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COMMON COUPLED FIXED POINT THEOREMS IN
d-COMPLETE TOPOLOGICAL SPACES

K. P. R. RAO1∗, K. R. K. RAO1 AND ERDAL KARAPINAR2

Communicated by H.-K. Xu

Abstract. In this paper, we give two unique common coupled fixed point the-
orems for mappings satisfying a generalized condition in d-complete topological
spaces.

1. Introduction and preliminaries

In 1992, Hicks [5] introduced the notion of d-complete topological spaces as a
generalization of complete metric spaces.

Definition 1.1. (See [5]) Let (X, τ) be a topological space and d : X × X →
[0,∞) satisfy

(i) d(x, y) = 0 if and only if x = y ,
(ii) for any sequence {xn} in X,

∞∑
n=1

d(xn, xn+1) <∞⇒ {xn} is convergent in (X, τ).

Then the triplet (X, τ, d) is called a d-complete topological space.

For details on d-complete topological spaces, we refer to Iseki [9] and Kasahara
[10, 11, 12]. Hicks [5] and Hicks and Rhoades [6, 7] proved several fixed point
theorems in d- complete topological spaces. Hicks and Saliga [8] and Saliga [18]
obtained fixed point theorems for non-self maps in d-complete topological spaces.

In 2006, Bhaskar and Lakshmikantham [2] introduced the notion of a coupled
fixed point in partially ordered metric spaces, also discussed some problems of
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the uniqueness of a coupled fixed point and applied their results to the problems
of the existence and uniqueness of a solution for the periodic boundary value
problems.

Later several authors proved coupled fixed and common coupled fixed point
theorems in partial ordered metric spaces, partially ordered cone metric spaces
and cone metric spaces for two maps (see e.g. [1, 3, 4],[13]-[17],[19]-[22].)

In this paper, we prove a common coupled fixed point theorem for four map-
pings in d-complete topological spaces.

Definition 1.2. (See [2]) Let X be a nonempty set. An element (x, y) ∈ X ×X
is called a coupled fixed point of the mapping F : X × X → X if x = F (x, y)
and y = F (y, x).

Definition 1.3. (See [1]) Let X be a nonempty set. An element (x, y) ∈ X ×X
is called

(i) a coupled coincidence point of F : X × X → X and g : X → X if
gx = F (x, y) and gy = F (y, x).

(ii) a common coupled fixed point of F : X × X → X and g : X → X if
x = gx = F (x, y) and y = gy = F (y, x).

Definition 1.4. (See [1]) Let X be a nonempty set. The mappings F : X ×
X → X and g : X → X are called weakly-compatible if g(F (x, y)) = F (gx, gy)
whenever gx = F (x, y) and gy = F (y, x) for some (x, y) ∈ X ×X.

2. An implicit relation

Let Φ7 be the family of all continuous mappings φ : R7
+ → R satisfying the

following conditions :

(φ1) there exists 0 ≤ h1 < 1 such that u, v, w, p ≥ 0 with
(φa) φ(u, v, w, u, v, p, 0) ≤ 0 or,
(φb) φ(u, v, w, v, u, 0, p) ≤ 0
implies u ≤ h1 max{v, w},

(φ2) there exists 0 ≤ h2 < 1 such that u, v ≥ 0 with

φ(u, u, v, 0, 0, u, u) ≤ 0⇒ u ≤ h2v.

Example 2.1.

φ(t1, t2, t3, t4, t5, t6, t7) = t1 −
α

2
(t2 + t3)− β(t4 + t5),

where α, β ≥ 0 with α + 2β < 1.
If u = 0, then (φ1) and(φ2) are satisfied. Assume that u > 0.

φ(u, v, w, u, v, p, 0) ≤ 0 ⇒ u− α
2
(v + w)− β(v + u) ≤ 0

⇒ u ≤ α
2
(v + w) + β(v + u)

⇒ (1− β)u ≤ αmax{v, w}+ βmax{v, w}
⇒ u ≤ h1 max{v, w},

where h1 = α+β
α−β < 1.

Similarly φ(u, v, w, v, u, 0, p) ≤ 0 ⇒ u ≤ h1 max{v, w}. φ(u, u, v, 0, 0, u, u) ≤
0⇒ u ≤ h2v, where h2 = α/2

1−α/2 < 1.
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Example 2.2.

φ(t1, t2, t3, t4, t5, t6, t7) = t1 − αmax{t2, t3, t4, t5} − βmin{t6, t7},
where α, β ≥ 0 with α + β < 1.

