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KAPLANSKY’S AND MICHAEL’S PROBLEMS: A SURVEY

JEAN ESTERLE

Communicated by M. S. Moslehian

Abstract. I. Kaplansky showed in 1947 that every submultiplicative norm
‖.‖ on the algebra C(K) of complex–valued functions on an infinite compact
space K satisfies ‖f‖ ≥ ‖f‖K for every f ∈ C(K), where ‖f‖K = maxt∈K |f(t)|
denotes the standard norm on C(K). He asked whether all submultiplicative
norms ‖.‖ were in fact equivalent to the standard norm (which is obviously
true for finite compact spaces), or equivalently, whether all homomorphisms
from C(K) into a Banach algebra were continuous. This problem turned out
to be undecidable in ZFC, and we will discuss here some recent progress due to
Pham and open questions concerning the structure of the set of nonmaximal
prime ideals of C(K) which are closed with respect to a discontinuous sub-
multiplicative norm on C(K) when the continuum hypothesis is assumed. We
will also discuss the existence of discontinuous characters on Fréchet algebras
(Michael’s problem), a long standing problem which remains unsolved. The
Mittag–Leffler theorem on inverse limits of complete metric spaces plays an
essential role in the literature concerning both problems.

1. Introduction and preliminaries

A linear seminorm ‖.‖ on a real or complex algebra is said to be an algebra
seminorm (or, equivalently, a submultiplicative seminorm) if ‖ab‖ ≤ ‖a‖‖b‖ for
a, b ∈ A. Recall that a Fréchet algebra is a complex algebra A equipped with a
family (‖.‖n)n≥1 of algebra seminorms satisfying the following conditions

(1) ‖a‖n ≤ ‖a‖n+1 for a ∈ A, n ≥ 1.

(2) ∩n≥1Ker‖.‖n = {0}.
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(3) every Cauchy sequence of elements of A is convergent

In the definition above a Cauchy sequence is a sequence (an)n≥1 satisfying the
usual Cauchy criterion with respect to the seminorm ‖.‖n for every n ≥ 1, which
means that for every ε > 0 and every n ≥ 1 there exists a positive integer N(ε, n)
such that ‖ap − aq‖ < ε for p ≥ N(ε, n), q ≥ N(ε, n). Notice that if we set

d(a, b) :=
+∞∑
n=1

inf(1, ‖a− b‖n)

2n
,

then d is a distance on A, and condition 3 means that (A, d) is a complete
metric space.

A character on A is an algebra homomorphism χ : A → C. The celebrated
question of whether all characters on Fréchet characters are continuous is known
as Michael’s problem, and remains still open. We will discuss in section 3 some
partial results due to Arens [4], and present the link, established by P.J. Dixon
and the author in [18], between this question and a question concerning projective
sequences (Cpn , Fn), where Fn : Cpn+1 → Cpn is entire for n ≥ 1. The proof of
these results are based on the Mittag–Leffler theorem on inverse limits of complete
metric spaces, that we will present in section 2. The Mittag–Leffler theorem
implies the Baire category theorem, but it is some sense stronger: we will give a
very simple application of the Mittag–Leffler theorem which cannot be deduced
from Baire’s theorem. To illustrate the power of the Mittag–Leffler theorem we
will use it in section 3 to prove the continuity of real characters on real Fréchet
algebras, which follows from a paper of Shah [45] (the link between Michael’s
problem and projective systems of entire maps can be considered as the complex
counterpart of this result).

Let K be a compact space, and let C(K) (resp. CR(K)) be the algebra of
complex valued (reps. real valued) continuous functions on K. I. Kaplansky
showed in 1947 that every algebra norm ‖.‖ on C(K) satisfies the condition

‖f‖ ≥ ‖f‖K ∀ ∈ C(K),

where ‖f‖K = maxt∈K |f(t)| denotes the usual norm on C(K).
In the other direction he asked whether there always exists a constant k >

0, depending on the algebra norm, such that ‖f‖K ≥ k‖f‖ ∀f ∈ C(K). This
question, known as Kaplansky’s problem, is equivalent to the fact that every
homomorphism from C(K) into a Banach algebra is continuous. This problem
turns out to be undecidable in ZFC (Zermelo–Fraenkel set theory with the axiom
of choice). Partial results were obtained by Badé and Curtis in [6], who showed
in particular that for every homomorphism from C(K) into a Banach algebra
there exists a finite set S ⊂ K such that the restriction of φ to the algebra AS is
continuous, where AS denotes the set of those functions which are constant on a
neighborhood of s for every s ∈ S. This result is based on the ”main boundedness
theorem” of [6], which will be stated in section 4 in the form given by Badé and
Curtis in [6].

The main boundedness theorem is one of the main tools in automatic conti-
nuity theory. Another important tool is the so–called stability lemma, which we
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will state in section 4 in the form given by Sinclair in [47], lemma 6 (see also [14],
Chapter 5). Using this lemma, Sinclair showed in [48] that if φ is any homomor-
phism from a maximal ideal M of C(K) into a radical Banach algebra B then
φ(f) ∈ [φ(f 2)B]− for every f ∈M.

Recall that an ideal I in a commutative ring A is said to be semiprime if
I contains every a ∈ A such that an ∈ A for some positive integer n, which is
equivalent to the fact that I equals the intersection of the prime ideals of A which
contain it. We will say that a semiprime ideal I of a commutative unital algebra
A is pure if for every maximal ideal M of A containing I there exists a prime
ideal J of A such that I ⊂ J (M. It follows from Sinclair’s result that the kernel
of every homomorphism from C(K) into a Banach algebra is semiprime.

Our discussion of partial continuity properties of algebra semi norms on C(K)
involve the following ideal.

Definition 1.1. Let q be an algebra seminorm on C(K). The continuity ideal
I(q) of q is the set of all f ∈ C(K) such that there exists kf > 0 satisfying
q(fg) ≤ kf‖g‖K for every g ∈ C(K).

The following notion comes naturally from the main boundedness theorem of
[6].

Definition 1.2. Let A be a commutative ring. A Badé–Curtis ideal of A is an
ideal I of A such that, for every sequence (fn)n≥1 of elements of A such that
fnfm = 0 for n 6= m, there exists p ≥ 1 such that fn ∈ I for every n ≥ p.

The following theorem follows then from the results of Badé–Curtis and Sin-
clair.

Theorem 1.3. Let q be an algebra seminorm on C(K), and let Prim(q) be the
set of nonmaximal prime ideals of C(K) which are closed with respect to q.

(i) There exists k > 0 such that q(f) ≤ k‖f‖K for every f ∈ I(q), and the
continuity ideal I(q) is the largest ideal I of C(K) such that the restriction of q
to I is continuous with respect to the norm ‖.‖K .

(i) I(q) = ∩{I : I ∈ Prim(q)}.
(iii) I(q) is a pure semiprime Badé–Curtis ideal of C(K).

It follows from this theorem that the existence of a discontinuous homomor-
phism from C(K) is equivalent to the existence of a nonmaximal prime ideal of
C(K) such that the quotient algebra C(K)/I admits an algebra norm. Dales and
the author showed independently that this is indeed the case if the continuum
hypothesis 2ℵ0 = ℵ1 (CH) is assumed, see [13, 21, 22, 23]. A summary of both
constructions is given in [15]. In fact every complex algebra which is an integral
domain of cardinality ℵ1 possesses an algebra norm, see [23], a very general result
if CH is assumed.

