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Abstract. We prove equality between the Topological Stable Rank and the
Bass Stable Rank for finitely generated projective left modules over a unital
C∗-algebra. In order to do so, the concept of Stable Rank of a Hilbert module
is introduced.

1. Introduction and preliminaries

In the mid 1960s, H. Bass introduced the concept of Stable Rank of a ring A,
now refered to as Bass Stable Rank and denoted by Bsr(A) ∈ N. In the late 1970s,
R. B. Warfield extend this concept defining the Bass Stable Rank for modules
over rings. Later, in [4], M. A. Rieffel introduced the notion of Topological Stable
Rank for a Banach algebra A, tsr(A) ∈ N, as well as for Banach modules over
unital Banach algebras. In this work, Rieffel shows that Bsr(A) ≤ tsr(A) holds
for unital Banach Algebras and that Bsr(V ) ≤ tsr(V ) holds for finitely generated
projective modules V over unital C∗-algebras. In [3], R. H. Herman and L. N.
Vaserstein prove that Bsr(A) = tsr(A) for a unital C∗-algebra A.

In this article we show that Bsr(V ) = tsr(V ) for finitely generated projective
modules V over unital C∗-algebras, using similar techniques to the ones presented
in [3]. In order to generalize Herman-Vaserstein’s theorem, we introduce the
concept of Stable Rank for a Hilbert module. This definition is inspired by the
works of Ara and Goodearl [1] and Blackadar [2].
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2. Types of stable ranks

Definition 2.1. Let AV be a left module over a ring A. The set of n-generators
of V is defined as

Genn(V ) = {(x1, . . . , xn) ∈ V n : A · x1 + · · ·+ A · xn = V }.
When n = 1 we simply write Gen(V ) = Gen1(V ). We say that an (n + 1)-
generator (x1, . . . , xn, y) ∈ Genn+1(V ) is reducible if there exist a1, . . . , an ∈ A
such that (x1 + a1 · y, . . . , xn + an · y) ∈ Genn(V ).

Remark 2.2. The column space V n can be viewed as a left module over the matrix
ring Mn(A). In that case we have

Genn(AV ) = Gen(Mn(A)V
n).

Definition 2.3. Let AV be a left module over a ring A. The Bass Stable Rank
of V , denoted Bsr(V ), is defined as the least n ∈ N (n ≥ 1) such that every
(n + 1)-generator (x1, . . . , xn, y) ∈ Genn+1(V ) is reducible.

When V = AA and A has a unit, this definition becomes definition 2.1 in [4] and
it’s due to Bass. For arbitrary V and unital A, the above definition is equivalent
to definition [4, Definition 9.1] of Bass stable rank for modules, introduced by
Warfield.

Definition 2.4. ([4, Definition 9.3]) Let AV be a left Banach module over a
Banach algebra A. The Topological Stable Rank of V is defined as

tsr(V ) = min{n ∈ N : Genn(V ) is dense in V n}.

3. Stable rank for Hilbert modules

Definition 3.1. Given a right Hilbert module XB over a unital C∗-algebra B,
we consider

Umn(X) = {(x1, . . . , xn) ∈ Xn :
∑

k〈xk, xk〉 ∈ GL(B)}.
An n-tuple in Umn(X) is called unimodular tuple. If n = 1 we write Um(X) =
Um1(X).

Remark 3.2. The column space Xn can be viewed as a right C∗-module over B,
and in this case we have

Umn(XB) = Um(Xn
B).

Definition 3.3. Let XB be a right Hilbert module over a unital C∗-algebra B.
We define the Stable Rank of XB as

sr(XB) = min{n ∈ N : Umn(X) is dense in Xn}.

Note that if k ≥ sr(XB) then Umk(X) is dense in Xk.