Example 2.3.

φ(t1, t2, t3, t4, t5, t6, t7) = t1 −
α

2
(t2 + t3)− Lmin{t4, t5, t6, t7},

where 0 ≤ α < 1 and L ≥ 0.

Example 2.4.

φ(t1, t2, t3, t4, t5, t6, t7) = t1 − αt2 − βt3 − Lmin{t4, t5, t6, t7},
where α, β ≥ 0 such that α + β < 1 and L ≥ 0.

Example 2.5.

φ(t1, t2, t3, t4, t5, t6, t7) = t21 −
α

2
(t22 + t23)− βt4t5 − γ t6t7,

where α, β, γ ≥ 0 with α + β < 1 and α + γ < 1.

Example 2.6.

φ(t1, t2, t3, t4, t5, t6, t7) = t21 −
α

2
(t22 + t23)− β

t24 + t25
t6 + t7 + 1

,

where α, β ≥ 0 with α + 2β < 1.

3. Main results

Theorem 3.1. . Let (X, τ) be a Hausdorff topological space. Let F,G : X×X →
X and f, g : X → X be mappings satisfying

φ

(
d(F (x, y), G(u, v)), d(fx, gu), d(gv, fy), d(F (x, y), fx),

d(G(u, v), gu), d(F (x, y), gu), d(G(u, v), fx)

)
≤ 0 (3.1)

for all x, y, u, v ∈ X, where φ ∈ Φ7,

(a) F (X ×X) ⊆ g(X), G(X ×X) ⊆ f(X),
(b) one of (f(X), τ, d) and (g(X), τ, d) is d-complete,
(c) the pairs (F, f) and (G, g) are weakly compatible,
(d) d(x, y) = d(y, x) for all x, y ∈ X and
(e) for each y ∈ X, d(xn, y) → d(x, y), whenever {xn} ⊆ X, x ∈ X such that

xn → x.

Then there exists a unique (α, β) ∈ X ×X such that
fα = gα = α = F (α, β) = G(α, β) and fβ = gβ = β = F (β, α) = G(β, α).

Proof. Let x0 and y0 be in X. Since F (X×X) ⊆ g(X), we can choose x1, y1 ∈ X
such that

gx1 = F (x0, y0) and gy1 = F (y0, x0).

Since G(X ×X) ⊆ f(X), we can choose x2, y2 ∈ X such that

fx2 = G(x1, y1) and fy2 = G(y1, x1).
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Continuing this process, we can construct the sequences {xn} and {yn} in X such
that

gx2n+1 = F (x2n, y2n) = z2n+1,
gy2n+1 = F (y2n, x2n) = p2n+1,
fx2n+2 = G(x2n+1, y2n+1) = z2n+2,
fy2n+2 = G(y2n+1, x2n+1) = p2n+2.

Putting x = x2n, y = y2n, u = x2n+1, v = y2n+1 in (3.1), we get

φ

(
d(z2n+1, z2n+2), d(z2n, z2n+1), d(p2n+1, p2n), d(z2n+1, z2n),

d(z2n+2, z2n+1), 0, d(z2n+2, z2n)

)
≤ 0

From (φb), we have

d(z2n+1, z2n+2) ≤ h1 max{d(z2n, z2n+1), d(p2n+1, p2n)}
where 0 ≤ h1 < 1 . Also putting x = y2n, y = x2n, u = y2n+1, v = x2n+1 in (3.1)
and using (φb), we get

d(p2n+1, p2n+2) ≤ h1 max{d(z2n, z2n+1), d(p2n+1, p2n)}.
Thus

max{d(z2n+1, z2n+2), d(p2n+1, p2n+2)} ≤ h1 max{d(z2n, z2n+1), d(p2n+1, p2n)}.
Similarly, using (3.1) and (φa), we can show that

max{d(z2n, z2n+1), d(p2n+1, p2n)} ≤ h1 max{d(z2n, z2n−1), d(p2n−1, p2n)}.
Hence

max{d(zn, zn+1), d(pn, pn+1)} ≤ h1 max{d(zn−1, zn), d(pn−1, pn)}.
Inductively we have

max{d(zn, zn+1), d(pn, pn+1)} ≤ hn1 max{d(z0, z1), d(p0, p1)}.