The author’s construction was influenced by the seminal paper [1] where Allan
showed that every commutative unital Banach algebra A such that xn ∈ [xn+1A]−

for some nonnilpotent, quasinilpotent x ∈ A contains a copy of C[[X]], the algebra
of all formal power series with complex coefficients. The Mittag–Leffler theorem
plays an essential role in Allan’s embedding, and it plays also an essential role in
the transcendental extensions involved in the author’s construction [22].
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In the other direction, Solovay and Woodin showed that there exists models of
set theory including Martin’s axiom in which all homomorphism from C(K) are
continuous for every compact space K, see [16]. We will also discuss in section
5 models of set theory constructed independently by Franckiewicz–Sbierski [33]
and Woodin [53] in which 2ℵ0 = ℵ2 but in which there exists a discontinuous
homomorphism from C(K) for every infinite compact space K.

We will also present in section 4 results concerning the set Prim(q) : it was
shown by the author in [20] that every chain of prime ideals of C(K) which
are closed with respect to some algebra seminorm on C(K) is well–ordered with
respect to inclusion. This result is essentially best possible if the continuum
hypothesis is assumed: given a well–ordered chain {Iζ}ζ<ω of closed nonmaximal
prime ideals of C(K) such that card(C(K)/I0) = ℵ1 there exists an algebra norm
on C(K) such that {Iζ}ζ<ω ⊂ Prim(q), and it is even possible to arrange that
{Iζ}ζ<ω = Prim(q) if Iζ = ∪η<ζIη for every limit ordinal ζ < ω. A proof of this
result, which has been known to the author for a long time, will be given in [29].

It was observed in [20] that if f ∈ |f | for every f ∈ C(K) (in other terms, if K
is a F–space) then the continuity ideal of every homomorphism from C(K) into a
Banach algebra is the intersection if a finite family of prime ideals. This property
holds in particular for l∞ ≈ C(βN). Answering a long standing question, Pham
showed in [41] that this is not true in general. Denote by I(F) the intersection
of a family F of prime ideals of C(K). A family F of prime ideals of C(K) is said
to be pseudofinite if for every I ∈ F and every f ∈ I the set {J ∈ F : f /∈ J}
is finite or empty. Pham observed in [41], assuming the continuum hypothesis,
that if F is a pseudofinite family of pairwise noncomparable nonmaximal prime
ideals then the quotient algebra C(K)/I(F) possesses an algebra norm when
|C(K)/I(F)| = 2ℵ0 , and he constructed infinite families of this type (and even
families with the power of the continuum, see [42]) for a large class of compact
spaces which includes all perfect compact metric spaces. This shows that the
continuity ideal of an homomorphism from C(K) into a Banach algebra can be
very complicated, and that the family Prim(q) is not necessarily a finite union of
well-ordered chains. We conclude section 4 by a curious result which shows that
the union of any family of elements of Prim(q) is a finite union of prime ideals.

We present some open questions in section 5. It is known that the existence of
discontinuous homomorphisms from C(K) is consistent with 2ℵ0 = ℵ2, but does
it imply that 2ℵ0 ≤ ℵ2?

A related question concerns the normability (i.e. the existence of an algebra
norm) of ”big” algebras of formal power series with exponents over the ”minimal
linearly ordered divisible η1–group” G. The formal power series over G with
well–ordered countable support form a valued field C with values in G which
is isomorphic to the quotient algebra CN/U for every free ultrafilter U on N if
the continuum hypothesis is assumed. The fact that the algebra C] of bounded

elements of C is normable is a theorem of ZFC. Now let Ĉ be the algebra of all

formal power series with exponents over G. The normability of the algebra Ĉ]

of bounded elements of Ĉ is an open question, even if the continuum hypothesis
is assumed, and so is the normability of the smaller algebra C̃], which is the
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complexification of the algebra R̃] discussed by Dales and Woodin in Chapter 3
of [17].

We will conclude section 5 and the paper with open questions concerning the
continuity ideal I(q) and the set of nonmaximal prime q-closed ideals associated
to a discontinuous algebra seminorm on C(K) when the continuum hypothesis is
assumed.

Notice that both Kaplansky’s and Michael’s problem arise in ZFC. A deep
theorem of Solovay [49] shows that the axiom ”every subset of R is Lebesgue
measurable” is consistent with ZF, and it is well kown [34] that this axiom implies
the fact that every linear map from a complete metrizable topological vector space
into a metrizable topological vector space is continuous. So characters on Fréchet
algebras and homomorphisms from C(K) into a Banach algebra are obviously
continuous, in ”Solovayan” functional analysis, and the fact that derivations on
commutative Banach algebras map into the radical [52] follow directly from the
Singer–Wermer theorem since derivations are also obviously continuous in this
context.

2. The Mittag–Leffler theorem

Let (En)n≥1 be a family of sets. For p ≥ 1 we will denote by πp : (xn)n≥1 → xp
the projection of Π∞n=1En onto Ep. If for each n ≥ 1 a map θn : En+1 → En is
given, the sequence (En, θn)n≥1 is called a projective sequence. The inverse limit
of a projective sequence (En, θn) is given by the formula

lim
←−

(En, θn) := {(xn)n≥1 ∈ Π∞n=1En | xn = θn(xn+1) ∀n ≥ 1}.

We now state the Mittag–Leffler theorem.

Theorem 2.1. Let (En, θn)n≥1 be a projective sequence. Assume that En is a
complete metric space with respect to a distance dn, that θn : En+1 → En is
continuous and that θn(En+1) is dense in En for n ≥ 1. Then, for every p ≥ 1,
πp(lim←−(En, θn) is dense in Ep.

We leave as an exercise the proof of this theorem, which can be found for
example in [14] (theorem A.1.24 and corollary A.1.25). Baire’s theorem can be
easily obtained as a corollary of the Mittag–Leffler theorem.

Corollary 2.2. Let (E, d) be a complete metric space, and let (Un)n≥1 be a se-
quence of dense open subsets of E. Then ∩n≥1Un is dense in E.

Proof: Set Vn = U1 ∩ · · · ∩ Un. Then (Vn)n≥1 is a non increasing sequence of
dense open subsets of E. Denote by in : x→ x the natural injection of Vn+1 into
Vn. We can assume that V1 is strictly contained in E. Set, for x, y ∈ Vn,

dn(x, y) = d(x, y) +
1

|d(x, ∂Vn)− d(y, ∂Vn)|
,

where ∂Vn denotes the boundary of Vn.
Clearly, dn is a distance on Vn which defines the same topology as the given

distance d on Vn. Let (xm)m≥1 be a Cauchy sequence of elements of Vn with
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respect to dn. Then (xm)m≥1 is also a Cauchy sequence with respect to d and
its limit in V n satisfies d(x, ∂Vn) > 0. Hence x ∈ Vn, limm→+∞dn(x, xm) = 0,
and (Vn, dn) is a complete metric space. It follows then from the Mittag–Leffler
theorem that ∪n≥1Un = ∪n≥1Vn = π1(lim←−(Vn, in) is dense in E. �

If A is a complex algebra, we set A# = A if A is unital. If A is not unital we
will denote by A# = A⊕Ce the algebra obtained by adding formally a unit e to
A.

We now give an easy corollary of the Mittag–Leffler theorem, which cannot be
deduced from Baire’s theorem.

Corollary 2.3. Let A be a Fréchet algebra, and let (am)m≥1 be a sequence of
elements of A such that [anA]− = A for n ≥ 1. Then we have the following
properties

(i) ∩m≥1a1 · · · amA is dense in A.

(ii) There exists b ∈ A such that b−
n∑

m=1

a1 · · · amA ∈ a1 · · · an+1A
# for p ≥ 1.