Remark 3.4. For a unital C∗-algebra B, taking XB = BB in the previous definition
we recover Rieffel’s definition of (left) topological stable rank of B [4, Definition
1.4]. Indeed, Lemma 3.7 or Remark 3.8 can be used to see that Umn(BB) =
Lgn(B), the later being the set of left n-generators of B considered in [4]. Then,
sr(BB) = tsr(B) (= Bsr(B)).
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Remark 3.5. For projections p, q in a C∗-algebra A, Blackadar ([2]) considered
the set

Lg(p,q)(A) = {x ∈ pAq : ∃ y ∈ qAp such that yx = q}.
and used the condition of Lg(p,q)(A) being dense in pAq. Taking X as the skew cor-
ner X = pAq and B = qAq we have, by Lemma 3.7, that Lg(p,q)(A) = Um(XB),
and Lg(p,q)(A) is dense in pAq if and only if sr(XB) = 1.

Example 3.6. Let A be a unital C∗-algebra and consider the set Mn×m(A) as a
right C∗-module over Mm(A) with formal matrix operations. The stable rank of
Mn×m(A) is

sr(Mn×m(A)) =

⌈
sr(A) + m− 1

n

⌉
. (3.1)

This expression extends the well-known formula for sr(Mn(A)) ([4, theorem 6.1]).

Proof. Firstly, by Lemma 3.7 we know that Um(Mn×m(A)) is the set of left in-
vertible n×m matrices over A. Then, by [2, Corollary 4.3] we have

Um(M(n+1)×1(A)) is dense iff Um(M(n+k)×k(A)) is dense,

where “Um(Mr×s(A)) dense” means dense in Mr×s(A). Equivalently,

Um(Mr×s(A)) is dense iff Um(M(r−s+1)×1(A)) is dense, for r ≥ s. (3.2)

Secondly, we can realize Mn×m(A) as a skew corner of Mn̄(A) for n̄ large in
the following way: Mn×m(A) ∼= pMn̄(A)q for p, q ∈ Mn̄(A) diagonal projections
of ranks n and m, respectively. Then, by [2, Proposition 3.2.iii] we have

If Um(Mn×m(A)) is dense then n ≥ m. (3.3)

For k ∈ N, we have k ≥ sr(Mn×m(A)) iff Umk(Mn×m(A)) is dense. Identi-
fying the column space Mn×m(A)k with Mnk×m(A) we have Umk(Mn×m(A)) =
Um(Mn×m(A)k) = Um(Mnk×m(A)). If Um(Mnk×m(A)) is dense then nk ≥ m, by
(3.3), and Um(M(nk−m+1)×1(A)) is dense, by (3.2). Therefore nk−m+1 ≥ sr(A)

by definition of sr(A), and then k ≥ sr(A)+m−1
n

. Conversely, the inequalities imply
nk ≥ m and the density of Um(M(nk−m+1)×1(A)), then by (3.2) Um(Mnk×m(A))
(= Umk(Mn×m(A))) is dense, and finally k ≥ sr(Mn×m(A)). Thus we have shown

that k ≥ sr(Mn×m(A)) iff k ≥ sr(A)+m−1
n

, which is equivalent to (3.1). �

Lemma 3.7. Let XB be a unital Hilbert module. For x ∈ X, the following are
equivalent:

(a) 〈x, x〉 ∈ GL(B).
(b) There exists y ∈ X such that 〈y, x〉 = 1.

(b*) There exists y ∈ X such that 〈x, y〉 = 1.
(c) There exists y ∈ X such that 〈y, x〉 ∈ GL(B).

(c*) There exists y ∈ X such that 〈x, y〉 ∈ GL(B).

Proof. It suffices to show that (a) is equivalent to (b). If 〈x, x〉 ∈ GL(B) let
b = 〈x, x〉 and y = x(b−1)∗. Then 〈y, x〉 = b−1〈x, x〉 = 1. On the other hand, if
〈y, x〉 = 1 we have 1 = 〈y, x〉∗〈y, x〉 ≤ ‖y‖2〈x, x〉, so that 〈x, x〉 ∈ GL(B). �
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Remark 3.8. Applying Lemma 3.7 to Xn we obtain different expressions for
Umn(X). For example, using (b) we have

Umn(X) = {(x1, . . . , xn) ∈ Xn : ∃ y1, . . . , yn ∈ X /
∑

k〈yk, xk〉 = 1}.

