

Ann. Funct. Anal. 6 (2015), no. 2, 26–32
http://doi.org/10.15352/afa/06-2-3
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

THE STABLE RANK OF C*-MODULES

MAURICIO ACHIGAR

Communicated by T. Loring

ABSTRACT. We prove equality between the Topological Stable Rank and the Bass Stable Rank for finitely generated projective left modules over a unital C^* -algebra. In order to do so, the concept of Stable Rank of a Hilbert module is introduced.

1. INTRODUCTION AND PRELIMINARIES

In the mid 1960s, H. Bass introduced the concept of Stable Rank of a ring A, now refered to as Bass Stable Rank and denoted by $Bsr(A) \in \mathbb{N}$. In the late 1970s, R. B. Warfield extend this concept defining the Bass Stable Rank for modules over rings. Later, in [4], M. A. Rieffel introduced the notion of Topological Stable Rank for a Banach algebra A, $tsr(A) \in \mathbb{N}$, as well as for Banach modules over unital Banach algebras. In this work, Rieffel shows that $Bsr(A) \leq tsr(A)$ holds for unital Banach Algebras and that $Bsr(V) \leq tsr(V)$ holds for finitely generated projective modules V over unital C^* -algebras. In [3], R. H. Herman and L. N. Vaserstein prove that Bsr(A) = tsr(A) for a unital C^* -algebra A.

In this article we show that Bsr(V) = tsr(V) for finitely generated projective modules V over unital C^{*}-algebras, using similar techniques to the ones presented in [3]. In order to generalize Herman-Vaserstein's theorem, we introduce the concept of Stable Rank for a Hilbert module. This definition is inspired by the works of Ara and Goodearl [1] and Blackadar [2].

Date: Received: Aug. 15, 2013; Revised: Mar. 11, 2014; Accepted: Apr. 20, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 46L85, 46L05.

Key words and phrases. Bass stable rank, topological stable rank, C^* -algebra, C^* -module.

2. Types of stable ranks

Definition 2.1. Let $_AV$ be a left module over a ring A. The set of n-generators of V is defined as

$$\operatorname{Gen}_n(V) = \{ (x_1, \dots, x_n) \in V^n : A \cdot x_1 + \dots + A \cdot x_n = V \}.$$

When n = 1 we simply write $\text{Gen}(V) = \text{Gen}_1(V)$. We say that an (n + 1)generator $(x_1, \ldots, x_n, y) \in \text{Gen}_{n+1}(V)$ is *reducible* if there exist $a_1, \ldots, a_n \in A$ such that $(x_1 + a_1 \cdot y, \ldots, x_n + a_n \cdot y) \in \text{Gen}_n(V)$.

Remark 2.2. The column space V^n can be viewed as a left module over the matrix ring $M_n(A)$. In that case we have

$$\operatorname{Gen}_n({}_{A}V) = \operatorname{Gen}({}_{M_n(A)}V^n).$$

Definition 2.3. Let $_AV$ be a left module over a ring A. The Bass Stable Rank of V, denoted Bsr(V), is defined as the least $n \in \mathbb{N}$ $(n \ge 1)$ such that every (n+1)-generator $(x_1, \ldots, x_n, y) \in Gen_{n+1}(V)$ is reducible.

When $V = {}_{A}A$ and A has a unit, this definition becomes definition 2.1 in [4] and it's due to Bass. For arbitrary V and unital A, the above definition is equivalent to definition [4, Definition 9.1] of Bass stable rank for modules, introduced by Warfield.

Definition 2.4. ([4, Definition 9.3]) Let $_AV$ be a left Banach module over a Banach algebra A. The *Topological Stable Rank* of V is defined as

 $\operatorname{tsr}(V) = \min\{n \in \mathbb{N} : \operatorname{Gen}_n(V) \text{ is dense in } V^n\}.$

3. STABLE RANK FOR HILBERT MODULES

Definition 3.1. Given a right Hilbert module X_B over a unital C^* -algebra B, we consider

$$\operatorname{Um}_n(X) = \{ (x_1, \dots, x_n) \in X^n : \sum_k \langle x_k, x_k \rangle \in \operatorname{GL}(B) \}.$$

An *n*-tuple in $\text{Um}_n(X)$ is called *unimodular* tuple. If n = 1 we write $\text{Um}(X) = \text{Um}_1(X)$.