Proof: (i) Set En = A for n ≥ 1, and set θn(u) = anu for u ∈ A, n ≥ 1. It
follows from the Mittag–Leffler theorem that ∩m≥1a1...amA ⊂ π1(lim←−(En, θn) is

dense in E1 = A.

(ii) Set again En = A for n ≥ 1, and set θn(u) = anu + an for u ∈ A,
n ≥ 1. It follows from the Mittag–Leffler theorem that lim←−(En, θn) 6= ∅. Let

(bn)n≥1 ∈ lim←−(En, θn), and set b = b1. A routine induction shows that we have,

for n ≥ 1,

b =
n∑

m=1

a1 · · · am + a1 · · · anbn+1

=
n∑

m=1

a1 · · · am + a1 · · · an(an+1 + an+1bn+2) ∈ a1 · · · an+1A
#.

�

3. Continuity of characters on Fréchet algebras

Let (A, (‖.‖)n≥1) be a Fréchet algebra. For n ≥ 1 we denote by An the com-
pletion of the quotient algebra A/Ker(‖.‖n) with respect to the norm

‖.‖∗n : f +Ker‖.‖n → ‖f‖n
on A/Ker(‖.‖n), and we denote by πn : a→ a+Ker‖.‖n the natural homomor-
phism from A into (An, ‖.‖n). The map a + Ker‖.‖n+1 → a + Ker‖.‖n extends
continuously to an homomorphism π̃n : An+1 → An. It was observed by Michael
[40] that the map π : a → ((πn)(a))n≥1 defines a Fréchet algebra isomorphism
between the given Fréchet algebra A and the algebra lim←−(An, π̃n) considered as a

closed subalgebra of the Fréchet algebra Πn≥1An.
1

1If (Bn, pn)n≥1 is a sequence of Banach algebras, then the product Πm≥1Bm is a Fréchet
algebra with respect to the family (qn)n≥1 of seminorms defined by the formula qn((um)m≥1) =
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A good presentation of known partial results concerning Michael’s problem is
given by Dales in section 4.10 of [14]. For example assume that A is a unital

Féchet algebra, denote by σA(u) the spectrum of u ∈ A, and we denote by Â the
set of continuous characters on A. It was shown by Michael in [40] that we have,
for u ∈ A,

σA(u) = {χ(u)}χ∈Â.
Hence if φ is a discontinuous character on A and if u ∈ A, there always exists

a continuous character χ on A such that χ(u) = φ(u).
Using the Mittag–Leffler theorem, Arens [4] showed that if (u1, · · · , up) ∈ Ap,

and if πn(u1)An+ · · ·+πn(up)An = An for every n ≥ 1, then u1A+ · · ·+unA = A,
see [14], theorem 4.10.8. Now consider the joint spectrum

σA(u1, · · · , up) := {(λ1, · · · , λp) ∈ Cp | (a1 − λ1)A+ · · ·+ (ap − λp)A ( A}.
It follows from theorem 4.10.8 of [14] that we have

σA(u1, · · · , up) = {(χ(u1), · · · , χ(up))}χ∈Â.
In particular for every discontinuous character φ on A and every finite family

(u1, · · · , up) of elements of A, there exists a continuous character χ on A such that
χ(uj) = φ(uj) for 1 ≤ j ≤ p. This result implies in particular that if a Fréchet
algebra A is rationally generated by a finite set, then every character on A is
continuous. This shows that every character on the algebra H(S) of holomorphic
functions on a Stein manifold S is continuous (in fact for every character φ on
H(S) there exists s ∈ S such that φ(f) = f(s) for every f ∈ H(S)).

Now let Ω be a σ–compact, non compact locally compact space. The fact
that all characters on the Fréchet algebra C(Ω) of continuous complex–valued
functions on Ω is a consequence of a result of Michael, see theorem 4.10.13 of
[14]. We present here a proof which is an interpretation via the Mittag–Leffler
theorem of an argument of Shah [45].

Theorem 3.1. Let A be a real Fréchet algebra. Then every homomorphism
φ : A→ R is continuous.

Proof: We can assume without loss of generality that A is unital. Assume,
if possible, that there exists a discontinuous homomorphism φ : A → R. Then
M := Ker(φ) is dense in A. Equip M with the discrete topology, so that M
is a complete metric space with respect to the trivial distance δ defined by the
formulas {

δ(u, v) = 1 if u 6= v
δ(u, v) = 0 if u = v

Set En = A ×Mn−1 for n ≥ 1, and set, for u = (u, v1, · · · , vn−1) ∈ En,u′ =
(u′, v′1, · · · , v′n−1) ∈ En,

sup1≤j≤npj(uj). The topology associated to this family of seminorms is the usual product
topology.
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dn(u,u′) = d(u, u′) +
n−1∑
j=1

δ(vj, v
′
j),

where d is a distance on A which defines the Fréchet topology of A with respect
to which A is a complete metric space. Then (En, dn) is a complete metric space.
Now set, for u = (u, v1, · · · , vn) ∈ En+1, n ≥ 1,

θn(u) = (u2 + 1− vn, v1, · · · , vn−1).

Then θ(n) : En+1 → En is continuous, and θn(En+1) is dense in En since
M is dense in A. It would then follow from the Mittag–Leffler theorem that
lim←−(En, θn) 6= ∅. Let (un)n≥1 ∈ lim←−(En, θn). It follows from the definition of the

maps θn thet there exists a sequence (un)n≥1 of elements of A and a sequence
(vn)n≥1 of elements of M such that we have, for n ≥ 1,

un = (un, v1, · · · , vn−1),

and we have un = u2
n+1 + 1 − vn. Hence φ(un) = φ(un+1)2 + 1 for n ≥ 1. But

an induction on k shows then that φ(un) ≥ 2k for every n ≥ 1 and every k ≥ 0,
which is impossible. �

Corollary 3.2. Let Ω be a σ-compact, non compact locally compact space. Then
all characters on the Fréchet algebra C(Ω) are continuous.

Proof: Let φ be a character on C(Ω), denote by CR(Ω) the algebra of continuous

real–valued functions on Ω, and let φ̃ be the restriction of φ to CR(Ω). Since

φ̃(f) = φ(f) ∈ σC(Ω)(f) ⊂ R for every f ∈ CR(Ω), it follows from the theorem

that φ̃ is continuous on CR(Ω). So there exists a compact subset K of Ω and k > 0
such that |φ(f)| ≤ ksupt∈K |f(t)| for f ∈ CR(Ω). We obtain

|φ(f)| = |φ(Re(f)) + iφ(Im(f))| ≤ k
√

2supt∈K |f(t)| ∀f ∈ C(K),

and so φ is continuous. �
With a little more work it is possible to show that for every character on

C(Ω) there exists τ ∈ K ⊂ Ω such that φ(f) = f(τ) for every f ∈ C(Ω)).
The situation is a slightly more complicated for the algebra C(X) of continuous
complex–valued functions on a completely regular space X. In general C(X) is
not a Fréchet algebra, but it belongs to the class of locally multiplicatively convex
complete algebras (complete LMC algebras) also studied by Michael in [40], which
can be identified to the class of algebras isomorphic to a projective limit of a
family of Banach algebras. It is possible to show that all characters on C(X) are
bounded, but if X is not replete in the sense of definition 4.10.21 of [14] there
exists characters on C(X) which do not have the form χλ : f → f(λ) for some
λ ∈ X. We refer to section 10.4 of [40] for more details.

