

Ann. Funct. Anal. 4 (2013), no. 2, 131–143

 \mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

LOCAL SPECTRUM OF A FAMILY OF OPERATORS

SIMONA MACOVEI

Communicated by M. Mbekhta

ABSTRACT. Starting from the classic definitions of resolvent set and spectrum of a linear bounded operator on a Banach space, we introduce the local resolvent set and local spectrum, the local spectral space and the single-valued extension property of a family of linear bounded operators on a Banach space. Keeping the analogy with the classic case, we extend some of the known results from the case of a linear bounded operator to the case of a family of linear bounded operators on a Banach space.

1. Introduction

Let X be a complex Banach space and B(X) the Banach algebra of linear bounded operators on X. Let T be a linear bounded operator on X. The *norm* of T is

$$||T|| = \sup \{||Tx|| \mid x \in X, ||x|| \le 1\}.$$

The spectrum of an operator $T \in B(X)$ is defined as the set

$$\operatorname{sp}(T) = \mathbb{C} \backslash r(T),$$

where r(T) is the resolvent set of T and consists in all complex numbers $\lambda \in \mathbb{C}$ for which the operator $\lambda I - T$ is bijective on X.

An operator $T \in B(X)$ is said to have the *single-valued extension property* if for any analytic function $f: D_f \to X$, where $D_f \subset \mathbb{C}$ is open, with $(\lambda I - T) f(\lambda) \equiv 0$, it results $f(\lambda) \equiv 0$.

For an operator $T \in B(X)$ having the single-valued extension property and for $x \in X$ we can consider the set $r_T(x)$ of elements $\lambda_0 \in \mathbb{C}$ such that there is an analytic function $\lambda \mapsto x(\lambda)$ defined in a neighborhood of λ_0 with values in X, which verifies $(\lambda I - T) x(\lambda) \equiv x$. The set $r_T(x)$ is said the local resolvent set of T at x, and the set $\operatorname{sp}_T(x) = \mathbb{C} \backslash r_T(x)$ is called the local spectrum of T at x.

Date: Received: 21 August 2012; Accepted: 25 January 2013.

2010 Mathematics Subject Classification. Primary 47A10; Secondary 47-01.

Key words and phrases. Local spectrum, local resolvent set, asymptotic equivalence, asymptotic quusinilpotent equivalence.

132 S. MACOVEI

An analytic function $f_x: D_x \to X$, where $D_x \subset \mathbb{C}$ is open, is said the *analytic extension* of function $\lambda \mapsto R(\lambda, T) x$ if $r(T) \subset D_x$ and $(\lambda I - T) f_x(\lambda) \equiv x$.

If T has the single-valued extension property, then, for any $x \in X$ there is a unique maximal analytic extension of function $\lambda \mapsto R(\lambda, T) x : r_T(x) \to X$, referred from now as $x(\lambda)$. Moreover, $r_T(x)$ is an open set of C and $r(T) \subset r_T(x)$. Let

$$X_T(a) = \{x \in X | \operatorname{sp}_T(x) \subset a\}$$

be the *local spectral space* of T for all sets $a \subset \mathbb{C}$. The space $X_T(a)$ is a linear subspace (not necessary closed) of X.

Two operators $T, S \in B(X)$ are quasinilpotent equivalent if

$$\lim_{n \to \infty} \left\| (T - S)^{[n]} \right\|^{\frac{1}{n}} = \lim_{n \to \infty} \left\| (S - T)^{[n]} \right\|^{\frac{1}{n}} = 0,$$

where $(T-S)^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} C_k^n T^k S^{n-k}$, for any $n \in \mathbb{N}$.

The quasinilpotent equivalence relation is an equivalence relation (i.e. is reflexive, symmetric and transitive) on B(X).

Theorem 1.1. Let $T, S \in B(X)$ be two quasinilpotent equivalent operators. Then (i) sp (T) = sp (S);

(ii) T has the single-valued extension property if an only if S has the single-valued extension property. Moreover, $\operatorname{sp}_T(x) = \operatorname{sp}_S(x)$.

For an easier understanding of the results from this paper, we recall some definitions and results introduced in [4]; see also [1, 2, 3].

