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Abstract. A common optimization problem is the minimization of a sym-
metric positive definite quadratic form 〈x, Tx〉 under linear constraints. The
solution to this problem may be given using the Moore–Penrose inverse ma-
trix. In this work at first we extend this result to infinite dimensional complex
Hilbert spaces, where a generalization is given for positive operators not neces-
sarily invertible, considering as constraint a singular operator. A new approach
is proposed when T is positive semidefinite, where the minimization is consid-
ered for all vectors belonging to N (T )⊥.

1. Introduction

Quadratic forms have played a central role in the history of mathematics, in
both the finite and the infinite dimensional case. Many authors have studied prob-
lems on minimizing (or maximizing) quadratic forms under various constraints,
such as vectors constrained to lie within the unit simplex (Broom [5]). A similar
result is the minimization of a more general case of a quadratic form defined in a
finite-dimensional real Euclidean space under linear constraints (see e.g. La Cruz
[13], Manherz and Hakimi [15]), with many applications in network analysis and
control theory. The same problem is encountered in Rostamian [18], this time
directed towards the study of some boundary value problems in the theory of
linear elasticity.
In a classical book of Optimization Theory by Luenberger [14], various similar
optimization problems are presented, for both finite and infinite dimensions.
In the field of applied mathematics, a strong interest is shown in applications
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2 D. PAPPAS

of the generalized inverse of matrices or operators. Various types of generalized
inverses are used whenever a matrix/operator is singular, in many fields of both
computational and also theoretical aspects. An application of the Moore–Penrose
inverse in the finite dimensional case, is the minimization of a symmetric pos-
itive definite quadratic form under linear constraints. This application can be
used in many optimization problems, such as electrical networks (Ben–Israel [2]),
finance (Markowitz [16, 17]) etc. A similar result for positive semidefinite qua-
dratic forms with many applications in Signal Processing is presented by Stoica
et al [19], Gorkhov and Stoica [10].
In this work at first we extend the result of Ben–Israel [2] for positive opera-
tors acting on infinite dimensional complex Hilbert spaces. We will consider the
quadratic form as a diagonalizable, diagonal or a positive operator in general,
not necessarily invertible. In the sequel we consider the case of a positive semi-
definite quadratic form, and the new approach proposed for this problem is the
constrained minimization to take place only for the vectors perpendicular to its
kernel. This can be achieved using an appropriate decomposition of the Hilbert
space.
Another possible candidate for this work would be the class of compact self ad-
joint operators, making use of the spectral theorem. Unfortunately, compact
operators do not have closed range, therefore their generalized inverse is not a
bounded operator.

2. Preliminaries and notation

The notion of the generalized inverse of a (square or rectangular) matrix was
first introduced by H. Moore in 1920, and again by R. Penrose in 1955. These two
definitions are equivalent, and the generalized inverse of an operator or matrix is
also called the Moore–Penrose inverse. It is known that when T is singular, then
its unique generalized inverse T † is defined. In the case when T is a real r ×m
matrix, Penrose showed that there is a unique matrix satisfying the four Penrose
equations, called the generalized inverse of T , noted by T †.
In what follows, we consider H a separable infinite dimensional Hilbert space and
all operators mentioned are supposed to have closed range.
The generalized inverse of an operator T ∈ B(H) with closed range, is the unique
operator satisfying the following four conditions:

TT † = (TT †)∗, T †T = (T †T )∗, TT †T = T, T †TT † = T † (2.1)

where T ∗ denotes the adjoint operator of T .
It is easy to see that TT † is the orthogonal projection of H onto R(T ) , denoted
by PT , and that T †T is the orthogonal projection of H onto R(T ∗) noted by PT ∗ .
It is well known that R(T †) = R(T ∗) , and that T † = (T ∗T )−1|R(T ∗)T

∗.
It is also known that T † is bounded if and only if T has a closed range.
If T has a closed range and commutes with T †, then T is called an EP operator.
EP operators constitute a wide class of operators which includes the self adjoint
operators, the normal operators and the invertible operators.
Let us consider the equation Tx = b, T ∈ B(H), where T is singular. If b /∈ R(T ),
then the equation has no solution. Therefore, instead of trying to solve the
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equation ‖Tx − b‖ = 0, we may look for a vector u that minimizes the norm
‖Tx− b‖. Note that the vector u is unique. In this case we consider the equation
Tx = PR(T )b, where PR(T ) is the orthogonal projection on R(T ).
The following two propositions can be found in Groetsch [9] and hold for operators
and matrices:

Proposition 2.1. Let T ∈ B(H) and b ∈ H. Then, for u ∈ H, the following are
equivalent:

(i) Tu = PR(T )b
(ii) ‖Tu− b‖ ≤‖ Tx− b‖,∀x ∈ H
(iii) T ∗Tu = T ∗b

Let B = {u ∈ H|T ∗Tu = T ∗b}. This set of solutions is closed and convex, there-
fore, it has a unique vector with minimal norm. In the literature, Groetsch[9], B
is known as the set of the generalized solutions.