Michael had asked in [40] whether all characters on complete LMC algebras
were bounded. This question seems at first glance a little bit more general than
the question of continuity of characters on Fréchet algebra (the class of complete
LMC algebras contains the class of Fréchet algebras, and a character on a Fréchet



74 J. ESTERLE

algebra is continuous if and only if it is bounded), but Dixon and Fremlin showed
in [19] that the two problems are in fact equivalent. Akkar gave in [3] a nice
interpretation of this fact: the two problems are equivalent because every com-
plete LMC algebra is, as a ”bornological algebra”, isomorphic to inductive limit
of a family of Fréchet algebras. The equivalence of the two questions follows also
from the fact that the existence of an unbounded character on a complete LMC
algebra would imply the existence of a discontinuous character on the Fréchet
algebras which are ”test algebras” for Michael’s problem, as Clayton’s algebra
[11] ( Dixon and the author propose another algebra of this type in [15], but it
seems to be similar to an unpublished example obtained by Mazur around 1937
[54]).

Denote by H(Cp) the set of entire functions on Cp, and let f ∈ H(Cp). For
α = (α1, · · · , αp) ∈ [Z+]p, z = (z1, · · · , zp) ∈ Cp, set zα = zα1

1 · · · z
αp
p , with the

convention 00 = 1, α! = α1! · · ·αp!, ∂αf = ∂α1+···+α
p

(f)

∂z
α1
1 ···∂z

αp
p
,0 = 0Cp . We have

f(z) =
∑

α∈[Z+]p

∂αf(0)

α!
zα.

Let A be a unital Fréchet algebra. For a = (a1, · · · , ap) ∈ Ap, set aα =
aα1

1 · · · a
αp
p , with the convention 00 = 1A. We set, for f ∈ H(Cp),

f(a) =
∑

α∈[Z+]p

∂αf(0)

α!
aα.

Now denote by H(Cp,Cq) the space of entire mappings from Cp into Cq, i.e.
the space of mappings F = (f1, · · · , fq) : Cp → Cq such that fj ∈ H(Cp) for
1 ≤ j ≤ q. We set, for f ∈ H(Cp,Cq), a ∈ Ap,

F (a) := (f1(a), · · · , fq(a)) ∈ Aq.
Also if χ is a character on A we set

χ(a1, · · · , ap) = (χ(a1), · · · , χ(ap)).

It is easy to see that we have, for F ∈ H(Cp,Cq), a ∈ Ap,

χ(F (a)) = F (χ(a)).

The complex counterpart of theorem 3.1, due to Dixon and the author, is given
by the following result.

Theorem 3.3. Assume that there exists a projective sequence (Cpn , Fn)n≥1, where
pn ≥ 1 and where Fn : Cpn+1 → Cpn is an entire mapping for n ≥ 1 such that
lim←−(Cpn , Fn) = ∅. Then all characters on Fréchet algebras are continuous.

It follows immediately from the big Picard theorem that lim←−(C, fn) 6= ∅ if

(fn)n≥1 is any sequence of entire functions. On the other hand the ”Poincaré–
Fatou–Bieberbach phenomenon” shows that for every p ≥ 2 there exists a one-
to-one entire mapping F : Cp → Cp such that F (Cp) is not dense in Cp, which
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suggests that there could exist a sequence (Fn)n≥1 of entire mappings from Cp

into itself such that ∩n≥1(F1 ◦ · · · ◦ Fn)(Cp) = ∅.
Some computer pictures of the intersection of the range of the original Bieber-

bach map from C2 into itself with two-dimensional real affine subspaces can be
found in [18], p.149. These pictures suggest that the intersection of range of a one-
to-one entire mapping F ∈ H(C2,C2) with two-dimensional real affine subspaces
should be both either smooth or very irregular depending on the two-dimensional
real affine subspace considered, but an important result of B. Stensones [50]
shows that the range of such a map may have a C∞-smooth boundary. A num-
ber of papers concerning Fatou–Bieberbach domains appeared since 1986, see
[7, 8, 9, 10, 32, 31, 30, 35, 37, 39, 44, 51], but the existence of a sequence (Fn)n≥1

of entire mappings from Cp into itself such that ∩n≥1(F1 ◦ ... ◦ Fn)(Cp) = ∅. re-
mains a big mystery for p ≥ 2. Some more computer pictures of the range of
concrete Fatou–Bieberbach maps would certainly be welcome, and the notion of
Picard–Borel algebra, introduced in the author’s ”essay” on Michael’s problem,
Mittag–Leffler methods and Picard’s theorem [27] might deserve further investi-
gations.

4. Old and new results concerning homomorphisms from C(K) into
a Banach algebra

In what follows K denotes an infinite compact space. If s ∈ K we set Ms :=
{f ∈ C(K) | f(s) = 0}, MK := {Ms}s∈K , and we denote by Js the set of
continuous functions on K which vanish on some neighborhood of s. If B is a
commutative Banach algebra, we will denote by Rad(B) the Jacobson radical of
B, i.e. the set of all quasinilpotent elements of B.

We introduce two notions which play a useful role in automatic continuity.

Definition 4.1. Let E and F be Banach spaces, ant let T : E → F be a linear
operator. The separating space ∆(T ) is the space of all y ∈ F for which there
exists a sequence (xn)n≥1 of elements of E satisfying

limn→+∞‖xn‖+ ‖y − T (xn)‖ = 0.

It follows from the closed graph theorem that T is continuous if and only if
∆(T ) = {0}.

Definition 4.2. Let φ : A → B be a homomorphism from a Banach algebra A
into a Banach algebra B. The continuity ideal I(φ) of φ is the set of all a ∈ A
such that the map φa : x→ φ(ax) is continuous.

Notice that it follows also from the closed graph theorem that if φ is a homo-
morphism from a Banach algebra A into a Banach algebra B, then φ(a)∆(φ) = 0
for every a ∈ I(φ).

We now state the ”main boundedness theorem” of Badé–Curtis [6].

Theorem 4.3. (”main boundedness theorem”) Let A be a commutative Banach
algebra and le φ : A → B be a homomorphism from A into a Banach algebra
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B. Let (gn)n≥1 and (hn)n≥1 be two sequences of elements of A \ {0} satisfying
gnhn = gn for n ≥ 1. Then we have

limsupn→+∞
‖φ(gn)‖
‖gn‖‖hn‖

< +∞.

Now let φ be a homomorphism from C(K) into a Banach algebra B. We can
assume without loss of generality that φ(C(K)) is dense in B. It follows from the
main boundedness theorem that if (fn)n≥1 is a sequence of elements of C(K) such
that fnfm = 0 for n 6= m, then there exists N ≥ 1 such that f 2

n ∈ I(φ) for n ≥ N.
The main boundedness theorem also allowed Badé and Curtis to decompose φ as
the sum of a ”continuous” and a ”singular” part.

Sinclair gave later in [47], theorem 10.3 a slightly more precise form of their
result. Set Γ := {f ∈ C(K) |φ(f)∆(φ) = 0}. Then the set S := {s ∈ K | Γ ⊂Ms}
is finite. Set MS := ∩s∈SMs, denote by JS the set of functions f ∈ C(K)
vanishing on some open set containing S, and denote by AS the set of functions
f ∈ C(K) which are constant on some neighborhood of s for every s ∈ S. Then JS
is an ideal of C(K) contained in Λ which is dense inMS, AS is a dense subalgebra
of C(K), and we have the following properties.

(i) There exists a continuous homomorphism ψ : C(K)→ B such that ψ(f) =
φ(f) for every f ∈ AS and such that ψ(gh) = φ(gh) for every g ∈ Γ and every
h ∈ Γ−;

(ii) ψ(C(K)) is closed in B, Rad(B) = ∆(φ), φ(Γ−)Rad(B) = {0} and B =
ψ(C(K))⊕Rad(B);

(iii) If we set θ = φ−ψ, then the restriction of θ to ∩s∈SMs is a homomorphism
from ∩s∈SMs onto a dense subalgebra of Rad(B);

(iv) There exists a family (θs)s∈S of linear operators from C(K) into B such
that

a) θ =
∑

s∈S θs,
b) Rad(B) = ⊕s∈SRs, where Rs := [θs(C(K))]−,
c) RsRt = {0} for t 6= s,

d) the restriction of θs to Ms is a homomorphism from Ms into Rad(B), and
θs(Js) = {0}.