We say that two families of operators $\{S_h\}$, $\{T_h\} \subset B(X)$, with $h \in (0,1]$, are asymptotically equivalent if

$$\lim_{h \to 0} ||S_h - T_h|| = 0.$$

Two families of operators $\{S_h\}$, $\{T_h\} \subset B(X)$, with $h \in (0,1]$, are asymptotically quasinilpotent (spectral) equivalent if

$$\lim_{n \to \infty} \limsup_{h \to 0} \left\| (S_h - T_h)^{[n]} \right\|^{\frac{1}{n}} = \lim_{n \to \infty} \limsup_{h \to 0} \left\| (T_h - S_h)^{[n]} \right\|^{\frac{1}{n}} = 0.$$

The asymptotic (quasinilpotent) equivalence between two families of operators $\{S_h\}$, $\{T_h\} \subset B(X)$ is an equivalence relation (i.e. reflexive, symmetric and transitive) on L(X). Moreover, if $\{S_h\}$, $\{T_h\}$ are two bounded asymptotically equivalent families, then are asymptotically quasinilpotent equivalent.

Let be the sets

$$C_{b}\left(\left(0,1\right],\ B\left(X\right)\right) =$$

$$= \left\{\varphi: \left(0,1\right] \to B\left(X\right) \middle| \varphi\left(h\right) = T_{h} \text{ such that } \varphi \text{ is countinous and bounded}\right\} =$$

$$= \left\{\left.\left\{T_{h}\right\}_{h \in \left(0,1\right]} \subset B\left(X\right) \middle| \left\{T_{h}\right\}_{h \in \left(0,1\right]} \text{ is a bounded family, i.e. } \sup_{h \in \left(0,1\right]} \left\|T_{h}\right\| < \infty\right\}.$$

and

$$C_{0}((0,1], B(X)) = \left\{ \varphi \in C_{b}((0,1], B(X)) | \lim_{h \to 0} \|\varphi(h)\| = 0 \right\} =$$

$$= \left\{ \left\{ T_{h} \right\}_{h \in (0,1]} \subset B(X) \middle| \lim_{h \to 0} \|T_{h}\| = 0 \right\}.$$

 $C_b\left(\left(0,1\right],\ B\left(X\right)\right)$ is a Banach algebra non-commutative with norm $\left\|\left\{T_h\right\}\right\| = \sup_{h\in\left(0,1\right]}\left\|T_h\right\|,$

and $C_0((0,1], B(X))$ is a closed bilateral ideal of $C_b((0,1], B(X))$. Therefore the quotient algebra $C_b((0,1], B(X))/C_0((0,1], B(X))$, which will be called from now B_{∞} , is also a Banach algebra with quotient norm

$$\left\| \{\dot{T}_h\} \right\| = \inf_{\{U_h\}_{h \in (0,1]} \in C_0((0,1], B(X))} \left\| \{T_h\} + \{U_h\} \right\| = \inf_{\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}} \left\| \{S_h\} \right\|.$$

Then

$$\left\| \left\{ \dot{T}_h \right\} \right\| = \inf_{\left\{ S_h \right\}_{h \in (0,1]} \in \left\{ \dot{T}_h \right\}} \left\| \left\{ S_h \right\} \right\| \le \left\| \left\{ S_h \right\} \right\| = \sup_{h \in (0,1]} \left\| S_h \right\|,$$

for any $\{S_h\}_{h\in(0,1]}\in\{\dot{T}_h\}$. Moreover,

$$\left\| \{\dot{T}_h\} \right\| = \inf_{\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}} \left\| \{S_h\} \right\| = \inf_{\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}} \sup_{h \in (0,1]} \left\| S_h \right\|.$$

If two bounded families $\{T_h\}_{h\in(0,1]}$, $\{S_h\}_{h\in(0,1]}\subset B(X)$ are asymptotically equivalent, then $\lim_{h\to 0}\|S_h-T_h\|=0$, i.e. $\{T_h-S_h\}_{h\in(0,1]}\in C_0\left(\left(0,1\right],\ B\left(X\right)\right)$.

Let $\{T_h\}_{h\in(0,1]}$, $\{S_h\}_{h\in(0,1]}\in C_b\left((0,1],\ B(X)\right)$ be asymptotically equivalent. Then

$$\limsup_{h\to 0} \|S_h\| = \limsup_{h\to 0} \|T_h\|.$$

Since

$$\limsup_{h \to 0} \|S_h\| \le \sup_{h \in (0,1]} \|S_h\|,$$

results that

$$\lim \sup_{h \to 0} ||S_h|| = \inf_{\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}} \lim \sup_{h \to 0} ||S_h|| \le$$

$$\le \inf_{\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}} \sup_{h \in (0,1]} ||S_h|| = ||\{\dot{T}_h\}||,$$

for any $\{S_h\}_{h\in(0,1]}\in\{T_h\}.$

In particular

$$\lim_{h \to 0} \| T_h \| \le \left\| \{ \dot{T}_h \} \right\| \le \left\| \{ T_h \} \right\| = \sup_{h \in (0,1]} \| T_h \|.$$

