
Ann. Funct. Anal. 1 (2010), no. 1, 51–58
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

ON MINKOWSKI AND HERMITE–HADAMARD INTEGRAL
INEQUALITIES VIA FRACTIONAL INTEGRATION

ZOUBIR DAHMANI1

Communicated by C. P. Niculescu

Abstract. In this paper, we use the the Riemann–Liouville fractional inte-
gral to develop some new results related to the Hermite–Hadamard inequality.
Other integral inequalities related to the Minkowsky inequality are also es-
tablished. Our results have some relationships with [E. Set, M. E. Ozdemir
and S.S. Dragomir, J. Inequal. Appl. 2010, Art. ID 148102, 9 pp.] and [L.
Bougoffa, J. Inequal. Pure and Appl. Math. 7 (2006), no. 2, Article 60, 3
pp.]. Some interested inequalities of these references can be deduced as some
special cases.

1. Introduction and preliminaries

In recent years, inequalities are playing a very significant role in all fields of math-
ematics, and present a very active and attractive field of research. As example,
let us cite the field of integration which is dominated by inequalities involving
functions and their integrals [2, 9, 10]. One of the famous integral inequalities is

f(a+ b)

2
≤ 2

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

where f is a convex function [7].
The history of this inequality begins with the paper of Ch. Hermite [8] and J.
Hadamard [7] in the years 1883-1893, see C.P. Niculescu and L.E. Persson [11] and
the references therein for some historical notes of Hermite–Hadamard inequality.
Many researchers have given considerable attention to (1) and a number of ex-
tensions and generalizations have appeared in the literature, see [1, 4, 5].
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The aim of this paper is to establish several new integral inequalities for nonneg-
ative and integrable functions that are related to the Hermite–Hadamard result
using the Riemann–Liouville fractional integral. Other integral inequalities re-
lated to the Minkowski inequality are also established. Our results have some
relationships with [3, 12]. Some interested inequalities of these references can be
deduced as some special cases.
We shall introduce the following definitions and properties which are used through-
out this paper.

Definition 1.1. A real valued function f(t), t ≥ 0 is said to be in the space
Cµ, µ ∈ R if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C([0,∞[).

Definition 1.2. A function f(t), t ≥ 0 is said to be in the space Cn
µ , µ ∈ R, if

f (n) ∈ Cµ.

Definition 1.3. The Riemann–Liouville fractional integral operator of order α ≥
0, for a function f ∈ Cµ, (µ ≥ −1) is defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),

where Γ(α) :=
∫∞

0
e−uuα−1du.

For the convenience of establishing the results, we give the semigroup property:

JαJβf(t) = Jα+βf(t), α ≥ 0, β ≥ 0.

More details, one can consult [6].

2. Main Results

Our first result is the following reverse Minkowski fractional integral inequality

Theorem 2.1. Let α > 0, p ≥ 1 and let f, g be two positive functions on [0,∞[,

such that for all t > 0, Jαfp(t) < ∞, Jαgp(t) < ∞. If 0 < m ≤ f(τ)
g(τ)
≤ M, τ ∈

[0, t], then we have[
Jαfp(t)

] 1
p

+
[
Jαgp(t)

] 1
p ≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

[
Jα(f + g)p(t)

] 1
p
. (2.1)

Proof. Using the condition f(τ)
g(τ)

< M, τ ∈ [0, t], t > 0, we can write

(M + 1)pfp(τ) ≤Mp(f + g)p(τ). (2.2)

Multiplying both sides of (2.2) by (t−τ)α−1

Γ(α)
; τ ∈ (0, t), then integrating the result-

ing inequalities with respect to τ over (0, t), we obtain

(M + 1)p

Γ(α)

∫ t

0

(t− τ)α−1fp(τ)dτ

≤ Mp

Γ(α)

∫ t
0
(t− τ)α−1(f + g)p(τ)dτ ,
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which is equivalent to

Jαfp(t) ≤ Mp

(M + 1)p
Jα(f + g)p(t).

Hence, we can write [
Jαfp(t)

] 1
p ≤ M

M + 1

[
Jα(f + g)p(t)

] 1
p
. (2.3)

On the other hand, using the condition mg(τ) ≤ f(τ), we can write

(1 +
1

m
)g(τ) ≤ 1

m
(f(τ) + g(τ)).