The main boundedness, one of the key tools of automatic continuity theory,
thus allowed to reduce the problem of existence of a discontinuous homomorphism
of C(K) to the problem of existence of a nontrivial homomorphism from a maximal
ideal of C(K) into a commutative radical Banach algebra. The next reduction
was related to another key tool in automatic continuity theory, the so–called
”stability lemma”, which we state in the form given by Sinclair in lemma 1.6 of
[47].

Lemma 4.4. (”stability lemma”) Let E and F be Banach spaces, and let (Sn)n≥1

and (Rn)n≥1 be sequences of bounded linear operators on E and F, respectively.
If T : E → F is a linear operator satisfying TSn = RnT for every n ≥ 1. Then
there exists and integer N satisfying, for every n ≥ N,
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[R1 · · ·Rn(∆(T ))]− = [R1 · · ·RN(∆(T ))]− .

Using the stability lemma applied to rational semigroups, Sinclair showed in
[48] that if θ is a homomorphism from a maximal ideal M of C(K) into a com-
mutative radical Banach algebra R, then θ(f) ∈ [θ(f)2R]− for every f ∈ M,
see theorem 11.7 in [47]. He also showed that if f ∈ M \Ker(θ) there exists a
closed ideal L of B such that θ(f) /∈ L, such that Ker(π ◦ θ) is prime and such
that π ◦ θ :M→ B/J is a discontinuous homomorphism, where π : u → u + L
demotes the canonical surjection from B onto B/L.

These results have far reaching-consequences.

(1) Let φ be a homomorphism from C(K) into a Banach algebra B. Then
I(φ) = {f ∈ ∩s∈SMs | φ(f)∆(φ) = 0} = {f ∈ ∩s∈SMs | θ(f) = 0},
where θ denotes the ”singular part” of φ in the sense of Badé and Curtis,
and the restriction of φ to I(φ) is continuous;

(2) if fn ∈ I(φ) for some n ≥ 2, then f ∈ I(φ) (in other terms, the continuity
ideal I(φ) is semiprime);

(3) if (fn)n≥1 is a sequence of elements of C(K) such that fnfm = 0 for n 6= m,
then there exists N ≥ 1 such that fn ∈ I(φ) for n ≥ N ;

(4) there exists a discontinuous homomorphism from C(K) into a Banach
algebra if and only if there exists a prime ideal I of C(K) such that the
quotient algebra C(K)/I possesses an algeba norm.

Dales and the author showed independently that the quotient l∞/U is normable
for every free ultrafilter U on N if the continuum hypothesis is assumed, which
allowed them to construct discontinuous homomorphisms from C(K) for every
infinite compact space K, see [15] for an outline of both constructions and de-
tailed references. The author showed later that if the continuum hypothesis is
assumed then every non–unital complex algebra of cardinality 2ℵ0 which is an
integral domain does possess an algebra norm, which shows that the quotient al-
gebra C(K)/I possesses an algebra norm for every prime ideal I of C(K) such that
|C(K)/I| = 2ℵ0 . We will present in the next section the author’s approach, based
on a ”big” algebra of formal power series, and the alternative approach developed
by Woodin to deduce the normability of non–unital integral domains of cardinal-
ity 2ℵ0 from Dales’ original construction of discontinuous homomorphisms from
C(K).

In the other direction Solovay and Woodin constructed models of set theory
including ZFC and Martin’s axiom in which all homomorphisms from C(K) are
continuous for every compact space K, see [16]. We will also briefly discuss the
dependence of the answer to Kaplansky’s problem on axioms of set theory in the
next section.

Sinclair’s results can be interpreted in terms on algebra seminorms, since qφ :
f → ‖φ(f)‖ is an algebra seminorm on C(K) for every homomorphism C(K) into
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a Banach algebra. 2 If we define the continuity ideal I(q) of an algebra seminorm
q on C(K) to be the set of all f in C(K) such that sup‖g‖K≤1q(fg) < +∞,
Sinclair’s results show that the restriction of q to I(q) is continuous with respect
to the usual norm ‖.‖K , that I(q) is semiprime and that for every f ∈ C(K)\I(q)
there exists a prime ideal I of C(K) containing I(q) such that f /∈ I. Also I(q) is
a Badé–Curtis ideal in the sense of definition 1.2: for every sequence (fn)n≥1 of
elements of C(K) such that fnfm = 0 for m 6= n there exists an integer N such
that fn ∈ I(q) for every n ≥ N.

The author developed in [20] an independent approach different of Sinclair’s
method, based on general properties of linear seminorms on RN, and inspired by
the work of Allan on elements of finite closed descent [2]. 3 He showed that in

fact [φ(f)B]− = [φ(f)2B]
−

for every f ∈ C(K) and every homomorphism φ from
C(K) into a Banach algebra B, and considered general properties of the set of
ideals of C(K) which are closed with respect to an algebra seminorm on C(K).
We summarize these properties in the following theorem

Theorem 4.5. Let q be an algebra seminorm on C(K), let MK be the set of
maximal ideals of C(K), and let Prim(q) be the set of non maximal prime ideals
of C(K) which are closed with respect to q.

(i) For every ideal J of C(K), the closure J
q

of J with respect to q satisfies

J
q

= ∩{J ∈ Prim(q) ∪MK : J ⊂ I};
(ii) the restriction of q to the continuity ideal I(q) is continuous with respect to

the usual norm ‖.‖K , and the continuity ideal I(q) is the largest ideal I of C(K)
such that the restriction of q to I is continuous with respect to the norm ‖.‖K .

(iii) I(q) = ∩{I : I ∈ Prim(q)};
(iv) I(q) is a pure semiprime Badé–Curtis ideal of C(K);

(v) every chain of elements of Prim(q) is well–ordered with respect to inclusion.

Notice that property (v), proved by the author in [20], could also be obtained
with the methods used by Sinclair in [48].

Recall that a compact space K is called a F–space if f ∈ |f |C(K) for every
f ∈ C(K). For example, the Alexandroff and the Stone-Cĕch compactifications of
N are F–spaces. We obtain the following result [20].

Corollary 4.6. Let K be a F–space, and let q be an algebra seminorm on C(K).
Then the continuity ideal I(q) is the intersection of a finite family of non maximal
prime ideals of C(K), and Prim(q) is a finite union of well-ordered chains.

The question whether corollary remained true for all infinite compact spaces
remained open for many years. It was answered by the negative by Pham [41],
assuming the continuum hypothesis. Recall that a family (Fλ)λ∈Λ of subsets of

2Conversely if q is an algebra seminorm on C(K) and if we denote by B the completion of
the quotient algebra C(K)/Ker(q) with respect to the norm q̃ : f + Ker(q) → q(f), then the
map φ : f → f +Ker(q) is a homomorphism from C(K) into B such that qφ = q.

3Both approaches involve implicitly or explicitly the Mittag–Leffler theorem
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a set E is said to be pseudo–finite if for every λ ∈ Λ and every x ∈ Fλ the set
{µ ∈ Λ | x /∈ Fµ} is finite or empty.