Since
∑∞

n=1 h
n
1 is convergent, it follows that

∞∑
n=1

d(zn, zn+1) and
∑∞

n=1 d(pn, pn+1)

are convergent. Hence d(zn, zn+1)→ 0 and d(pn, pn+1)→ 0 as n→∞.
Suppose (f(X), τ, d) is d-complete. Then {z2n+2} = {fx2n+2} ⊆ f(X) and
{p2n+2} = {fy2n+2} ⊆ f(X) converge to α and β respectively for some α, β ∈
f(X). Hence there exist x and y in X such that α = fx and β = fy. Also the
subsequences {z2n+1} and {p2n+1} converge to α and β, respectively.

Putting x = x, y = y, u = x2n+1, v = y2n+1 in (3.1), we get

φ

(
d(F (x, y), z2n+2), d(fx, z2n+1), d(p2n+1, fy), d(F (x, y), fx),

d(z2n+2, z2n+1), d(F (x, y), z2n+1), d(z2n+2, fx)

)
≤ 0

Letting n→∞, we get

φ(d(F (x, y), fx), 0, 0, d(F (x, y), fx), 0, d(F (x, y), fx), 0) ≤ 0.

From (φa), we have F (x, y) = fx = α. Replacing x, y, u, v with y, x, y2n+1, x2n+1

respectively in (3.1) and letting n→∞ and by using (φa), we get

F (y, x) = fy = β.
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Since the pair (F, f) is weakly compatible, we have

fα = f(F (x, y)) = F (fx, fy) = F (α, β) and

fβ = f(F (y, x)) = F (fy, fx) = F (β, α).

Putting x = α, y = β, u = x2n+1, v = y2n+1 in (3.1), we get

φ

(
d(fα, z2n+2), d(fα, z2n+1), d(p2n+1, fβ), 0,
d(z2n+2, z2n+1), d(fα, z2n+1), d(z2n+2, fα)

)
≤ 0

Letting n→∞, we get

φ(d(fα, α), d(fα, α), d(fβ, β), 0, 0, d(fα, α), d(fα, α)) ≤ 0.

From (φ2), we have d(fα, α) ≤ h2d(fβ, β), where 0 ≤ h2 < 1.
Putting x = β, y = α, u = y2n+1, v = x2n+1 in (3.1) and letting n→∞ and then
using (φ2), we get

d(fβ, β) ≤ h2d(fα, α).

Hence fα = α and fβ = β. Thus

α = fα = F (α, β) and β = fβ = F (β, α). (3.2)

Since F (X ×X) ⊆ g(X), there exist γ, δ ∈ X such that

gγ = F (α, β) = fα = α and gδ = F (β, α) = fβ = β.

Putting x = α, y = β, u = γ, v = δ in (3.1),we get

φ(d(gγ,G(γ, δ)), 0, 0, 0, d(G(γ, δ), gγ), 0, d(G(γ, δ), gγ)) ≤ 0.

From (φb), we have gγ = G(γ, δ).
Putting x = β, y = α, u = δ, v = γ in (3.1) and using (3.2) and (φb), we have
gδ = G(δ, γ). Since the pair (G, g) is weakly compatible, we have

gα = g(gγ) = g(G(γ, δ)) = G(gγ, gδ) = G(α, β) and

gβ = g(gδ) = g(G(δ, γ)) = G(gδ, gγ) = G(β, α).

Putting x = x2n, y = y2n, u = α, v = β in (3.1) and letting n → ∞ and then
using (φ2), we get

d(α, gα) ≤ h2d(gβ, β).

Similarly, by putting x = y2n, y = x2n, u = β, v = α in (3.1) and letting n → ∞
and then using (φ2), we get

d(gβ, β) ≤ h2d(α, gα).

Hence gα = α and gβ = β.

α = gα = G(α, β) and β = gβ = G(β, α) (3.3)

From (3.2) and (3.3), we have

fα = gα = α = F (α, β) = G(α, β) and
fβ = gβ = β = F (β, α) = G(β, α).

(3.4)

Suppose there exists (α1, β1) ∈ X ×X such that

fα1 = gα1 = α1 = F (α1, β1) = G(α1, β1) and

fβ1 = gβ1 = β1 = F (β1, α1) = G(β1, α1).
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By putting x = α1, y = β1, u = α, v = β and x = β1, y = α1, u = β, v = α in (3.1)
and using (φ2), one can show that α1 = α and β1 = β. Thus (α, β) is the unique
pair satisfying (3.4). �

The following example illustrates Theorem 3.1.

Example 3.2. Let X = [0, 1] and d(x, y) = |x2 − y2| for all x, y ∈ X.
Define F (x, y) = 1

2
= G(x, y) and

fx =


1
2
, if x ∈ [0, 1

2
],

x, if x ∈ (1
2
, 1],

, gx =


1
2
, if x ∈ [0, 1

2
],

1, if x ∈ (1
2
, 1].