Therefore, (
1 +

1

m

)p
gp(τ) ≤

( 1

m

)p(
f(τ) + g(τ)

)p
. (2.4)

Now, multiplying both sides of (2.4) by (t−τ)α−1

Γ(α)
; τ ∈ (0, t), then integrating the

resulting inequalities with respect to τ over (0, t), we obtain[
Jαgp(t)

] 1
p ≤ 1

m+ 1

[
Jα(f + g)p(t)

] 1
p
. (2.5)

Adding the inequalities (2.3) and (2.5), we obtain the inequality (2.1). �

Remark 2.2. Applying Theorem 2.1 for α = 1, we obtain [3, Theorem 1.2] on
[0, t].

Our second result is the following

Theorem 2.3. Let α > 0, p ≥ 1 and let f, g be two positive functions on [0,∞[,

such that for all t > 0, Jαfp(t) < ∞, Jαgp(t) < ∞. If 0 < m ≤ f(τ)
g(τ)
≤ M, τ ∈

[0, t], then we have[
Jαfp(t)

] 2
p

+
[
Jαgp(t)

] 2
p ≥ (

(M + 1)(m+ 1)

M
− 2)

[
Jαfp(t)

] 1
p
[
Jαgp(t)

] 1
p
.

(2.6)

Proof. Multiplying the inequalities (2.3) and (2.5), we obtain

(M + 1)(m+ 1)

M

[
Jαfp(t)

] 1
p
[
Jαgp(t)

] 1
p ≤

([
Jα(f(t) + g(t))p

] 1
p
)2

. (2.7)

Applying Minkowski inequality to the right hand side of (2.7), we get([
Jα(f(t) + g(t))p

] 1
p
)2

≤
([
Jαfp(t)

) 1
p

+
(
Jαgp(t)

] 1
p
)2

.

It follows then that,[
Jα(f(t) + g(t))p

] 2
p ≤

[
Jαfp(t)

] 1
p

+
[
Jαgp(t)

] 2
p

+ 2
[
Jαfp(t)

] 1
p
[
Jαgp(t)

] 1
p
.

(2.8)
Using (2.7) and (2.8), we obtain (2.6).
Theorem 2.3 is thus proved.

�
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Remark 2.4. Applying Theorem 2.3 for α = 1, we obtain [12, Theorem 2.2] on
[0, t].

We further have

Theorem 2.5. Let α > 0, p > 1, q > 1 and let f, g be two positive functions on
[0,∞[. If fp, gq are two concave functions on [0,∞[, then we have

2−p−q (f(0) + f(t))p (g(0) + g(t))q
(
Jα
(
tα−1

))2

≤ Jα (tα−1fp(t)) Jα (tα−1gq(t)) .
(2.9)

To prove this theorem, we need the following lemma.

Lemma 2.6. Let h be a concave function on [a, b]. Then we have

h(a) + h(b) ≤ h(b+ a− x) + h(x) ≤ 2h(
a+ b

2
). (2.10)

Proof. Let h be a concave function on [a, b]. Then we can write

h(
a+ b+−x

2
) = h(

a+ b

2
) ≥ h(b+ a− x) + h(x)

2
. (2.11)

If we choose x = λa+ (1− λ)b, then we have

1

2

(
h(a+ b− λa− (1− λ)b) + h(λa+ (1− λ)b)

)
= 1

2

(
h(λb− (1− λ)a) + h(λa+ (1− λ)b)

)
.

Using the concavity of h, we obtain

1

2

(
h(λb− (1− λ)a) + h(λa+ (1− λ)b)

)
≥ 1

2

(
h(a) + h(b)

)
(2.12)

By (2.11) and (2.12), we get (2.10).
�

Proof of Theorem 2.5. Since the fp and gq are concave functions on [0,∞[,
then by Lemma 2.6, for any t > 0, we have

fp(0) + fp(t) ≤ fp(t− τ) + fp(τ) ≤ 2fp(
t

2
) (2.13)

and

gq(0) + gq(t) ≤ f q(t− τ) + gq(τ) ≤ 2gq(
t

2
). (2.14)
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Multiplying both sides of (2.13) and (2.14) by (t−τ)α−1τα−1

Γ(α)
; τ ∈ (0, t), then inte-

grating the resulting inequalities with respect to τ over (0, t), we obtain

fp(0) + fp(t)

Γ(α)

∫ t

0

(t− τ)α−1τα−1dτ

≤ 1
Γ(α)

∫ t
0
(t− τ)α−1τα−1fp(t− τ)dτ + 1

Γ(α)

∫ t
0
(t− τ)α−1τα−1fp(τ)dτ

≤ 2fp( t
2

)

Γ(α)

∫ t
0
(t− τ)α−1τα−1dτ

(2.15)

and

gq(0) + gq(t)

Γ(α)

∫ t

0

(t− τ)α−1τα−1dτ

≤ 1
Γ(α)

∫ t
0
(t− τ)α−1τα−1gq(t− τ)dτ + 1

Γ(α)

∫ t
0
(t− τ)α−1τα−1gq(τ)dτ

≤ 2gq( t
2

)

Γ(α)

∫ t
0
(t− τ)α−1τα−1dτ.