Also if Ω is a compact metric space, we denote by ∂(Ω) the set of all limit
points of Ω, and we set

∂1(Ω) = ∂(Ω), ∂n(Ω) = ∂(∂n−1(Ω) for n ≥ 2, ∂∞(Ω) = ∩n≥1∂n(Ω).

Then either ∂n(Ω) = ∅ for some n ≥ 1, or ∂∞(Ω) 6= ∅. The following result was
proved by Pham in [41].

Theorem 4.7. (CH)
(i) Let K be an infinite compact space, let (Iλ)λ∈Λ be an infinite, pseudo-finite

family of nonmaximal prime ideals of C(K) such that Iλ * Iµ for λ 6= µ, and
set I = ∩λ∈ΛIλ. If |C(K)/I| = 2ℵ0 , then there exists an algebra seminorm q on
C(K)such that Ker(q) = I(q) = I.

(ii) Let Ω be an infinite compact metric space, and assume that ∂∞(Ω) 6= ∅.
Then for every ω ∈ ∂∞(Ω), the maximal ideal Mω contains an infinite pseudo-
finite family (Iλ)λ∈Λ of nonmaximal prime ideals of C(Ω) such that Iλ * Iµ for
λ 6= µ.

Pham also showed in [42], assuming the continuum hypothesis, that there exists
algebra seminorms on C([0, 1] such that Ker(q) = I(q) is not the intersection of
any countable family of nonmaximal prime ideals.

Concerning the set Prim(q), some new information will be given in [29], related
to some results of [43]. We have the following observation.

Proposition 4.8. [29] Let E be a set, let F be a family of subsets of E, and let
U(F) be the family of all sets of the form SG := ∪{F : F ∈ G}, where G ⊂ F .
Then the following conditions imply each other:

(i) Every chain of elements of U(F) is well–ordered with respect to inclusion.

(ii) Every sequence of elements of F possesses a pseudo–finite subsequence.

(iii) Every sequence of elements of U(F) possesses a pseudo–finite subsequence.

The following result, obtained independently by the author, follows from lemma
5.7 of [43], where the ideals L1, · · · , Lm are called the ”roofs” of the family F .

Proposition 4.9. Let F be a family of nonmaximal prime ideals of C(K) satis-
fying the equivalent conditions of proposition 4.8. Then for every G ⊂ F , there
exists a finite family L1, · · · , Lm of prime ideals of C(K) satisfying

∪{I : I ∈ G} = L1 ∪ · · · ∪ Lm.

We will discuss at the end of the paper various characterizations of pure
semiprime Badé–Curtis ideals of C(K). We give already here the following re-
sult from [29].

Theorem 4.10. Let q be a discontinuous algebra seminorm on C(K). Then the
set Prim(q) satisfies the equivalent conditions of proposition 4.8.
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Corollary 4.11. Let q be a discontinuous algebra seminorm on C(K), and let
F ⊂ Prim(q). Then there exists a finite family L1, · · · , Lm of prime ideals of
C(K) satisfying

∪{I : I ∈ F} = L1 ∪ · · · ∪ Lm.
We saw above that every chain of elements of Prim(q) is well-ordered with

respect to inclusion. The following result, to be proved in [29], shows that there
is essentially no restriction on the ordinal type of these chains if the continuum
hypothesis is assumed.

Theorem 4.12. (CH) Let K be an infinite compact space, and let F be a well-
ordered chain of nonmaximal prime ideals of C(K) such that |C(K)/I| = 2ℵ0 ,
where I := ∩{I : I ∈ F}, and let M be the maximal ideal of C(K) containing
all elements of F .

(i) There exists a discontinuous algebra seminorm q on C(K) such that F ⊂
Prim(q).

(ii) If, further, F ∪ {M} is stable under unions, there exists a discontinuous
algebra seminorm q on C(K) such that F = Prim(q).

In fact the author obtained this result a long time ago, but was looking for a
”natural” proof. Since such a natural proof still remains elusive, a correct but
not very natural one will be given in [29].

5. Some open questions related to Kaplansky’s problem

5.1. Normability of big algebras of formal power series. We first introduce
some objects used by the author in his construction of discontinuous homomor-
phisms from C(K). A map φ from an ordered set E into an ordered set F will be
said to be isotonic when it is order preserving. Let ω1 be the smallest uncount-
able ordinal. We denote by S ⊂ {0, 1}ω1 the set of all transfinite dyadic sequences
x = (xζ)ζ<ω1 for which there exists η(x) < ω1 such that xη(x) = 1 and such that
xζ = 0 for every ζ > η(x).

Equipped with the lexicographic order, S is a linearly ordered set, and a clas-
sical result of Sierpiński [46], see also [28], shows that every linearly ordered set
of cardinal ≤ ℵ1 is order-isomorphic to a subset of S.

To be more precise we need to recall the following notions (if A and B are
nonempty subsets of a linearly ordered set E we will write A < B when x < y
for every x ∈ A and every y ∈ B).

Definition 5.1. Let (E,<) be a linearly ordered set (resp. linearly ordered
group, resp. linearly ordered field).

(i) E is said to be a β1–set if there exist a chain (Eλ)λ∈Λ of subsets (resp.
subgroups, resp. subfields) of E, with E = ∪λ∈ΛEλ, such that every subset of Eλ
has a countable coinitial and cofinal subset for every λ ∈ Λ.

(ii) E is said to be a η1–set if the two following conditions are satisfied
(a) E does not admit any countable coinitial and cofinal subset
(b) for every pair A,B of nonempty subsets of E, such that |A| ≤ ℵ0, |B| ≤ ℵ0,

A < B there exists x ∈ E such that A < x < B.
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The set S is a β1–η1 set, every β1–set is order-isomorphic to a subset of S, and
every β1–η1 set is order isomorphic to S.

Denote by G ⊂ SR the set of all real–valued functions φ on S such that
Supp(φ) := {s ∈ S | φ(s) 6= 0} is well–ordered and at most countable. For
φ ∈ G \ {0}, denote by v(φ) the smallest element of Supp(φ). By definition, a
nonzero element φ ∈ G is said to be strictly positive if φ(v(φ)) > 0. Equipped
with the linear structure inherited from the linear structure of SR, G is a linearly
ordered real vector space. In fact, G is a β1–η1 group which contains a copy of
every β1 group, and every linearly ordered divisible β1–η1 group is isomorphic as
an ordered group to G.

Now let G be a linearly ordered group, and let k be a field. We will denote by
F(G, k) the set of all functions f : G→ k such that Supp(f) := {τ ∈ G | f(τ 6=
0)} is well–ordered, and we set

F(1)(G, k) := {f ∈ F(G, k) | |supp(g)| ≤ ℵ0}.
Now let f, g ∈ F(G, k), and let τ ∈ G. If τ /∈ Supp(f) + Supp(g) := {α +

β}α∈Supp(f),β∈Supp(g), set (fg)(τ) = 0. Otherwise set

(fg)(τ) =
∑

α∈Supp(f),β∈Supp(g)
α+β=τ

f(α)g(β).

Then fg is well-defined, since the set {(α, β) ∈ Supp(f)×Supp(g) | α+β = τ}
is finite for every τ ∈ Supp(f) + Supp(g), and fg ∈ F(G, k). In fact Hahn
observed in 1907 in [36] that F(G, k) is a field. Set v(f) = inf(Supp(f)) for
f ∈ F(G, k)\{0}. Then v is a valuation on the field F(G, k), and the valued field
F(G, k) is maximal: if U is a field containing F(G, k), and if w is a valuation
on U with values in G such that w(f) = v(f) for every f ∈ F(G, k) \ {0}, then
U = F(G, k).