Proposition 2.2. Let T ∈ B(H), b ∈ H, and the equation Tx = b. Then, if T † is
the generalized inverse of T , we have that T †b = u, where u is the minimal norm
solution defined above.

This property has an application in the problem of minimizing a symmetric
positive definite quadratic form 〈x,Qx〉 subject to linear constraints, assumed
consistent (see Theorem 2.3).
We will denote by LatT the set of all closed subspaces of the underlying Hilbert
space H invariant under T .
A self adjoint operator T ∈ B(H) is positive when 〈Tx, x〉 ≥ 0 for all x ∈ H. Let
T be an invertible positive operator which is diagonalizable. Then, T = U∗TkU
where U is unitary and Tk is diagonal, of the form

Tk(x1, x2, . . .) = (k1x1, k2x2, . . .)

where (kn)n is a bounded sequence of real numbers, and its terms are the eigen-
values of Tk, assumed positive. Its inverse T−1k is also a diagonal operator, with
corresponding sequence k′i = 1

ki
.

When Tk is singular, at least one of the ki’s is equal to zero. Then, its Moore–
Penrose inverse has a corresponding sequence of diagonal elements k′i defined as
follows:

k′i =

{
1
ki
, ki 6= 0

0, ki = 0

Since all the diagonal elements are nonnegative, in both cases Tk has a unique
square root Tm, which is also a diagonal operator with corresponding sequence
mn =

√
kn. Similar results concerning diagonalizable and diagonal operators can

be found in Conway [7].
As mentioned before, EP operators include normal and self adjoint operators,
therefore the operator T in the quadratic form studied in this work is EP. An
operator T with closed range is called EP if N (T ) = N (T ∗). It is easy to see
that

T EP⇔ R(T ) = R(T ∗)⇔ R(T )
⊥
⊕N (T ) = H ⇔ TT † = T †T. (2.2)
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We take advantage of the fact that EP operators have a simple canonical form
according to the decomposition H = R(T ) ⊕ N (T ). Indeed an EP operator T
has the following simple matrix form:

T =

[
A 0
0 0

]
where the operator A : R(T )→ R(T ) is invertible, and its generalized inverse T †

has the form

T † =

[
A−1 0

0 0

]
(see Campbell and Meyer [6], Drivaliaris et al [8]).
Another result used in our work, wherever a square root of a positive operator is
used, is the fact that EP operators have index equal to 1 and so, R(T ) = R(T 2).
(see Ben Israel [1], pages 156–157)
As mentioned above, a necessary condition for the existance of a bounded gen-
eralized inverse is that the operator has closed range. Nevertheless, the range of
the product of two operators with closed range is not always closed.
In Bouldin [4] an equivalent condition is given:

Theorem 2.3. Let A and B be operators with closed range, and let

Hi = N (A) ∩ (N (A) ∩R(B))⊥ = N (A)	R(B)

The angle between Hi and R(B) is positive if and only if AB has closed range.

A similar result can be found in Izumino [11], this time using orthogonal pro-
jections :

Proposition 2.4. Let A and B be operators with closed range. Then, AB has
closed range if and only if A†ABB† has closed range.

We will use the above two results to prove the existence of the Moore–Penrose
inverse of appropriate operators which will be used in our work.
Another tool used in this work, is the reverse order law for the Moore–Penrose
inverses. In general, the reverse order law does not hold. Conditions under which
the reverse order law holds, are described in the following proposition which is
a restatement of a part of R. Bouldin’s theorem [3] that holds for operators and
matrices.

Proposition 2.5. Let A,B be bounded operators on H with closed range. Then
(AB)† = B†A† if and only if the following three conditions hold:

i) The range of AB is closed,
ii) A†A commutes with BB∗,
iii) BB† commutes with A∗A.

A corollary of the above theorem is the following proposition that can be found
in Karanasios–Pappas [12] and we will use it in our case.