Remark 3.2. The column space X^n can be viewed as a right C^* -module over B, and in this case we have

$$\operatorname{Um}_n(X_B) = \operatorname{Um}(X_B^n).$$

Definition 3.3. Let X_B be a right Hilbert module over a unital C^* -algebra B. We define the *Stable Rank* of X_B as

 $\operatorname{sr}(X_B) = \min\{n \in \mathbb{N} : \operatorname{Um}_n(X) \text{ is dense in } X^n\}.$

Note that if $k \ge \operatorname{sr}(X_B)$ then $\operatorname{Um}_k(X)$ is dense in X^k .

Remark 3.4. For a unital C^* -algebra B, taking $X_B = B_B$ in the previous definition we recover Rieffel's definition of (left) topological stable rank of B [4, Definition 1.4]. Indeed, Lemma 3.7 or Remark 3.8 can be used to see that $\text{Um}_n(B_B) =$ $\text{Lg}_n(B)$, the later being the set of left *n*-generators of B considered in [4]. Then, $\text{sr}(B_B) = \text{tsr}(B)$ (= Bsr(B)). Remark 3.5. For projections p, q in a C^* -algebra A, Blackadar ([2]) considered the set

$$Lg_{(p,q)}(A) = \{ x \in pAq : \exists y \in qAp \text{ such that } yx = q \}.$$

and used the condition of $Lg_{(p,q)}(A)$ being dense in pAq. Taking X as the skew corner X = pAq and B = qAq we have, by Lemma 3.7, that $Lg_{(p,q)}(A) = Um(X_B)$, and $Lg_{(p,q)}(A)$ is dense in pAq if and only if $sr(X_B) = 1$.

Example 3.6. Let A be a unital C^* -algebra and consider the set $M_{n \times m}(A)$ as a right C^* -module over $M_m(A)$ with formal matrix operations. The stable rank of $M_{n \times m}(A)$ is

$$\operatorname{sr}(M_{n \times m}(A)) = \left\lceil \frac{\operatorname{sr}(A) + m - 1}{n} \right\rceil.$$
(3.1)

This expression extends the well-known formula for $sr(M_n(A))$ ([4, theorem 6.1]).

Proof. Firstly, by Lemma 3.7 we know that $\text{Um}(M_{n \times m}(A))$ is the set of left invertible $n \times m$ matrices over A. Then, by [2, Corollary 4.3] we have

 $\operatorname{Um}(M_{(n+1)\times 1}(A))$ is dense iff $\operatorname{Um}(M_{(n+k)\times k}(A))$ is dense,

where "Um $(M_{r\times s}(A))$ dense" means dense in $M_{r\times s}(A)$. Equivalently,

$$\operatorname{Um}(M_{r \times s}(A))$$
 is dense iff $\operatorname{Um}(M_{(r-s+1) \times 1}(A))$ is dense, for $r \ge s$. (3.2)

Secondly, we can realize $M_{n \times m}(A)$ as a skew corner of $M_{\bar{n}}(A)$ for \bar{n} large in the following way: $M_{n \times m}(A) \cong pM_{\bar{n}}(A)q$ for $p, q \in M_{\bar{n}}(A)$ diagonal projections of ranks n and m, respectively. Then, by [2, Proposition 3.2.iii] we have

If
$$\operatorname{Um}(M_{n \times m}(A))$$
 is dense then $n \ge m$. (3.3)