Lemma 3.9. Let XB be a unital Hilbert module. Then XB is full if and only if
there exists n ∈ N such that Umn(X) 6= ∅.

Proof. The module XB is full if and only if the ∗-ideal J = span(〈X, X〉) is
dense in B, iff J ∩ GL(B) 6= ∅, iff 1 ∈ J (= B), iff there exists n ∈ N and
x1, . . . , xn, y1, . . . , yn ∈ X such that

∑
k〈xk, yk〉 = 1, iff there exists n ∈ N and

x, y ∈ Xn such that 〈x, y〉 = 1, iff there exists n ∈ N such that Umn(X) 6= ∅. �

Notice that if XB is not full then Umn(X) = ∅ for all n ∈ N, and therefore
sr(X) = ∞. Thus, throughout this paper we shall consider XB to be full.

Definition 3.10. A C∗-correspondence is a right Hilbert module XB equipped
with a left action A → L(XB) of a C∗-algebra A by adjointable operators. When
B has a unit we say that the correspondence is right-unital.

Lemma 3.11. Let AXB be a full and right-unital C∗-correspondence. Then

Genn(AX) ⊆ Umn(XB) ∀n ∈ N.

Proof. Since Genn(AX) = Gen(Mn(A)X
n), Umn(XB) = Um(Xn

B), and the C∗-
correspondence Mn(A)X

n
B is full and right-unital, we may assume n = 1. As

XB is full there exist x1, . . . , xr, y1, . . . , yr ∈ X such that
∑

k〈xk, yk〉 = 1. If
x ∈ Gen(AX) let a1, . . . , ar ∈ A be such that xk = ak · x, for k = 1, . . . , r. Then,

1 =
∑

k〈xk, yk〉 =
∑

k〈ak · x, yk〉 =
∑

k〈x, a∗k · yk〉 = 〈x,
∑

k a∗k · yk〉,

so x ∈ Um(XB). �

Definition 3.12. A vector space X is said to be a C∗-bimodule whenever it
is equipped with compatible left and right Hilbert module structures (that is
x · 〈y, z〉R = 〈x, y〉L · z, for x, y, z ∈ X) over C∗-algebras A and B, respectively.

Lemma 3.13. Let AXB be a right-full and right-unital C∗-bimodule. Then

Umn(XB) ⊆ Genn(AX) ∀n ∈ N.

Proof. Since Genn(AX) = Gen(Mn(A)X
n), Umn(XB) = Um(Xn

B) and the C∗-
bimodule Mn(A)X

n
B is right-full and right-unital, we may assume n = 1. Given

x ∈ Um(X), let y ∈ X be such that 〈y, x〉R = 1. Then, for all z ∈ X we have
z = z · 1 = z · 〈y, x〉R = 〈z, y〉L · x. Then x ∈ Gen(X). �

Proposition 3.14. Let AXB be a right-full and right-unital C∗-bimodule. Then

Umn(XB) = Genn(AX) ∀n ∈ N and tsr(AX) = sr(XB).
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4. Stable rank Inequality for C∗-modules

[4, Proposition 9.7] says that Bsr(V ) ≤ tsr(V ) for a finitely generated projective
left module AV over a unital C∗-algebra A. Inspired by this, we prove a similar
result in the C∗-module context, namely, if X is a right-full and right-unital
C∗-bimodule, then Bsr(X) ≤ tsr(X).

Lemma 4.1. (Warfield Condition, [4, Propositions 2.2 and 9.2]) Let AXB be
a right-full and right-unital C∗-bimodule and x1, . . . , xn+1 ∈ X. The following
conditions are equivalent:

(a) ∃ a1, . . . , an ∈ A / (x1 + a1 · xn+1, . . . , xn + an · xn+1) ∈ Umn(X).

