 for every n,

∞∑
n=1

anm(Cn) <∞

and an →∞ as n→∞. Since
∑∞

n=1 δn <∞, moreover we may assume that

∞∑
n=1

anδn <∞.

Put a0 = 1 and C0 = ∂D \
⋃∞
n=1Cn. Let η be the function on ∂D defined by

η = an on Cn for every n ≥ 0. Then η ≥ 1 on ∂D and∫
∂D
η dm =

∞∑
n=0

anm(Cn) <∞.

By [4, p. 53], there exists u ∈ H2 such that |u|2 = η a.e. on ∂D. Since an → ∞
as n→∞ and m(Cn) > 0 for every n ≥ 1, we have u /∈ H∞.
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Let L be the set of measurable simple functions on ∂D. Let f ∈ L. We may
write

f =
∑̀
i=1

ciχΛi
,

where m(Λi) > 0 for every i and Λi ∩ Λj = ∅ for i 6= j. We have

‖MuCϕf‖2
2 =

∫
∂D
|u|2|f ◦ ϕ∗|2 dm =

∞∑
n=0

an

∫
Cn

|f ◦ ϕ∗|2 dm

=

∫
C0

|f ◦ ϕ∗|2 dm+
∞∑
n=1

an
∑̀
i=1

|ci|2
∫
Cn

χΛi
◦ ϕ∗ dm

≤
∫
∂D
|f ◦ ϕ∗|2 dm+

∞∑
n=1

an
∑̀
i=1

|ci|2m(Cn ∩ ϕ∗(−1)(Λi))

≤ ‖Cϕ‖2‖f‖2
2 +

∞∑
n=1

anδn
∑̀
i=1

|ci|2m(Λi) by condition (α)

=
(
‖Cϕ‖2 +

∞∑
n=1

anδn

)
‖f‖2

2.

Since
∑∞

n=1 anδn < ∞, MuCϕ : L → L2(∂D) is a bounded linear map. Since
L is dense in L2(∂D), MuCϕ may be extended boundedly on L2(∂D). Thus
MuCϕ : H2 → H2 is bounded. �

We shall give a sufficient condition on an inner function ϕ for which satisfies
condition (α). We consider the following condition for ϕ.

(β) There is a sequence of mutually disjoint measurable subsets {En}n≥1 of ∂D
such that m(En ∩ ϕ∗(−1)(E)) > 0 for every measurable subset E of ∂D satisfying
m(E) > 0 and for every n ≥ 1.

We do not know whether condition (β) holds or not for any inner function ϕ
satisfying m(supp(ϕ)) > 0.

Theorem 3.2. If an inner function ϕ satisfies condition (β), then ϕ satisfies
condition (α).

Proof. We divide the proof into two cases.

Case 1. Suppose that ϕ(0) = 0. Then it is known that

(3.1) m(ϕ∗(−1)(E)) = m(E)

for any measurable subset E of ∂D. By condition (β), there is a family of mutually
disjoint measurable subsets {En,j : 1 ≤ n, 1 ≤ j ≤ Nn} of ∂D such that

(3.2) m(En,j ∩ ϕ∗(−1)(E)) > 0
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for every measurable subset E of ∂D satisfying m(E) > 0 and for every n ≥
1, 1 ≤ j ≤ Nn. Moreover we may assume that

(3.3)
∞∑
n=1

1

Nn

<∞.

For each n ≥ 1, let Wn =
⋃Nn

j=1En,j. Then

(3.4) {Wn}n≥1 is a sequence of mutually disjoint sets.

Put
µn,j(E) = m(En,j ∩ ϕ∗(−1)(E))

for every measurable subset E of ∂D. Then µn,j is a positive measure on ∂D. By
(3.1), we have µn,j � m, so there is a nonnegative integrable function fn,j on ∂D
such that

(3.5)

∫
E

fn,j dm = m(En,j ∩ ϕ∗(−1)(E)).

By (3.1) again, we have∫
E

Nn∑
j=1

fn,j dm = m(Wn ∩ ϕ∗(−1)(E)) ≤ m(ϕ∗(−1)(E)) = m(E)

for every measurable subset E of ∂D. Hence

(3.6) 0 ≤
Nn∑
j=1

fn,j ≤ 1 a.e. on ∂D.

Let

(3.7) An,j =
{
eiθ ∈ ∂D : fn,j(e

iθ) ≤ 1

Nn

}
.

By (3.6) and (3.7), we have

m
(
∂D \

Nn⋃
j=1

An,j

)
= 0.