For $k \in \mathbb{N}$, we have $k \geq \operatorname{sr}(M_{n \times m}(A))$ iff $\operatorname{Um}_k(M_{n \times m}(A))$ is dense. Identifying the column space $M_{n \times m}(A)^k$ with $M_{nk \times m}(A)$ we have $\operatorname{Um}_k(M_{n \times m}(A)) = \operatorname{Um}(M_{n \times m}(A)^k) = \operatorname{Um}(M_{nk \times m}(A))$. If $\operatorname{Um}(M_{nk \times m}(A))$ is dense then $nk \geq m$, by (3.3), and $\operatorname{Um}(M_{(nk-m+1)\times 1}(A))$ is dense, by (3.2). Therefore $nk - m + 1 \geq \operatorname{sr}(A)$ by definition of $\operatorname{sr}(A)$, and then $k \geq \frac{\operatorname{sr}(A) + m - 1}{n}$. Conversely, the inequalities imply $nk \geq m$ and the density of $\operatorname{Um}(M_{(nk-m+1)\times 1}(A))$, then by (3.2) $\operatorname{Um}(M_{nk \times m}(A))$ (= $\operatorname{Um}_k(M_{n \times m}(A))$) is dense, and finally $k \geq \operatorname{sr}(M_{n \times m}(A))$. Thus we have shown that $k \geq \operatorname{sr}(M_{n \times m}(A))$ iff $k \geq \frac{\operatorname{sr}(A) + m - 1}{n}$, which is equivalent to (3.1).

Lemma 3.7. Let X_B be a unital Hilbert module. For $x \in X$, the following are equivalent:

- (a) $\langle x, x \rangle \in GL(B)$.
- (b) There exists $y \in X$ such that $\langle y, x \rangle = 1$.
- (b*) There exists $y \in X$ such that $\langle x, y \rangle = 1$.
- (c) There exists $y \in X$ such that $\langle y, x \rangle \in GL(B)$.
- (c*) There exists $y \in X$ such that $\langle x, y \rangle \in GL(B)$.

Proof. It suffices to show that (a) is equivalent to (b). If $\langle x, x \rangle \in \operatorname{GL}(B)$ let $b = \langle x, x \rangle$ and $y = x(b^{-1})^*$. Then $\langle y, x \rangle = b^{-1} \langle x, x \rangle = 1$. On the other hand, if $\langle y, x \rangle = 1$ we have $1 = \langle y, x \rangle^* \langle y, x \rangle \leq ||y||^2 \langle x, x \rangle$, so that $\langle x, x \rangle \in \operatorname{GL}(B)$. \Box

Remark 3.8. Applying Lemma 3.7 to X^n we obtain different expressions for $\text{Um}_n(X)$. For example, using (b) we have

$$\operatorname{Um}_n(X) = \{ (x_1, \dots, x_n) \in X^n : \exists y_1, \dots, y_n \in X / \sum_k \langle y_k, x_k \rangle = 1 \}.$$

Lemma 3.9. Let X_B be a unital Hilbert module. Then X_B is full if and only if there exists $n \in \mathbb{N}$ such that $Um_n(X) \neq \emptyset$.

Proof. The module X_B is full if and only if the *-ideal $J = \operatorname{span}(\langle X, X \rangle)$ is dense in B, iff $J \cap \operatorname{GL}(B) \neq \emptyset$, iff $1 \in J \ (= B)$, iff there exists $n \in \mathbb{N}$ and $x_1, \ldots, x_n, y_1, \ldots, y_n \in X$ such that $\sum_k \langle x_k, y_k \rangle = 1$, iff there exists $n \in \mathbb{N}$ and $x, y \in X^n$ such that $\langle x, y \rangle = 1$, iff there exists $n \in \mathbb{N}$ such that $\operatorname{Um}_n(X) \neq \emptyset$. \Box

Notice that if X_B is not full then $\text{Um}_n(X) = \emptyset$ for all $n \in \mathbb{N}$, and therefore $\text{sr}(X) = \infty$. Thus, throughout this paper we shall consider X_B to be full.