Mac Lane showed in [38] that F(G, k) is algebraically closed if k is algebraically
closed and if G is divisible, which means that the equation nt = τ has a solution
in G for every τ ∈ G and every integer n ≥ 2. Recall that a linearly ordered
field k is said to be real–closed if k(

√
−1) is algebraically closed, or, equivalently,

if every linearly ordered field strictly containing k contains an element which is
transcendental over k. If k is real–closed, and if G is divisible, it follows from Mac
Lane’s result that F(G, k) is a linearly ordered real–closed field. In particular,
F(G,C) and F(1)(G,C) are algebraically closed fields and F(G,R) and F(1)(G,R)
are linearly ordered real–closed fields if G is a linearly ordered divisible group.

Now set R = F(1)(G,R), R̂ = F(G,R), C = F(1)(G,R), Ĉ = F(G,C). Again,
R is a real–closed β1–η1 field which contains a copy of every linearly ordered field
of cardinal≤ ℵ1, and every β1–η1 linearly ordered real–closed field is isomorphic to
R (and also isomorphic to R as a real algebra). We denote by R̃ the closure of R

in R̂ with respect to the order topology, see [17], and we denote by C̃ = R̃(i) ⊂ Ĉ

the algebraic closure of R̃. We set, with the convention v(0) = +∞ > τ for every
τ ∈ G,

R] := {f ∈ R | v(f) ≥ 0},C] := {f ∈ C | v(f) ≥ 0},
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and we define in a similar way R̂], R̃], Ĉ] and C̃].
The author’s construction of a discontinuous homomorphism of C(K) was based

on the following theorem

Theorem 5.2. The algebra C] possesses an algebra norm.

In fact, a commutative unital Banach algebra A contains a copy of C] if
and only there exists a non nilpotent element x ∈ Rad(A) such that xn ∈
[xn+1Rad(A)]− for some n ≥ 1, which means that x has ”finite closed descent”
in the sense of Allan [2]. This shows in particular that if a commutative Banach
algebra contains a copy of the algebra C[[X]] of all formal power series, it contains
a copy of the much larger algebra C].

The maximal ideal of C] is ”universal”: if the continuum hypothesis is assumed
it contains a copy of each complex nonunital algebra of cardinality 2ℵ0 which is
an integral domain. This shows that C] contains a copy of the quotient C(K)/I
for every nonmaximal prime ideal I of C(K) such that |C(K)/I| = 2ℵ0 , which of
course solves Kaplansky’s problem assuming CH.

Our first open problem concerns ”big algebras of formal power series”.

Problem 5.3. Does the algebra Ĉ] possess an algebra norm. If not, does the
smaller algebra C̃] possess an algebra norm?

This problem is a major question left open by Dales and Woodin in [17]. The

obstruction to the construction of an embedding from Ĉ] into a Banach algebra is
related to transcendental extensions: consider for example the convolution algebra
A = Cδ0 ⊕ L1(R+, e−t

2
). There exists a ”framework map” φ : G+ → A, i.e. a

map satisfying φ(0) = δ, φ(τ + τ ′) = φ(τ)φ(τ ′) for τ ≥ 0, τ ′ ≥ 0, such that φ(τ)

generates a dense ideal of L1(R+, e−t
2
) for every τ > 0. Using this map, one can

construct a one-to-one homomorphism θ : C] such that θ(f) ∈ φ(v(f))Inv(A) for

every f ∈ C] \ {0}. Now if D is a subalgebra of Ĉ] containing the ”monomials”
Xτ for τ ∈ G+, and if θ : D → A is a (necessarily one-to-one) homomorphism
satisfying θ(f) ∈ φ(v(f))Inv(A) for every f ∈ D \ {0} then it follows from the

Arens–Calderon theorem [5] that there exists a homomorphism θ̃ : K] → A

such that θ̃(f) ∈ φ(v(f))Inv(A) for every f ∈ K] \ {0} which extends θ, where

K denotes the algebraic closure in Ĉ of the field of fractions of D and where
K] := {f ∈ K | v(f) > 0}. We refer to the last chapter of [14] for details.

So the problem of extending a homomorphism from C] to the whole of Ĉ] lies
with transcendental extensions. In the case of C], transcendental extensions are
performed via a transfinite induction involving the fact that C] = ∪ζ<ω1C

]
ζ , where

ω1 is the smallest uncountable ordinal and where Cζ = F(Gζ ,C), Gζ being a

”β1–group” for ζ < ω1. The transcendental extensions within the algebras C]
ζ can

then be performed by using corollary 2.3 (ii), a consequence of the Mittag–Leffler
theorem. We again refer the reader to the last chapter of [14] for details.

Of course we have here |A| = 2ℵ0 , which can be strictly smaller than |Ĉ]|,
but one could think that suitable Banach algebras extensions of A could allow
to embed Ĉ], or at least C̃], into some ”big” Banach algebra, and problem 5.3
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is probably the main open remaining question concerning normability of integral
domains.

5.2. Dependence on axioms of set theory. We now briefly discuss the de-
pendence of Kaplansky’s problem to axioms of set theory. Recall that U is an
filter on N if the following conditions are satisfied

(1) ∅ /∈ U ;
(2) If A ∈ U , and if A ⊂ B, then B ∈ U ;
(3) If A ∈ U , B ∈ U , then A ∩B ∈ U .

We will say that U is an ultrafilter on N if N \ A ∈ U for every subset A of N
such that A /∈ U . An ultrafilter U on N is said to be a free ultrafilter if, or every
m ∈ N, U 6= Um := {A ⊂ N | m ∈ A}.

For u = (un)n≥1 ∈ CN, set Z(u) := {n ∈ N | un = 0} and if U is a free ultrafilter
on N set IU := {u ∈ CN | Z(u) ⊂ U}. Then IU is a maximal ideal of CN, and
IU ∩RN is a maximal ideal of RN. We denote as usual by c0 the algebra of complex
sequences which converge to 0 as n→ +∞ and by l∞ the algebra of al bounded
complex sequences, so that c0 is a closed ideal of the Banach algebra l∞ ≈ C(βN).
We set

CN/U := CN/IU ,RN/U := RN/(IU ∩ RN ),

l∞/U := l∞/(IU ∩ l∞), c0/U := c0/(IU ∩ c0).

Before going into the dependence of Kaplansky’s problem on axioms of set
theory, we mention an interesting theorem of Woodin, which is true in ZFC, and
is based upon the existence of ”almost disjoint” subsets of N, see [17].

Theorem 5.4. For every non–unital complex algebra W which is an integral
domain and satisfies |B| = 2ℵ0 , there exists a free ultrafilter U on N such that the
quotient algebra c0/U contains a copy of W.

If the continuum hypothesis is assumed, then all these quotient algebras l∞/U
are isomorphic to the algebra C] introduced above, and one can use either the
author’s or Dales’ construction of discontinuous homomorphisms of C(K) to de-
duce from Woodin’s theorem that every nonunital complex algebra of cardinality
2ℵ0 which is an integral domain possesses an algebra norm if the continuum hy-
pothesis is assumed.

We will now outline the Solovay–Woodin proof of the consistency of the conti-
nuity of all homomorphisms from C(K), for all infinite compact spaces K, with
ZFC. The following standard results can be found in [14].

(1) If there exists a discontinuous homomorphism from l∞, then there exists
a discontinuous homomorphism from C(K) for every compact space K.

(2) If there exists a discontinuous homomorphism from C(K) for some infinite
compact space K, then there exists a discontinuous homomorphism from
c0.

It is well-known that if K is an infinite compact metric space, the existence
of a discontinuous homomorphism from C(K) is equivalent to the existence of a



84 J. ESTERLE

discontinuous homomorphism from c0, but the following problem seems to be still
open.