Proposition 2.6. Let A, T ∈ B(H) be two operators such that A is invertible
and T has closed range. Then

(TA)† = A−1T † if and only if R(T ) ∈ Lat (AA∗).
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3. The Generalized inverse and minimization of Quadratic forms

Let Q be a symmetric positive definite matrix. Then, Q can be written as
Q = UDU∗, where U is unitary and D is diagonal.
Let D

1
2 denote the positive solution of X2 = D, and let D−

1
2 denote (D

1
2 )−1,

which exists since Q is positive definite.
The following theorem can be found in Ben Israel [2].

Theorem 3.1. Consider the equation Ax = b .
If the set S = {x : Ax = b} is not empty, then the problem :

minimize〈x,Qx〉, x ∈ S
has the unique solution

x = UD−
1
2 (AUD−

1
2 )†b.

3.1. Positive Diagonizable Quadratic Forms. A generalization of the above
theorem in infinite dimensional Hilbert spaces, is by replacing Q with an invertible
positive operator T which is diagonalizable. The operator A must be singular,
otherwise this problem is trivial. Since T is diagonalizable, we have that T =
U∗TkU .
We need first the following Lemma. Note that in the infinite dimensional case
the Moore–Penrose inverse of an operator is bounded if and only if the operator
has closed range.

Lemma 3.2. Let T ∈ B(H) be an invertible positive operator which is diagonal-
izable and A ∈ B(H) singular with closed range.
Then, the range of AU∗X−1 is closed, where X is the unique solution of the
equation X2 = Tk.

Proof. We have that the range of U∗X−1 is closed since both operators are in-
vertible, and invertible operators have closed range. Hence, the range of AU∗X−1

is closed because since U∗X−1 is invertible, R(AU∗X−1) = R(A) which is closed.
�

We are now in condition to prove Theorem 3.3.

Theorem 3.3. Consider the equation Ax = b, with A ∈ B(H) singular with
closed range and b ∈ H.
If the set S = {x : Ax = b} is not empty, then the problem :

minimize〈x, Tx〉, x ∈ S
with T ∈ B(H) an invertible positive diagonalizable operator with closed range
has the unique solution

x̂ = U∗X−1(AU∗X−1)†b

where X is the unique solution of the equation X2 = Tk.

Proof. The idea of the proof is similar to Ben Israel [2], but the existence of a
bounded Moore–Penrose inverse is not trivial like in the finite dimensional case.
It is easy to see that since T = U∗TkU is positive, Tk is also positive. Then,

〈x, Tx〉 = 〈x, U∗TkUx〉 = 〈Ux, TkUx〉 = 〈Ux,X2Ux〉 =
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〈XUx,XUx〉 = 〈y, y〉

So, the problem of minimizing 〈x, Tx〉 is equivalent of minimizing 〈y, y〉 =‖ y ‖2
where y = XUx. We also have that y = XUx⇔ x = U∗X−1y.
From proposition 2.2 we know that the minimal norm solution of the equation
Ax = b is the vector x̂ = A†b, so by substitution, AU∗X−1y = b and the minimal
norm vector ŷ is equal to ŷ = [AU∗X−1]†b, since AU∗X−1 is a singular operator.
Therefore, XUx̂ = [AU∗X−1]†b⇔ x̂ = U∗X−1(AU∗X−1)†b

�

We can verify that the solution x̂ = U∗X−1(AU∗X−1)†b satisfies the constraint
Ax = b :
We have that Ax̂ = AU∗X−1(AU∗X−1)†b = SS†b = PSb, where S = AU∗X−1

and we can see that R(S) = R(AU∗X−1) = R(A) since X and U are invertible.
Therefore, PS = PA and PSb = PAb = b since b ∈ R(A).
We can also compute the value of the minimum 〈x, Tx〉, x ∈ S :

〈x̂, T x̂〉 = 〈U∗X−1(AU∗X−1)†b, U∗TkUU∗X−1(AU∗X−1)†b〉 =

〈(AU∗X−1)†b, (AU∗X−1)†b〉 =‖ (AU∗X−1)†b ‖2

3.2. Positive Definite Quadratic Forms. In this section we extend the results
presented above, in the general case when T is a positive operator following the
same point of view.
Let T be a positive operator, having a unique square root R.