Definition 3.10. A C^* -correspondence is a right Hilbert module X_B equipped with a left action $A \to \mathcal{L}(X_B)$ of a C^* -algebra A by adjointable operators. When B has a unit we say that the correspondence is *right-unital*.

Lemma 3.11. Let $_{A}X_{B}$ be a full and right-unital C^{*}-correspondence. Then

 $Gen_n(AX) \subseteq Um_n(X_B) \quad \forall n \in \mathbb{N}.$

Proof. Since $\operatorname{Gen}_n(AX) = \operatorname{Gen}(_{M_n(A)}X^n)$, $\operatorname{Um}_n(X_B) = \operatorname{Um}(X_B^n)$, and the C^* correspondence $_{M_n(A)}X_B^n$ is full and right-unital, we may assume n = 1. As X_B is full there exist $x_1, \ldots, x_r, y_1, \ldots, y_r \in X$ such that $\sum_k \langle x_k, y_k \rangle = 1$. If $x \in \operatorname{Gen}(AX)$ let $a_1, \ldots, a_r \in A$ be such that $x_k = a_k \cdot x$, for $k = 1, \ldots, r$. Then,

$$1 = \sum_{k} \langle x_k, y_k \rangle = \sum_{k} \langle a_k \cdot x, y_k \rangle = \sum_{k} \langle x, a_k^* \cdot y_k \rangle = \langle x, \sum_{k} a_k^* \cdot y_k \rangle,$$

so $x \in \mathrm{Um}(X_B)$.

Definition 3.12. A vector space X is said to be a C^* -bimodule whenever it is equipped with compatible left and right Hilbert module structures (that is $x \cdot \langle y, z \rangle_R = \langle x, y \rangle_L \cdot z$, for $x, y, z \in X$) over C^* -algebras A and B, respectively.

Lemma 3.13. Let $_AX_B$ be a right-full and right-unital C^{*}-bimodule. Then

 $Um_n(X_B) \subseteq Gen_n(AX) \quad \forall n \in \mathbb{N}.$

Proof. Since $\operatorname{Gen}_n({}_AX) = \operatorname{Gen}_{(M_n(A)}X^n)$, $\operatorname{Um}_n(X_B) = \operatorname{Um}(X_B^n)$ and the C^* bimodule ${}_{M_n(A)}X_B^n$ is right-full and right-unital, we may assume n = 1. Given $x \in \operatorname{Um}(X)$, let $y \in X$ be such that $\langle y, x \rangle_R = 1$. Then, for all $z \in X$ we have $z = z \cdot 1 = z \cdot \langle y, x \rangle_R = \langle z, y \rangle_L \cdot x$. Then $x \in \operatorname{Gen}(X)$. \Box

Proposition 3.14. Let $_{A}X_{B}$ be a right-full and right-unital C^{*}-bimodule. Then

$$Um_n(X_B) = Gen_n(AX) \quad \forall n \in \mathbb{N} \quad and \quad tsr(AX) = sr(X_B).$$

M. ACHIGAR

4. Stable Rank Inequality for C^* -modules

[4, Proposition 9.7] says that $Bsr(V) \leq tsr(V)$ for a finitely generated projective left module $_AV$ over a unital C^* -algebra A. Inspired by this, we prove a similar result in the C^* -module context, namely, if X is a right-full and right-unital C^* -bimodule, then $Bsr(X) \leq tsr(X)$.