Now, we prove a unique common coupled fixed point theorem for a pair of
Jungck type maps without using symmetry of d.

Theorem 3.3. . Let (X, τ) be a Hausdorff topological space. Let F : X×X → X
and f : X → X be mappings satisfying

φ

(
d(F (x, y), F (u, v)), d(fx, fu), d(fy, fv), d(fu, F (u, v)),

d(fx, F (x, y)), d(fx, F (u, v)), d(F (x, y), fu)

)
≤ 0 (3.5)

for all x, y, u, v ∈ X, where φ ∈ Φ7 without (φb),

(a) F (X ×X) ⊆ f(X),
(b) (f(X), τ, d) is d-complete,
(c) the pair (F, f) is weakly compatible,
(d) for each y ∈ X, d(xn, y) → d(x, y), whenever {xn} ⊆ X, x ∈ X such that

xn → x.

Then the mappings F and f have a unique common coupled fixed point.

Proof. Let x0 and y0 be in X.
Since F (X ×X) ⊆ f(X), we can choose x1, y1 ∈ X such that

fx1 = F (x0, y0) and fy1 = F (y0, x0).

Continuing this process, we can construct two sequences {xn} and {yn} in X such
that (for n = 0, 1, 2, · · · )

fxn+1 = F (xn, yn) = zn and fyn+1 = F (yn, xn) = pn.

Putting x = xn, y = yn, u = xn+1, v = yn+1 in (3.5), we get

φ

(
d(zn, zn+1), d(zn−1, zn), d(pn−1, pn), d(zn, zn+1),

d(zn−1, zn), d(zn−1, zn+1), 0

)
≤ 0

From (φa), there exists h1 ∈ [0, 1) such that

d(zn, zn+1) ≤ h1 max{d(zn−1, zn), d(pn−1, pn)}.

Similarly, by putting y = xn, x = yn, v = xn+1, u = yn+1 in (3.5) and using (φa),
we get

d(pn, pn+1) ≤ h1 max{d(zn−1, zn), d(pn−1, pn)}.
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Thus

max{d(zn, zn+1), d(pn, pn+1)} ≤ h1 max{d(zn−1, zn), d(pn−1, pn)}
≤ h21 max{d(zn−2, zn−1), d(pn−2, pn−1)}
·
·
·
≤ hn1 max{d(z0, z1), d(p0, p1)}.

Since
∞∑
n=1

hn1 is convergent, it follows that
∑∞

n=1 d(zn, zn+1) and
∞∑
n=1

d(pn, pn+1) are

convergent. Hence d(zn, zn+1)→ 0 and d(pn, pn+1)→ 0 as n→∞.
Suppose (f(X), τ, d) is d-complete. Then there exist α and β in f(X) such

that {zn} and {pn} converge to α and β, respectively. Hence there exist x, y ∈ X
such that α = fx and β = fy.
Replacing x, y, u, v with xn, yn, x, y respectively in (3.5), we get

φ

(
d(zn, F (x, y)), d(zn−1, fx), d(pn−1, fy), d(fx, F (x, y)),

d(zn−1, zn), d(zn−1, F (x, y)), d(zn, fx)

)
≤ 0

Letting n→∞ and using (d), we get

φ(d(fx, F (x, y)), 0, 0, d(fx, F (x, y)), 0, d(fx, F (x, y)), 0) ≤ 0.

Now, from (φa), we have F (x, y) = fx.
Similarly, replacing x, y, u, v with yn, xn, y, x in (3.5) and letting n→∞
and using (d), (φa), we can show that F (y, x) = fy.
Since (F, f) is a weakly compatible pair, we have

fα = ffx = f(F (x, y)) = F (fx, fy) = F (α, β) and

fβ = ffy = f(F (y, x)) = F (fy, fx) = F (β, α).

Putting x = xn, y = yn, u = α, v = β and x = yn, y = xn, u = β, v = α in (3.5)
and letting n→∞ and using (φ2), we can show that fα = α and fβ = β.
Thus

α = fα = F (α, β) and β = fβ = F (β, α). (3.6)

Using (3.5) and (φ2), one can show that (α, β) is the unique pair in X × X
satisfying (3.6). �

The following example illustrates Theorem 3.3.

Example 3.4. Let X = {0, 1} and d(x, y) = |x2 − y| for all x, y ∈ X. Define
F (x, y) = 1 and f0 = 0 and f1 = 1.
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