Theorem 3.4. Consider the equation Ax = b, with A ∈ B(H) singular with
closed range and b ∈ H. If the set S = {x : Ax = b} is not empty, then the
problem :

minimize〈x, Tx〉, x ∈ S
with T ∈ B(H) an invertible positive operator with closed range has the unique
solution

x̂ = R−1(AR−1)†b

Proof. We have that 〈x, Tx〉 = 〈Rx,Rx〉 =‖ Rx ‖2=‖ y ‖2. So,

Ax = b⇔ ŷ = (AR−1)†b⇔ x̂ = R−1(AR−1)†b

The range of the operator AR−1 is closed, as discussed in Lemma 3.2. �

We can see by easy computations, that the minimum 〈x, Tx〉, x ∈ S is then
equal to

〈x̂, T x̂〉 = 〈R−1(AR−1)†b, R2R−1(AR−1)†b〉 =

〈(AR−1)†b, (AR−1)†b〉 =‖ (AR−1)†b ‖2

Remark 3.5. At this point we can say that Theorem 3.3 is now a Corollary of
Theorem 3.4 since when T is an invertible positive diagonalizable operator we
have that R−1(AR−1)† = U∗X−1U(AU∗X−1U)† = U∗X−1(AU∗X−1)†.
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A natural question to ask, is what happens if the reverse order law for generalized
inverses holds. In this case, the solution given by Theorem 3.4, using Proposition
2.4 will be as follows:

Corollary 3.6. Considering all the assumptions of Theorem 3.4, let R(A) ∈
Lat (T ). Then, x̂ = A†b.

The proof is obvious, since in this case, Lat(RR∗) = Lat(R2) = Lat(T ), and
R−1(AR−1)† = R−1RA†

We can also see that in this case, the minimum value of 〈x, Tx〉, x ∈ S is equal
to 〈A†b, R2A†b〉 =‖ RA†b ‖2
We will present an example for Theorem 3.4 and Corollary 3.6.

Example 3.7. Let T : l2 → l2 : T (x1, x2, x3, . . .) = (x1, 2x2, x3, 2x4 . . .) which is
a bounded diagonal linear operator.
Let L : l2 → l2 : L(x1, x2, x3, . . .) = (x2, x3, . . .), the well known left shift operator
which is singular and S = {x : Lx = (1, 1

2
, 1
3
, 1
4
, . . .)}. It is also well known that

L† = R, the right shift operator. Since T is positive and invertible, the problem
of minimizing 〈x, Tx〉 , x ∈ S following Corollary 3.6 has the unique solution
x̂ = (0, 1, 1

2
, 1
3
, 1
4
, . . .).

Indeed, since R(L) = H = l2 which is invariant under T , we have that R(L) ∈
Lat(T ) and so

x̂ = (L)†(1,
1

2
,
1

3
,
1

4
, . . .) = (0, 1,

1

2
,
1

3
,
1

4
, . . .)

Using this vector, we have that the problem of minimizing 〈x, Tx〉, x ∈ S has a
minimum value as shown in what follows:

min〈x, Tx〉 = 〈x̂, T x̂〉 = 〈(0, 1, 1

2
,
1

3
,
1

4
, . . .), T (0, 1,

1

2
,
1

3
,
1

4
, . . .)〉 =

〈(0, 1, 1

2
,
1

3
,
1

4
, . . .), (0, 2,

1

2
, 2×1

3
,
1

4
, 2×1

5
. . .)〉 = 0+2×1+

1

22
+2× 1

32
+

1

4
+2× 1

52
. . .

=
∞∑
n=1

1

n2
+
∞∑
n=0

1

(2n+ 1)2
=
π2

6
+
π2

8
=

7π2

24

This value is equal to ‖ RA†b ‖2 as presented in the above corollary, since in this
case R(x1, x2, x3, . . .) = (x1,

√
2x2, x3,

√
2x4 . . .) and

‖ RA†b ‖2=‖ RL†(1, 1

2
,
1

3
,
1

4
, . . .) ‖2= 0 + 2× 1 +

1

22
+ 2× 1

32
+

1

4
+ . . . =

7π2

24

and this verifies Corollary 3.6.
We can see that the minimizing vector found by Theorem 3.4 has the minimum
norm among all possible solutions, of the form (c, 1, 1