Lemma 4.1. (Warfield Condition, [4, Propositions 2.2 and 9.2]) Let $_{A}X_{B}$ be a right-full and right-unital C^{*}-bimodule and $x_{1}, \ldots, x_{n+1} \in X$. The following conditions are equivalent:

(a)
$$\exists a_1, \dots, a_n \in A / (x_1 + a_1 \cdot x_{n+1}, \dots, x_n + a_n \cdot x_{n+1}) \in Um_n(X).$$

(b) $\exists y_1, \dots, y_{n+1} \in X / \sum_{k=1}^{n+1} \langle y_k, x_k \rangle_R = 1 \text{ and } (y_1, \dots, y_n) \in Um_n(X).$

Proof. If $(x_1 + a_1 \cdot x_{n+1}, \ldots, x_n + a_n \cdot x_{n+1}) \in \text{Um}_n(X)$, there exist $y_1, \ldots, y_n \in X$ such that $\sum_{k=1}^n \langle y_k, x_k + a_k \cdot x_{n+1} \rangle_R = 1$. Then we have $(y_1, \ldots, y_n) \in \text{Um}_n(X)$ by Lemma 3.7, and

$$\sum_{k=1}^{n} \langle y_k, x_k \rangle_R + \langle \sum_{k=1}^{n} a_k^* \cdot y_k, x_{n+1} \rangle_R = 1.$$

Taking $y_{n+1} = \sum_{k=1}^{n} a_k^* \cdot y_k$ we obtain (b).

Conversely, if condition (b) holds, as $(y_1, \ldots, y_n) \in \text{Um}_n(X)$ there are $z_1, \ldots, z_n \in X$ such that $\sum_{k=1}^n \langle y_k, z_k \rangle_R = 1$. Let $a_k = \langle z_k, y_{n+1} \rangle_L$, for $k = 1, \ldots, n$. Then

$$\sum_{k=1}^{n} \langle y_k, x_k + a_k \cdot x_{n+1} \rangle_R = \sum_{k=1}^{n} \langle y_k, x_k \rangle_R + \langle \sum_{k=1}^{n} a_k^* \cdot y_k, x_{n+1} \rangle_R.$$
(4.1)

Now, we have

$$\sum_{k=1}^{n} a_{k}^{*} \cdot y_{k} = \sum_{k=1}^{n} \langle y_{n+1}, z_{k} \rangle_{L} \cdot y_{k} = \sum_{k=1}^{n} y_{n+1} \cdot \langle z_{k}, y_{k} \rangle_{R}$$
$$= y_{n+1} \cdot \sum_{k=1}^{n} \langle z_{k}, y_{k} \rangle_{R} = y_{n+1} \cdot 1 = y_{n+1}.$$

Then, the right-hand side of equation (4.1) equals 1 by (b), and (a) holds.

The proof of the following proposition is analogous to that of [4, Theorem 2.3].

Proposition 4.2. ([4, Proposition 9.7]) Let $_AX_B$ be a right-full and right-unital C^* -bimodule. Then

$$Bsr(X) \leq tsr(X).$$

Proof. Let $n = \operatorname{tsr}(X) = \operatorname{sr}(X)$. Given $(x_1, \ldots, x_{n+1}) \in \operatorname{Gen}_{n+1}(AX) = \operatorname{Um}_{n+1}(X_B)$ consider $z_1, \ldots, z_{n+1} \in X$ such that $\sum_{k=1}^{n+1} \langle z_k, x_k \rangle_R = 1$. For $k = 1, \ldots, n$, pick perturbations $\overline{z}_k \simeq z_k$ with $(\overline{z}_1 \ldots, \overline{z}_n) \in \operatorname{Um}_n(X)$ so that

$$d^* := \langle \bar{z}_1, x_1 \rangle_R + \dots + \langle \bar{z}_n, x_n \rangle_R + \langle z_{n+1}, x_{n+1} \rangle_R \in \mathrm{GL}(B).$$

Then, taking $y_1 = \bar{z}_1 \cdot d^{-1}, \dots, y_n = \bar{z}_n \cdot d^{-1}, y_{n+1} = z_{n+1} \cdot d^{-1}$ we have $(y_1, \dots, y_n) = (\bar{z}_1, \dots, \bar{z}_n) \cdot d^{-1} \in \operatorname{Um}_n(X)$ and $\sum_{k=1}^{n+1} \langle y_k, x_k \rangle_R = 1$. By the previous lemma (x_1, \dots, x_{n+1}) is reducible, and then $\operatorname{Bsr}(X) \leq n$.