Definition 1.2. We say $\{\dot{S}_h\}$, $\{\dot{T}_h\} \in B_{\infty}$ are spectral equivalent if

$$\lim_{\mathbf{n} \to \infty} \left(\left\| \left(\{ \dot{S}_h \} - \{ \dot{T}_h \} \right)^{[\mathbf{n}]} \right\| \right)^{\frac{1}{\mathbf{n}}} = \lim_{\mathbf{n} \to \infty} \left(\left\| \left(\{ \dot{T}_h \} - \{ \dot{S}_h \} \right)^{[\mathbf{n}]} \right\| \right)^{\frac{1}{\mathbf{n}}} = 0,$$
where $\left(\{ \dot{S}_h \} - \{ \dot{T}_h \} \right)^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} C_n^k \left\{ \dot{S}_h \right\}^k \left\{ \dot{T}_h \right\}^{n-k}.$

$$(\{\dot{S}_h\} - \{\dot{T}_h\})^{[n]} = \sum_{k=0}^{n} (-1)^{n-k} C_n^k \{\dot{S}_h\}^k \{\dot{T}_h\}^{n-k}$$

$$= \left\{ \sum_{k=0}^{n} (-1)^{n-k} C_n^k S_h^k T_h^{n-k} \right\} = \left\{ (S_h - T_h)^{[n]} \right\}.$$

134 S. MACOVEI

Therefore $\{\dot{S}_h\}, \{\dot{T}_h\} \in B_{\infty}$ are spectral equivalent if

$$\lim_{\mathbf{n} \to \infty} \left\| \left\{ (S_h - T_h)^{[n]} \right\} \right\|^{\frac{1}{\mathbf{n}}} = \lim_{\mathbf{n} \to \infty} \left\| \left\{ (T_h - S_h)^{[n]} \right\} \right\|^{\frac{1}{\mathbf{n}}} = 0.$$

Proposition 1.3. If $\{\dot{S}_h\}$, $\{\dot{T}_h\} \in B_{\infty}$ are spectral equivalent, then any $\{S_h\} \in \{\dot{S}_h\}$ and $\{T_h\} \in \{\dot{T}_h\}$ are asymptotically spectral equivalent.

Proof. Let $\{S_h\} \in \{\dot{S}_h\}$ and $\{T_h\} \in \{\dot{T}_h\}$ be arbitrary. Thus

$$\lim_{n\to\infty} \overline{\lim_{h\to 0}} \left\| (S_h - T_h)^{[n]} \right\|^{\frac{1}{n}} \le \lim_{n\to\infty} \left\| \left\{ (S_h - T_h)^{[n]} \right\} \right\|^{\frac{1}{n}}.$$

Since $\{\dot{S}_h\}$, $\{\dot{T}_h\} \in B_{\infty}$ are spectral equivalent, by Definition 1.2 and above relation, it follows that

$$\lim_{n \to \infty} \overline{\lim}_{h \to 0} \left\| (S_h - T_h)^{[n]} \right\|^{\frac{1}{n}} = 0.$$

Analogously we can prove that $\lim_{n\to\infty}\overline{\lim}_{h\to 0}\left\|(T_h-S_h)^{[n]}\right\|^{\frac{1}{n}}=0.$

Proposition 1.4. Let $\{T_h\}$, $\{S_h\} \subset B(X)$ be two continuous bounded families. Then $\lim_{h\to 0} ||T_hS_h - S_hT_h|| = 0$ if and only if $\{\dot{S}_h\}\{\dot{T}_h\} = \{\dot{T}_h\}\{\dot{S}_h\}$.