2
, 1
3
, 1
4
, . . .), c ∈ C , as ex-

pected.
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3.3. Positive Semidefinite Quadratic Forms. We can also consider the case
when the positive operator T is singular, that is, T is positive semidefinite. In
this case, since N (T ) 6= ∅, we have that 〈x, Tx〉 = 0 for all x ∈ N (T ) and so, the
problem :

minimize〈x, Tx〉, x ∈ S
has many solutions when N (T ) ∩ S 6= ∅.
In Stoika et al [19] a method is presented for the minimization of a positive semi-
definite quadratic form under linear constraints, with many applications in the
finite dimensional case. In fact, since this problem has an entire set of solutions,
the minimum norm solution is given explicitly.
A different approach to this problem in both the finite and infinite dimensional
case would be to look among the vectors x ∈ N (T )⊥ = R(T ∗) = R(T ) for a
minimizing vector for 〈x, Tx〉. In other words, we will look for the minimum of
〈x, Tx〉 under the constraints Ax = b, x ∈ R(T ).
Using the fact that T is an EP operator, we will make use of the first two con-
ditions in the following proposition that can be found in Drivaliaris et al [8]:

Proposition 3.8. Let T ∈ B(H) with closed range. Then the following are
equivalent:
i) T is EP.
ii) There exist Hilbert spaces K1 and L1, U1 ∈ B(K1 ⊕ L1,H) unitary and A1 ∈
B(K1) isomorphism such that

T = U1(A1 ⊕ 0)U∗1 .

iii) There exist Hilbert spaces K2 and L2, U2 ∈ B(K2 ⊕ L2,H) isomorphism and
A2 ∈ B(K2) isomorphism such that

T = U2(A2 ⊕ 0)U∗2 .

iv) There exist Hilbert spaces K3 and L3, U3 ∈ B(K3 ⊕ L3,H) injective and
A3 ∈ B(K3) isomorphism such that

T = U3(A3 ⊕ 0)U∗3 .

We present a sketch of the proof for (1)⇒(2):

Proof. Let K1 = R(T ), L1 = N (T ), U1 : K1 ⊕ L1 → H with

U1(x1, x2) = x1 + x2,

for all x1 ∈ R(T ) and x2 ∈ N (T ), and A1 = T |R(T ) : R(T ) → R(T ). Since T is
EP, R(T )⊕⊥N (T ) = H and thus U1 is unitary. Moreover it is easy to see that
U∗1x = (PTx, PN (T )x), for all x ∈ H. It is obvious that A1 is an isomorphism. A
simple calculation shows that

T = U1(A1 ⊕ 0)U∗1 .

�

It is easy to see that when T = U1(A1 ⊕ 0)U∗1 and T is positive, so is A1, since
〈x, Tx〉 = 〈x1, A1x1〉, x1 ∈ R(T ).
In what follows, T will denote a singular positive operator with a canonical form
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T = U1(A1⊕ 0)U∗1 , R is the unique solution of the equation R2 = A1 and we can
define

V =

[
R 0
0 0

]
, therefore V † =

[
R−1 0

0 0

]
As in the previous cases, since the two operators A and R are arbitrary, one does
not expect that the range of their product will always be closed.
Using Proposition 3.8, we have the following theorem:

Theorem 3.9. Let T ∈ B(H) be an singular positive operator, and the equation
Ax = b, with A ∈ B(H) singular with closed range and b ∈ H. If the set
S = {x ∈ N (T )⊥ : Ax = b} is not empty, then the problem :

minimize〈x, Tx〉, x ∈ S
has the unique solution

x̂ = U1V
†(AU1V

†)†b

assuming that PA∗PT has closed range.

Proof. We have that

〈x, Tx〉 = 〈x, U1(A1 ⊕ 0)U∗1x〉 = 〈U∗1x, (A1 ⊕ 0)U∗1x〉 = 〈U∗1x, (R2 ⊕ 0)U∗1x〉
We have that U∗1x = (x1, x2) and 〈U∗1x, (A1 ⊕ 0)U∗1x〉 = 〈x1, A1x1〉, x1 ∈ R(T ).
Therefore 〈x, Tx〉 = 〈(R ⊕ 0)U∗1x, (R ⊕ 0)U∗1x〉 = 〈Rx1, Rx1〉 = 〈y, y〉 , where
y = Rx1, with x1 ∈ N (T )⊥.
The problem of minimizing 〈x, Tx〉 is equivalent of minimizing ‖ y ‖2 where
y = Rx1 = (R⊕ 0)U∗1x⇔ x = U1(R

−1 ⊕ 0)y = U1V
†y.

As before, the minimal norm solution ŷ is equal to ŷ = [AU1V
†]†b.

Therefore, x̂1 = U1V
†(AU1V

†)†b, with x̂1 ∈ S.
As in Theorem 3.3 , we still have to prove that AU1V

† has closed range.
Using Theorem 2.3, the range of U1V

† is closed since

Hi = N (U∗1 ) ∩ (N (U∗1 ) ∩R(V †))⊥ = 0

and so the angle between U∗1 and V † is equal to π
2
.