5. Herman-Vaserstien theorem for C^* -modules

Herman–Vaserstein theorem states that for a unital C^* -algebra A, $tsr(A) \leq Bsr(A)$. In this section we obtain $tsr(X) \leq Bsr(X)$ for a right-full and right-unital Hilbert bimodule X.

Lemma 5.1. Let X_B be a full and unital Hilbert module. Given x_1, \ldots, x_n , $u_1, \ldots, u_r \in X$ such that $\sum_k \langle u_k, u_k \rangle = 1$, and $\varepsilon > 0$, let $b_0 = \sum_i \langle x_i, x_i \rangle$, $b = (1 - \frac{b_0}{\varepsilon})^+$ and $y_k = u_k \cdot b$, for $k = 1, \ldots, r$. Then $(x_1, \ldots, x_n, y_1, \ldots, y_r) \in Um_{n+r}(X_B)$.

Proof. Let $x = (x_1, \ldots, x_n)$, $u = (u_1, \ldots, u_r)$ and $y = (y_1, \ldots, y_r)$, then $y = u \cdot b$ and $b_0 = \langle x, x \rangle$. Consider the commutative C^* -subalgebra $B_0 := C^*(1, b_0) \subseteq B$. Let $c \in B$ the element given by

$$c = \langle y, y \rangle = \langle u \cdot b, u \cdot b \rangle = b^* \langle u, u \rangle b = b^* b = [(1 - \frac{b_0}{\varepsilon})^+]^2.$$

Consequently c and b_0 belong to B_0^+ and do not have common roots. Therefore

 $\langle (x,y), (x,y) \rangle = \langle x,x \rangle + \langle y,y \rangle = b_0 + c \in \operatorname{GL}(B_0) \subseteq \operatorname{GL}(B).$

That is, $(x, y) = (x_1, ..., x_n, y_1, ..., y_r) \in \text{Um}_{n+r}(X_B).$

Theorem 5.2. Let $_AX_B$ be a right-full and right-unital C^{*}-bimodule. Then

$$Bsr(X) = tsr(X).$$

Proof. By Proposition 4.2 it suffices to show $\operatorname{Bsr}(X) \geq \operatorname{tsr}(X)$. Suppose $\operatorname{Bsr}(_AX) = n$ and let $x = (x_1, \ldots, x_n) \in X^n$, $\varepsilon > 0$ be given. As X is right-full and rightunital, by Lemma 3.9, there exists $u = (u_1, \ldots, u_r) \in \operatorname{Um}_r(X)$ for suitable $r \in \mathbb{N}$. Replacing u with $u \cdot \langle u, u \rangle_R^{-1/2}$, we may suppose $\langle u, u \rangle_R = 1$. Taking b_0 , b and y as in Lemma 5.1 we have that $(x, y) \in \operatorname{Um}_{n+r}(X_B) = \operatorname{Gen}_{n+r}(_AX)$. Then, as $\operatorname{Bsr}(_AX) = n$, the generator (x, y) can be reduced r times to an n-generator. Therefore, there exists $a \in M_{n \times r}(A)$ such that $x + a \cdot y \in \operatorname{Gen}_n(_AX) = \operatorname{Um}_n(X_B)$. Let

$$k > \frac{\|a\|}{\varepsilon}, \quad d = 1 + kb \in B^+ \cap \operatorname{GL}(B) \quad \text{and}$$

 $x' = (x + a \cdot y) \cdot d^{-1} \in \operatorname{Um}_n(X) = \operatorname{Gen}_n(X),$

where ||a|| is the norm of a as a B-adjointable operator $a: X^r \to X^n$. We have $x - x' = (x \cdot d - x - a \cdot y) \cdot d^{-1} = (x \cdot kb - a \cdot y) \cdot d^{-1}$ and

ave
$$x - x' = (x \cdot d - x - a \cdot y) \cdot d^{-1} = (x \cdot kb - a \cdot y) \cdot d^{-1}$$
 and

$$||x - x'|| \le ||x \cdot kbd^{-1}|| + ||a \cdot y \cdot d^{-1}||.$$
(5.1)