(2.16)

Using the change of variables t− τ = y, we can write

1

Γ(α)

∫ t

0

(t− τ)α−1τα−1fp(t− τ)dτ = Jα
(
tα−1fp(t)

)
(2.17)

and
1

Γ(α)

∫ t

0

(t− τ)α−1τα−1gq(t− τ)dτ = Jα
(
tα−1gq(t)

)
. (2.18)

Now, using (2.15) and (2.17), we get

(fp(0) + fp(t))
(
Jα
(
tα−1

))
≤ 2Jα

(
tα−1fp(t)

)
≤ 2fp(

t

2
)
(
Jα
(
tα−1

))
. (2.19)

For g, we use (2.16) and (2.18). We obtain

(gq(0) + gq(t))
(
Jα
(
tα−1

))
≤ 2Jα

(
tα−1gq(t)

)
≤ 2gq(

t

2
)
(
Jα
(
tα−1

))
. (2.20)

The inequalities (2.19) and (2.20) imply that

(fp(0) + fp(t)) (gq(0) + gq(t)) (Jα
(
tα−1

)
)2 ≤ 4Jα

(
tα−1fp(t)

)
Jα
(
tα−1gq(t)

)
.

(2.21)
On the other hand, since f and g are positive functions, then for any t > 0, p ≥
1, q ≥ 1, we have ((fp(0) + fp(t))

2

) 1
p ≥ 2−1(f(0) + f(t))

and ((gq(0) + gq(t))

2

) 1
q ≥ 2−1(g(0) + g(t)).
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Hence, we obtain

(fp(0) + fp(t))

2
Jα
(
tα−1

)
≥ 2−p(f(0) + f(t))pJα

(
tα−1

)
(2.22)

and

(gq(0) + gq(t))

2
Jα
(
tα−1

)
≥ 2−q(g(0) + g(t))qJα

(
tα−1

)
. (2.23)

The inequalities (2.22) and (2.23) imply that

(fp(0) + fp(t))(gq(0) + gq(t))

4

[
Jα(tα−1)

]2

≥ 2−p−q(f(0) + f(t))p(g(0) + g(t))q
[
Jα(tα−1)

]2

.

(2.24)

Combining (2.21) and (2.24), we obtain the desired inequality (2.9).

Remark 2.7. Applying Theorem 2.5 for α = 1, we obtain [12, Theorem 2.3] on
[0, t].

Theorem 2.8. Let α > 0, β > 0, p > 1, q > 1 and let f, g be two positive
functions on [0,∞[. If fp, gq are two concave functions on [0,∞[, then we have

22−p−q(f(0) + f(t))p(g(0) + g(t))q
[
Jα(tβ−1)

]2

≤
[

Γ(β)
Γ(α)

Jβ (tα−1fp(t)) + Jα
(
tβ−1fp(t)

) ][
Γ(β)
Γ(α)

Jβ (tα−1gq(t)) + Jα
(
tβ−1gq(t)

) ]
.

(2.25)

Proof. Multiplying both sides of (2.13) and (2.14) by (t−τ)α−1τβ−1

Γ(α)
; τ ∈ (0, t), then

integrating the resulting inequalities with respect to τ over (0, t), we obtain

fp(0) + fp(t)

Γ(α)

∫ t

0

(t− τ)α−1τβ−1dτ

≤ 1
Γ(α)

∫ t
0
(t− τ)α−1τβ−1fp(t− τ)dτ + 1

Γ(α)

∫ t
0
(t− τ)α−1τβ−1fp(τ)dτ

≤ 2fp( t
2

)

Γ(α)

∫ t
0
(t− τ)α−1τβ−1dτ

(2.26)

and

gq(0) + gq(t)

Γ(α)

∫ t

0

(t− τ)α−1τβ−1dτ

≤ 1
Γ(α)

∫ t
0
(t− τ)α−1τβ−1gq(t− τ)dτ + 1

Γ(α)

∫ t
0
(t− τ)α−1τβ−1gq(τ)dτ

≤ 2gq( t
2

)

Γ(α)

∫ t
0
(t− τ)α−1τβ−1dτ.