From Proposition 2.4 the operator PA∗PT must have closed range because

A†AU1V
†(U1V

†)† = PA∗U1PRU
∗
1 = PA∗U1PA1U

∗
1 = PA∗PT

making use of Proposition 2.6 and the fact that R(R) = R(A1) = R(T ).
�

Corollary 3.10. Under all the assumptions of Theorem 3.9 we have that the
minimum value of f(x) = 〈x, Tx〉, x ∈ S is equal to ‖ (AU1V

†)†b ‖2

Proof. We have that

fmin(x) = 〈x̂, T x̂〉 = 〈U1V
†(AU1V

†)†b, TU1V
†(AU1V

†)†b〉
Since T = U1(R

2 ⊕ 0)U∗1 we have that

fmin(x) = 〈U1V
†(AU1V

†)†b, U1(R⊕ 0)(AU1V
†)†b〉 =

〈PT (AU1V
†)†b, (AU1V

†)†b〉 =‖ (AU1V
†)†b ‖2
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since

V †(R⊕ 0) = (I ⊕ 0) = PT

and R(AU1V
†)† = R(AU1V

†)∗ = R(RU1A
∗) ⊆ R(R) = R(T ), therefore

PT (AU1V
†)†b = (AU1V

†)†b

�

In the sequel, we present an example which clarifies Theorem 3.9 and Corollary
3.10. In addition, the difference between the proposed minimization (x ∈ N (T )⊥)
and the minimization for all x ∈ H is clearly indicated.

Example 3.11. Let H = R3, and the positive semidefinite matrix

Q =

 14 20 28
20 83 40
28 40 56


We are looking for the minimum of f(u) = u′Qu, u ∈ N (Q)⊥ under the constraint
3x+ 2y + z = 4.
Then, all vectors u ∈ N (Q)⊥ have the form u = (x, y, 2x)T . The matrices U, V †

are

U =

 1√
5

0 − 2√
5

0 1 0
2√
5

0 1√
5

 V † =

 0.1410 −0.0436 0
−0.0436 0.1284 0

0 0 0


Using theorem 3.9 we see that the minimizing vector of f(u) under Au = b, u ∈
N (Q)⊥, where A =

[
3 2 1

]
and b = 4, is

û = U1V
†(AU1V

†)†b = (0.5827, 0.5432, 1.1655)T

The minimum value of f(u) is then equal to 206.7133
We can verify that it is equal to the minimum value found in Corollary 3.10.

‖ (AU1V
†)†b ‖2=‖ (11.7871, 8.2327, 0)T ‖2= 206.7133

This example can be represented graphically as follows, clearly showing the con-
strained minimization and the uniqueness of the solution:
In figure 1(a) we show in red the surface of the quadratic form and in blue, the
plane 3x+ 2y + z = 4 (the constraint).
In figure 1(b) we can see we can see that among all vectors belonging to N (Q)⊥

satisfying the constraint Au = b, which are having the form

u = (x, 2− 2.5x, 2x)T , x ∈ R

the vector û = (0.5827, 0.5432, 1.1655)T found from Theorem 3.9 minimizes the
function f(u).
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Figure 1. Constrained minimization of f(u) = u’Qu, x ∈ S =
{x ∈ N (Q)⊥ : Ax = b}

We will also examine the minimization of f(u) in the case when u ∈ N (Q) , given
that u ∈ S, so that the difference between them is clearly indicated:
When the minimization takes place for all vectors u ∈ N (Q) the set

S ′ = {u ∈ N (Q) : Au = b}
is nonempty.
The vector v = (1.6, 0,−0.8)T belongs to S ′ and therefore, f(v) = 0.
If we consider the case when when u is a random vector in R3, the answer is still
the same, since this vector gives the minimum value f(v) = 0 for the constrained
minimization. Obviously, the same answer is given using the algorithm proposed
by Stoika et al [19].

4. Conclusions

In this work we extend a minimization result concerning non singular quadratic
forms using the Moore–Penrose inverse, to infinite dimensional Hilbert spaces. In
addition, in the case of a singular quadratic form the minimization takes place for
all its non zero values. This proposed Constrained minimization method has the
advantage of a unique solution and is easy to implement. Practical importance of
this result can be in numerous applications such as filter design, spectral analysis,
direction finding etc. In many of these cases the quadratic form may be very close
to, or even exactly singular, and therefore the knowledge of the non zero part of
the solution may be of importance.
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