(b) ∃ y1, . . . , yn+1 ∈ X /
n+1∑
k=1

〈yk, xk〉R = 1 and (y1, . . . , yn) ∈ Umn(X).

Proof. If (x1 + a1 ·xn+1, . . . , xn + an ·xn+1) ∈ Umn(X), there exist y1, . . . , yn ∈ X

such that
n∑

k=1

〈yk, xk + ak · xn+1〉R = 1. Then we have (y1, . . . , yn) ∈ Umn(X) by

Lemma 3.7, and
n∑

k=1

〈yk, xk〉R + 〈
n∑

k=1

a∗k · yk, xn+1〉R = 1.

Taking yn+1 =
n∑

k=1

a∗k · yk we obtain (b).

Conversely, if condition (b) holds, as (y1, . . . , yn) ∈ Umn(X) there are z1, . . . , zn ∈
X such that

n∑
k=1

〈yk, zk〉R = 1. Let ak = 〈zk, yn+1〉L, for k = 1, . . . , n. Then

n∑
k=1

〈yk, xk + ak · xn+1〉R =
n∑

k=1

〈yk, xk〉R + 〈
n∑

k=1

a∗k · yk, xn+1〉R. (4.1)

Now, we have
n∑

k=1

a∗k · yk =
n∑

k=1

〈yn+1, zk〉L · yk =
n∑

k=1

yn+1 · 〈zk, yk〉R

= yn+1 ·
n∑

k=1

〈zk, yk〉R = yn+1 · 1 = yn+1.

Then, the right-hand side of equation (4.1) equals 1 by (b), and (a) holds. �

The proof of the following proposition is analogous to that of [4, Theorem 2.3].

Proposition 4.2. ([4, Proposition 9.7]) Let AXB be a right-full and right-unital
C∗-bimodule. Then

Bsr(X) ≤ tsr(X).

Proof. Let n = tsr(X) = sr(X). Given (x1, . . . , xn+1) ∈ Genn+1(AX) = Umn+1(XB)

consider z1, . . . , zn+1 ∈ X such that
n+1∑
k=1

〈zk, xk〉R = 1. For k = 1, . . . , n, pick per-

turbations z̄k ' zk with (z̄1 . . . , z̄n) ∈ Umn(X) so that

d∗ := 〈z̄1, x1〉R + · · ·+ 〈z̄n, xn〉R + 〈zn+1, xn+1〉R ∈ GL(B).
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Then, taking y1 = z̄1·d−1, . . . , yn = z̄n·d−1, yn+1 = zn+1·d−1 we have (y1, . . . , yn) =

(z̄1, . . . , z̄n) · d−1 ∈ Umn(X) and
n+1∑
k=1

〈yk, xk〉R = 1. By the previous lemma

(x1, . . . , xn+1) is reducible, and then Bsr(X) ≤ n. �

5. Herman-Vaserstien theorem for C∗-modules

Herman–Vaserstein theorem states that for a unital C∗-algebra A, tsr(A) ≤
Bsr(A). In this section we obtain tsr(X) ≤ Bsr(X) for a right-full and right-
unital Hilbert bimodule X.

Lemma 5.1. Let XB be a full and unital Hilbert module. Given x1, . . . , xn,
u1, . . . , ur ∈ X such that

∑
k〈uk, uk〉 = 1, and ε > 0, let b0 =

∑
i〈xi, xi〉, b = (1−

b0
ε
)+ and yk = uk ·b, for k = 1, . . . , r. Then (x1, . . . , xn, y1, . . . , yr) ∈ Umn+r(XB).

Proof. Let x = (x1, . . . , xn), u = (u1, . . . , ur) and y = (y1, . . . , yr), then y = u · b
and b0 = 〈x, x〉. Consider the commutative C∗-subalgebra B0 := C∗(1, b0) ⊆ B.
Let c ∈ B the element given by

c = 〈y, y〉 = 〈u · b, u · b〉 = b∗〈u, u〉b = b∗b = [(1− b0

ε
)+]2.