(2.27)
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Using the change of variables t− τ = y, we obtain

Γ(β)

Γ(β)Γ(α)

∫ t

0

(t− τ)α−1τβ−1fp(t− τ)dτ =
Γ(β)

Γ(α)
Jβ
(
tα−1fp(t)

)
(2.28)

and

Γ(β)

Γ(β)Γ(α)

∫ t

0

(t− τ)α−1τβ−1gq(t− τ)dτ =
Γ(β)

Γ(α)
Jβ
(
tα−1gq(t)

)
(2.29)

By the relations (2.26) and (2.28), we can state that

(fp(0) + fp(t))
(
Jα
(
tβ−1

))
≤ Γ(β)

Γ(α)
Jβ
(
tα−1fp(t)

)
+ Jα

(
tβ−1fp(t)

)
≤ 2fp(

t

2
)
(
Jα
(
tβ−1

))
(2.30)

and with (2.27) and (2.29), we can write

(gq(0) + gq(t))
(
Jα
(
tβ−1

))
≤ Γ(β)

Γ(α)
Jβ
(
tα−1gq(t)

)
+ Jα

(
tβ−1gq(t)

)
≤ 2gq(

t

2
)
(
Jα
(
tβ−1

))
. (2.31)

The inequalities (2.30) and (2.31) imply that

(fp(0) + fp(t)) (gq(0) + gq(t)) (Jα
(
tβ−1

)
)2

≤
[

Γ(β)
Γ(α)

Jβ (tα−1fp(t)) + Jα
(
tβ−1fp(t)

) ][Γ(β)
Γ(α)

Jβ (tα−1gq(t)) + Jα
(
tβ−1gq(t)

) ]
.

(2.32)
As before, since f and g are positive functions, then for any t > 0, p ≥ 1, q ≥ 1,
we have

(fp(0) + fp(t))

2
Jα
(
tβ−1

)
≥ 2−p(f(0) + f(t))pJα

(
tβ−1

)
(2.33)

and

(gq(0) + gq(t))

2
Jα
(
tβ−1

)
≥ 2−q(g(0) + g(t))qJα

(
tβ−1

)
. (2.34)

The inequalities (2.33) and (2.34) imply that

(fp(0) + fp(t))(gq(0) + gq(t))

4

[
Jα(tβ−1)

]2

≥ 2−p−q(f(0) + f(t))p(g(0) + g(t))q
[
Jα(tβ−1)

]2

.

(2.35)

Combining (2.32) and (2.35), we obtain the desired inequality (2.25). �

Remark 2.9. Applying Theorem 2.8 for α = β, we obtain Theorem 2.5.



58 Z. DAHMANI

References

1. A. El Farissi, Z. Latreuch and B. Belaidi, Hadamard-type inequalities for twice differentiable
functions, RGMIA 12 (2009), no. 1, 7 pp.

2. S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure
Appl. Math. 10 (2009), no. 3, Article 86, 5 pp.

3. L. Bougoffa, On Minkowski and Hardy integral inequality, J. Inequal. Pure and Appl. Math.
7 (2006), no. 2, Article 60, 3 pp.

4. S.S. Dragomir, C.E.M. Pearse, Selected Topic in Hermite–Hadamard Inequalities, Mono-
graphs:http://rgmia.vu.edu.au/monographs/hermite hadamard.html, Victoria University,
2000.

5. A. Florea and C.P. Niculescu, A Hermite–Hadamard inequality for convex-concave symmet-
ric functions, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 50(98) (2007), no. 2, 149–156.

6. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of
fractional order, Fractals and fractional calculus in continuum mechanics (Udine, 1996),
223–276, CISM Courses and Lectures, 378, Springer, Vienna, 1997.

7. J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d’une fonction
considree par Riemann, J. Math. Pures et Appl. 58 (1893), 171–215.

8. Ch. Hermite, Sur deux limites d’une integrale definie, Mathesis 3 (1883), 82.
9. A.W. Marshall and I. Olkin, Inequalities: Theory of Majoration and Applications, Academic

Press, 1979.
10. S. Marinkovic, P. Rajkovic and M. Stankovic, The inequalities for some types q-integrals,

Comput. Math. Appl. 56 (2008), 2490–2498.
11. C.P. Niculescu and L.E. Persson, Convex functions and their applications, A comtemporary

approach, CMS Books in Mathematics, vol. 23, Springer Verlag, New York, 2006.
12. E. Set, M. E. Ozdemir and S.S. Dragomir, On the Hermite–Hadamard Inequality and Other

Integral Inequalities Involving Two Functions, J. Inequal. Appl. 2010, Art. ID 148102, 9
pp.

1 Laboratory of Pure and Applied Mathematics, Faculty of SESNV, University
of Mostaganem Abdelhamid Ben Badis, UMAB, Mostaganem, Algeria.

E-mail address: zzdahmani@yahoo.fr


	1. Introduction and preliminaries
	2. Main Results
	References