Proof.
$$\lim_{h\to 0} ||T_h S_h - S_h T_h|| = 0 \Leftrightarrow \{T_h S_h\} = \{S_h T_h\} \Leftrightarrow \{\dot{S}_h\} \{\dot{T}_h\} = \{\dot{T}_h\} \{\dot{S}_h\}.$$

Definition 1.5. We call the resolvent set of a family of operators $\{S_h\} \in C_b((0,1], B(X))$ the set

$$r(\lbrace S_h \rbrace) = \left\{ \lambda \in \mathbb{C} | \exists \left\{ \mathcal{R}(\lambda, S_h) \right\} \in C_b((0, 1], B(X)), \lim_{h \to 0} \|(\lambda I - S_h) \mathcal{R}(\lambda, S_h) - I\| = \lim_{h \to 0} \|\mathcal{R}(\lambda, S_h) (\lambda I - S_h) - I\| = 0 \right\}$$

We call the *spectrum* of a family of operators $\{S_h\} \in C_b((0,1], B(X))$ the set

$$\operatorname{sp}(\{S_h\}) = \mathbb{C} \backslash r(\{S_h\}).$$

$$\operatorname{sp}(\{S_h\}) = \mathbb{C} \backslash r(\{S_h\}).$$

 $r(\{S_h\})$ is an open set of C. If $\{S_h\}$ is a bounded family, then sp $(\{S_h\})$ is a compact set of C.

Remark 1.6. (i) If $\lambda \in r(S_h)$ for any $h \in (0,1]$, then $\lambda \in r(\{S_h\})$. So $\bigcap_{h \in (0,1]} r(S_h) \subseteq r(\{S_h\})$;

- (ii) If $\lambda \in \operatorname{sp}(\{S_h\})$, then $|\lambda| \leq \limsup_{n \to \infty} \lim_{h \to 0} \|S_h^n\|^{\frac{1}{n}}$;
- (iii) If $||S_h|| < |\lambda|$ for any $h \in (0, 1]$, then $\lambda \in r(\{S_h\})$;
- (iv) If $\{S_h\}$ is bounded, then $\{\mathcal{R}(\lambda, S_h)\}$ is also bounded, for every $\lambda \in r(\{S_h\})$;
- (v) If $\{S_h\}$ is bounded, then $\lim_{h\to 0} \|\mathcal{R}(\lambda, S_h)\| \neq 0$, for every $\lambda \in r(\{S_h\})$.

Proposition 1.7. (resolvent equation - asymptotic) Let $\{S_h\} \subset B(X)$ be a bounded family and $\lambda, \mu \in r(\{S_h\})$. Then

$$\lim_{h \to 0} \| \mathcal{R}(\lambda, S_h) - \mathcal{R}(\mu, S_h) - (\mu - \lambda) \mathcal{R}(\lambda, S_h) \mathcal{R}(\mu, S_h) \| = 0.$$

Proposition 1.8. Let $\{S_h\} \subset B(X)$ be a bounded family. If $\lambda \in r(\{S_h\})$ and

$$\left\{ \mathcal{R}_{i}\left(\lambda,S_{h}\right)\right\} \in C_{b}\left(\left(0,1\right],\ B\left(X\right)\right),\ i=\overline{1,2}\right\}$$

such that

$$\lim_{h\to 0} \|(\lambda I - S_h) \mathcal{R}_i(\lambda, S_h) - I\| = \lim_{h\to 0} \|\mathcal{R}_i(\lambda, S_h) (\lambda I - S_h) - I\| = 0$$
for $i = \overline{1, 2}$, then

$$\lim_{h \to 0} \|\mathcal{R}_1(\lambda, S_h) - \mathcal{R}_2(\lambda, S_h)\| = 0.$$

Theorem 1.9. Let $\{S_h\} \in C_b((0,1], B(X))$. Then

$$\operatorname{sp}\left(\left\{\dot{S}_{h}\right\}\right) = \operatorname{sp}\left(\left\{S_{h}\right\}\right).$$

Theorem 1.10. If two bounded families $\{S_h\}$, $\{T_h\} \subset B(X)$ are asymptotically equivalent, then

$$\operatorname{sp}(\{S_h\}) = \operatorname{sp}(\{T_h\}).$$

2. Local Spectrum of a Family of Operators

Let \mathcal{O} be the set of analytic functions families $\{f_h\}_{h\in(0,1]}$ defined on an open complex set with values in a Banach space X, having property

$$\overline{\lim_{h\to 0}} \|f_h(\lambda)\| < \infty,$$

for any λ from definition set.

Definition 2.1. A bounded continue family of operators $\{T_h\} \subset B(X)$ we said to have single-valued extension property, if for any family of analytic functions $\{f_h\}_{h\in(0,1]}\in\mathcal{O}$, $f_h:D\to X$, where $D\subset\mathbb{C}$ open, with property

$$\lim_{h \to 0} \|(\lambda I - T_h) f_h(\lambda)\| \equiv 0,$$

it results $\lim_{h\to 0} ||f_h(\lambda)|| \equiv 0$.