Consequently c and b0 belong to B+
0 and do not have common roots. Therefore

〈(x, y), (x, y)〉 = 〈x, x〉+ 〈y, y〉 = b0 + c ∈ GL(B0) ⊆ GL(B).

That is, (x, y) = (x1, . . . , xn, y1, . . . , yr) ∈ Umn+r(XB). �

Theorem 5.2. Let AXB be a right-full and right-unital C∗-bimodule. Then

Bsr(X) = tsr(X).

Proof. By Proposition 4.2 it suffices to show Bsr(X) ≥ tsr(X). Suppose Bsr(AX) =
n and let x = (x1, . . . , xn) ∈ Xn, ε > 0 be given. As X is right-full and right-
unital, by Lemma 3.9, there exists u = (u1, . . . , ur) ∈ Umr(X) for suitable r ∈ N.

Replacing u with u · 〈u, u〉−1/2
R , we may suppose 〈u, u〉R = 1. Taking b0, b and

y as in Lemma 5.1 we have that (x, y) ∈ Umn+r(XB) = Genn+r(AX). Then,
as Bsr(AX) = n, the generator (x, y) can be reduced r times to an n-generator.
Therefore, there exists a ∈ Mn×r(A) such that x+a ·y ∈ Genn(AX) = Umn(XB).
Let

k >
‖a‖
ε

, d = 1 + kb ∈ B+ ∩GL(B) and

x′ = (x + a · y) · d−1 ∈ Umn(X) = Genn(X),

where ‖a‖ is the norm of a as a B-adjointable operator a : Xr → Xn.
We have x− x′ = (x · d− x− a · y) · d−1 = (x · kb− a · y) · d−1 and

‖x− x′‖ ≤ ‖x · kbd−1‖+ ‖a · y · d−1‖. (5.1)

As b0 = 〈x, x〉R, we have

|x · kbd−1|2R = (kbd−1)∗〈x, x〉R(kbd−1) = (kbd−1)∗b0(kbd−1).

Now, as b = (1− b0
ε
)+, we have d = 1+kb ∈ C∗(1, b0) ∼= C(T ) which is commuta-

tive. Therefore kbd−1 = kb(1 + kb)−1 = b( 1
k

+ b)−1 ≤ 1 in C(T ) and consequently



32 M. ACHIGAR

(kbd−1)∗b0(kbd−1) ≤ b0. Moreover, if b0(t) > ε for suitable t ∈ T , then b(t) = 0,
because b = (1− b0

ε
)+. Hence (kbd−1)∗b0(kbd−1) ≤ ε and

‖x · kbd−1‖ = ‖|x · kbd−1|2R‖1/2 ≤
√

ε. (5.2)

On the other hand, since y = u · b we have

‖a · y · d−1‖ = ‖a

k
· u · kbd−1‖ ≤ ‖a‖

k
‖u‖‖kbd−1‖ < ε, (5.3)

where we have used that ‖a‖/k < ε, ‖u‖ = 1 and ‖kbd−1‖ ≤ 1.
Thus we can estimate (5.1) using equations (5.2) and (5.3) to get

‖x− x′‖ <
√

ε + ε.

Then, x′ can be taken arbitrarily close to x and x′ ∈ Genn(X). Therefore,
Genn(X) is dense and tsr(X) ≤ n. �

Remark 5.3. If AX is a finitely generated projective module over a unital C∗-
algebra A we can make it into a right-full and right-unital C∗-bimodule in the
following way. The module AX is a direct summand of An for suitable n ∈
N, and is therefore the range of a (selfadjoint) projection p ∈ Mn(A). Then
we have AX as the submodule A(Anp) of AAn. As we actually have a Hilbert
A−Mn(A) bimodule structrue on An (thinking of An as a row space and using the
usual matrix operations) we obtain, by restriction, an A−pMn(A)p C∗-bimodule

A(Anp)pMn(A)p, which is right-full and right-unital.
Combining this construction with Theorem 5.2 we have that Bsr(X) = tsr(X)

for every finitely generated projective left module over a unital C∗-algebra.
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