Let

(3.8) Bn,1 = An,1, Bn,j = An,j \
j−1⋃
i=1

An,i (2 ≤ j ≤ Nn).

Then

(3.9) {Bn,j : 1 ≤ j ≤ Nn} is a set of mutually disjoint sets

and

(3.10) m
( Nn⋃
j=1

Bn,j

)
= m

( Nn⋃
j=1

An,j

)
= 1.

We have that

(3.11) m(Bn,j) > 0 for some 1 ≤ j ≤ Nn.



INNER FUNCTIONS AND WEIGHTED COMPOSITION OPERATORS 113

For a measurable subset E of Bn,j, we have

m(En,j ∩ ϕ∗(−1)(E)) =

∫
E

fn,j dm by (3.5)

≤ m(E)

Nn

by (3.7) and (3.8).

Hence

(3.12) m(En,j ∩ ϕ∗(−1)(E)) ≤ m(E)

Nn

for every E ⊂ Bn,j.

For each 1 ≤ j ≤ Nn, let

(3.13) Cn,j = En,j ∩ ϕ∗(−1)(Bn,j)

and for each n ≥ 1, set Cn =
⋃Nn

j=1Cn,j. Then Cn ⊂ Wn and by (3.4), {Cn}n≥1 is
a sequence of mutually disjoint sets. For each n ≥ 1, we have

m(Cn) =
Nn∑
j=1

m(Cn,j)

=
Nn∑
j=1

m(En,j ∩ ϕ∗(−1)(Bn,j)) by (3.13)

> 0 by (3.2) and (3.11).

Hence m(Cn) > 0 for every n ≥ 1.
For a measurable subset E of ∂D and n ≥ 1, we have

m(Cn ∩ ϕ∗(−1)(E)) =
Nn∑
j=1

m(Cn,j ∩ ϕ∗(−1)(E))

=
Nn∑
j=1

Nn∑
k=1

m
(
Cn,j ∩ ϕ∗(−1)(Bn,k ∩ E)

)
by (3.9) and (3.10)
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=
Nn∑
j=1

Nn∑
k=1

m
(
En,j ∩ ϕ∗(−1)(Bn,j)

∩ϕ∗(−1)(Bn,k ∩ E)
)

by (3.13)

=
Nn∑
j=1

m
(
En,j ∩ ϕ∗(−1)(Bn,j ∩ E)

)
by (3.9)

≤
Nn∑
j=1

m(Bn,j ∩ E)

Nn

by (3.12)

=
m(E)

Nn

by (3.9) and (3.10).

Putting δn = 1/Nn > 0, we have m(Cn ∩ ϕ∗(−1)(E)) ≤ δnm(E). By (3.3),∑∞
n=1 δn <∞. Thus ϕ satisfies condition (α).

Case 2. Suppose that λ := ϕ(0) 6= 0. Let τλ(z) = (z − λ)/(1 − λz) and
ψ = τλ ◦ ϕ. We have ψ∗ = τ ∗λ ◦ ϕ∗. For a measurable subset E of ∂D with

m(E) > 0, ψ∗(−1)(E) = ϕ∗(−1)(τ
∗(−1)
λ (E)). Since m(τ

∗(−1)
λ (E)) > 0 and ϕ satisfies

condition (β), we have

m(En ∩ ψ∗(−1)(E)) = m(En ∩ ϕ∗(−1)(τ
∗(−1)
λ (E))) > 0

for every n ≥ 1. Hence ψ satisfies condition (β). By Case 1, ψ satisfies condition
(α). Then there is a sequence of mutually disjoint measurable subsets {Dn}n≥1

of ∂D and a sequence of positive numbers {σn}n≥1 satisfying
∑∞

n=1 σn <∞ such
that m(Dn) > 0 and

m(Dn ∩ ψ∗(−1)(A)) ≤ σnm(A)

for every measurable subset A of ∂D and for every n ≥ 1. Since τλ is an auto-
morphism, there is K > 0 such that m(τ ∗λ(A)) ≤ Km(A) for every A. We have
ψ∗(−1)(τ ∗λ(A)) = ϕ∗(−1)(A) and

m(Dn ∩ ϕ∗(−1)(A)) = m(Dn ∩ ψ∗(−1)(τ ∗λ(A))

≤ σnm(τ ∗λ(A)) ≤ σnKm(A).

Hence ϕ satisfies condition (α). �

By Theorems 3.1 and 3.2, we have the following.

Corollary 3.3. Let ϕ be an inner function satisfying condition (β). Then there
is u ∈ H2 \H∞ such that MuCϕ : H2 → H2 is bounded.
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