As $b_0 = \langle x, x \rangle_R$, we have

$$|x \cdot kbd^{-1}|_R^2 = (kbd^{-1})^* \langle x, x \rangle_R (kbd^{-1}) = (kbd^{-1})^* b_0 (kbd^{-1}).$$

Now, as $b = (1 - \frac{b_0}{\varepsilon})^+$, we have $d = 1 + kb \in C^*(1, b_0) \cong C(T)$ which is commutative. Therefore $kbd^{-1} = kb(1 + kb)^{-1} = b(\frac{1}{k} + b)^{-1} \leq 1$ in C(T) and consequently

 $(kbd^{-1})^*b_0(kbd^{-1}) \leq b_0$. Moreover, if $b_0(t) > \varepsilon$ for suitable $t \in T$, then b(t) = 0, because $b = (1 - \frac{b_0}{\varepsilon})^+$. Hence $(kbd^{-1})^*b_0(kbd^{-1}) \leq \varepsilon$ and

$$\|x \cdot kbd^{-1}\| = \||x \cdot kbd^{-1}|_R^2\|^{1/2} \le \sqrt{\varepsilon}.$$
 (5.2)

On the other hand, since $y = u \cdot b$ we have

$$||a \cdot y \cdot d^{-1}|| = ||\frac{a}{k} \cdot u \cdot kbd^{-1}|| \le \frac{||a||}{k} ||u|| ||kbd^{-1}|| < \varepsilon,$$
(5.3)

where we have used that $||a||/k < \varepsilon$, ||u|| = 1 and $||kbd^{-1}|| \le 1$.

Thus we can estimate (5.1) using equations (5.2) and (5.3) to get

$$\|x - x'\| < \sqrt{\varepsilon} + \varepsilon.$$

Then, x' can be taken arbitrarily close to x and $x' \in \text{Gen}_n(X)$. Therefore, $\text{Gen}_n(X)$ is dense and $\text{tsr}(X) \leq n$.

Remark 5.3. If $_AX$ is a finitely generated projective module over a unital C^* algebra A we can make it into a right-full and right-unital C^* -bimodule in the following way. The module $_AX$ is a direct summand of A^n for suitable $n \in$ \mathbb{N} , and is therefore the range of a (selfadjoint) projection $p \in M_n(A)$. Then we have $_AX$ as the submodule $_A(A^np)$ of $_AA^n$. As we actually have a Hilbert $A-M_n(A)$ bimodule structrue on A^n (thinking of A^n as a row space and using the usual matrix operations) we obtain, by restriction, an $A - pM_n(A)p C^*$ -bimodule $_A(A^np)_{pM_n(A)p}$, which is right-full and right-unital.

Combining this construction with Theorem 5.2 we have that Bsr(X) = tsr(X) for every finitely generated projective left module over a unital C^* -algebra.

Acknowledgement. The author wishes to thank his friend Janine Bachrachas for her help editing this article.

Partially supported by Proyecto Fondo Clemente Estable FCE2007.731.

References

- P. Ara and K.R. Goodearl, Stable rank of corner rings, Proc. Amer. Math. Soc. 133 (2005), 370–386.
- B. Blackadar, The stable rank of full corners in C*-algebras, Proc. Amer. Math. Soc. 312 (2004), 2945–2950.
- R.H. Herman and L.N. Vaserstein, The stable range of C^{*}-algebras, Invent. Math. 77 (1984), 553–555.
- M.A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301–333.

FACULTAD DE CIENCIAS, IGUÁ 4225, CP 11400, MONTEVIDEO, URUGUAY. *E-mail address*: achigar@cmat.edu.uy; mauricio.achigar3@gmail.com