Problem 5.5. Does the existence of a discontinuous homomorphism from c0

imply the existence of a discontinuous homomorphism from l∞?

Now assume that there exists a discontinuous homomorphism from C(K) for
some infinite compact space K. Then there exists a discontinuous homomorphism
from c0, and so there exists a non modular prime ideal J of c0 such that the
quotient algebra c0/J is normable. Denote by c0(R) the space of all real-valued
sequences L which converge to 0, and set L = J∩c0(R). Then the quotient algebra
c0(R)/L is linearly ordered with respect to the quotient order induced by the
natural partial order on c0(R). Let q be an algebra norm on c0/L, and let U be the
unique ultrafilter on N such that IU∩c0(R) ⊂ L, set c0(R)U := c0(R)/(IU∩c0(R),
and let π : c0(R)/U → c0(R)/L be the canonical surjection. Set, for α ∈ c0(R)/U ,

φ(α) = (q(π(αn)))n≥1.

Then φ(α) ∈ c0(R), since limn→+∞q(π(αn))
1
n =limn→+∞q(π(α)n)

1
n = 0 for

every α ∈ c0/U , and if β ∈ α[c0(R/U ] then there exists N ≥ 1 such that q(α) ≺
q(β), where 4 is the partial order on RN defined by the formula

(xn)n≥1 4 (yn)n≥1 if and only if xn ≤ yn when n is sufficiently large.

Considering the set {φ(α)−1}α∈π−1([c0(R)/L]\{0}), we see that the existence of
a discontinuous homomorphism from C(K) for some infinite compact space K
would imply the existence of ”very large” linearly ordered subsets of (NN,4), and
Solovay showed in 1976 that the impossibility of the existence of such very large
linearly ordered subsets of (NN,4) was consistent with ZFC, even if Martin’s
axiom, a popular alternative to the continuum hypothesis, is assumed. This
construction uses Cohen’s forcing theory, and we refer interested readers to the
first monograph of Dales and Woodin [16].

The fact that the existence of discontinuous homomorphisms from C(K) does
not imply the continuum hypothesis follows from the following theorem, proved
independently by Frankiewicz–Zbierski and Woodin [33], [53].

Theorem 5.6. The existence of a free ultrafilter U on N such that the quotient
algebra l∞/U is isomorphic to the algebra C] is consistent with 2ℵ0 = ℵ2.

Since the algebra C] does possess an algebra norm, the Frankiewicz–Zbierski–
Woodin theorem implies the existence of discontinuous homomorphisms from
l∞, which implies the existence of discontinuous homomorphisms from C(K) for
every compact space K. This suggests the following problem (a negative answer
to which would indeed necessitate the use of forcing theory).

Problem 5.7. Does the existence of a discontinuous homomorphism from C(K)
for some compact space K imply that 2ℵ0 ≤ ℵ2?
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5.3. Characterization of the continuity ideal and of the set of closed
nonmaximal prime ideals associated to a discontinuous algebra semi-
norm on C(K). We will need the following notion

Definition 5.8. Let I be a prime ideal of C(K), set AI := C(K)/I, and let
J (I) be the intersection of the set of all prime ideals of C(K) contained in I. A
subalgebra BI of C(K) is said to be a lifting of the quotient algebra AI if the
following two conditions are satisfied

(1) BI ∩ I ⊂ J (I)
(2) C(K) = BI + I.

Notice that if BI is a lifting of AI then B̃I := BI +J (I) is also a lifting of AI ,
which is obviously the largest lifting of AI containing BI . Also if I is a minimal
prime ideal of C(K) then C(K) is obviously a lifting of AI , and ifM is a maximal
ideal of C(K) then the algebra of constant functions is a lifting of the quotient
algebra AM ≈ C.

It is shown in [29] that the quotient algebra AI does possess a lifting for every
prime ideal I of C(K). More precisely let I be a prime ideal of C(K), and let J
be a prime ideal of C(K) containing I. It proved in [29] that every lifting of AI
contains a lifting of AJ , and that, conversely, every lifting of AJ is contained in
some lifting of AI . This suggests the following problem.

Problem 5.9. Let I be a minimal prime ideal of C(K) and let F be the set of
prime ideals of C(K) containing I. Does there exist a family {BJ}J∈F of subal-
gebras of C(K) which possesses the following properties?

(i) BJ is a lifting of the quotient algebra AJ for every J ∈ F .

(ii) If J ∈ F , L ∈ F , and if J ⊂ L, then BL ⊂ BJ .

A positive answer to this problem would give a very simple proof of theorem
4.12 (i), but the author was not able so far to solve this question, despite periodic
attempts during the last 35 years. The answer might depend on axioms of set
theory (it follows from the structure of the algebra C] that the answer if yes if
K = βN if the continuum hypothesis is assumed).

We now formulate another problem, for which we assume that the continuum
hypothesis is true.

Problem 5.10. (CH) Let G be a family of nonmaximal prime ideals of C(K)
such that every sequence of elements of G possesses a pseudo–finite subsequence
and such that |C(K)/IG = 2ℵ0 , where IG denotes the intersection of all elements
of G.

(i) Does there exist a discontinuous algebra seminorm on C(K) such that G ⊂
Prim(q)?

(ii) Assume, further, that the union of every uncountable pseudo–finite family
of elements of G and the union of every chain of elements of G without any
countable cofinal subset which are not maximal ideals belong to G. Does there
exist a discontinuous algebra seminorm on C(K) such that G = Prim(q)?
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Notice that for this problem considering algebra norms instead of algebra semi-
norms make no difference, since it follows from Kaplansky’ initial result that for
every discontinuous algebra seminorm q on C(K) there exists a discontinuous al-
gebra norm q̃ on C(K) such that Prim(q̃) = Prim(q). Partial results concerning
this problem can be found in [43]. The methods of [29] and [43] would certainly
allow to give a positive answer to question (i) of the problem for families G of
nonmaximal prime ideals of C(K) for which there exists a family {BJ}J∈G of
subalgebras of C(K) satisfying the following properties

(i) BJ is a lifting of the quotient algebra AJ for every J ∈ G.

(ii) If J ∈ F , L ∈ G, and if J ⊂ L, then BL ⊂ BJ ,

which leads to questions more general than problem 5.9.
We saw that if φ is any discontinuous homomorphism from C(K) then the con-

tinuity ideal of φ is a pure semiprime Badé-Curtis ideal of C(K) (this notion coin-
cides for ideals of C(K) with the notion of ”abstract continuity ideal” introduced
by Pham in [43], and various characterizations of semiprime pure Badé-Curtis
ideals will be given in [29]). This suggests the following question, which can also
be formulated in terms of continuity ideals of discontinuous algebra seminorms
on C(K), or, equivalently, in terms of continuity ideals of discontinuous algebra
norms on C(K).

Problem 5.11. (CH) Let I be a pure semiprime Badé–Curtis ideal of C(K) such
that |C(K)/I| = 2ℵ0 . Does there exist a discontinuous homomorphism φ from
C(K) into a Banach algebra such that the continuity ideal of φ is equal to I ?

Partial results on this question, which is less general than problem 5.10, are
given by Pham in [43]. Problem 5.11 has a great heuristic importance: the fact
that the continuity ideal of a homomorphism from C(K) is a pure semiprime
Badé–Curtis ideal, which follows from Sinclair’s work [48], is a consequence of
the main boundedness theorem and the stability lemma, the two basic tools of
automatic continuity theory. A positive answer to problem 5.11 would show that
these two tools provide all the information about partial continuity properties of
discontinuous homomorphisms from C(K), at least if the continuum hypothesis
is assumed.
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