Remark 2.2. Let $\{S_h\}$, $\{T_h\} \subset B(X)$ be two bounded continue families of operators asymptotically equivalent. If $\{S_h\}$ has single-valued extension property, then $\{T_h\}$ has also single-valued extension property.

Proof. Let $\{f_h\}_{h\in(0,1]}\in\mathcal{O}$ be a family of functions, $f_h:D\to X$, where $D\subset\mathbb{C}$ open, with $\lim_{h\to 0}\|(\lambda I-T_h)f_h(\lambda)\|\equiv 0$. Then

with
$$\lim_{h\to 0} \|(\lambda I - T_h) f_h(\lambda)\| \equiv 0$$
. Then $\lim_{h\to 0} \|(\lambda I - S_h) f_h(\lambda)\| = \overline{\lim_{h\to 0}} \|(\lambda I - S_h - T_h + T_h) f_h(\lambda)\| \le 1$

$$\lim_{h\to 0} \|(\lambda I - T_h) f_h(\lambda)\| + \overline{\lim}_{h\to 0} \|(S_h - T_h) f_h(\lambda)\| \le \lim_{h\to 0} \|(S_h - T_h)\| \overline{\lim}_{h\to 0} \|f_h(\lambda)\|,$$

for any $\lambda \in D$.

Raking into account $\{S_h\}$, $\{T_h\}$ are asymptotically equivalent, it follows

$$\lim_{h\to 0} \|(\lambda I - T_h) f_h(\lambda)\| \equiv 0.$$

Since $\{T_h\}$ has single-valued extension property, we obtain $\lim_{h\to 0} ||f_h(\lambda)|| \equiv 0$, thus $\{S_h\}$ has single-valued extension property.

Definition 2.3. Let $\{T_h\} \subset B(X)$ be a family with single-valued extension property and $x \in X$. From now we consider $r_{\{T_h\}}(x)$ being the set of elements $\lambda_0 \in \mathbb{C}$ such that there are the analytic functions from $\mathcal{O} \lambda \mapsto x_h(\lambda)$ defined on an open neighborhood of $\lambda_0 D \subset r_{\{T_h\}}(x)$ with values in X for any $h \in (0,1]$, having property

$$\lim_{h\to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| \equiv 0.$$

 $r_{\{T_h\}}(x)$ is called the local resolvent set of $\{T_h\}$ at x. The local spectrum of $\{T_h\}$ at x is defined as the set

$$\operatorname{sp}_{\{T_h\}}(x) = \mathbb{C} \backslash r_{\{T_h\}}(x)$$
.

We also define the *local spectral space* of $\{T_h\}$ as

$$X_{\{T_h\}}(a) = \{x \in X | \operatorname{sp}_{\{T_h\}}(x) \subset a\},\$$

for all sets $a \subset \mathbb{C}$.

Let be the set

 $X_{b}\left(\left(0,1\right],\ X\right) = \left\{\varphi:\left(0,1\right] \to X \middle|\ \varphi\left(h\right) = x_{h} \text{ such that } \varphi \text{ is continue and bounded}\right\} = \left\{\left\{x_{h}\right\}_{h \in \left(0,1\right]} \subset X \middle|\ \left\{x_{h}\right\}_{h \in \left(0,1\right]} \text{ a bounded sequence, i.e. } \sup_{h \in \left(0,1\right]} \left\|x_{h}\right\| < \infty\right\}.$

and

$$X_{0}((0,1], X) = \left\{ \varphi \in X_{b}((0,1], X) | \lim_{h \to 0} \|\varphi(h)\| = 0 \right\} =$$

$$= \left\{ \left\{ x_{h} \right\}_{h \in (0,1]} \subset X \middle| \lim_{h \to 0} \|x_{h}\| = 0 \right\}.$$

 $X_{b}\left(\left(0,1\right],\ X\right)$ is a Banach space in rapport with norm

$$\|\varphi\| = \sup_{h \in (0,1]} \|\varphi(h)\| \iff \|\{x_h\}\| = \sup_{h \in (0,1]} \|x_h\|,$$

and $X_0((0,1], X)$ is a closed subspace of $X_b((0,1], X)$. Therefore, the quotient space $X_b((0,1], X)/X_0((0,1], X)$, which will be called from now X_{∞} , is a Banach space in rapport with quotient norm

$$\begin{aligned} & \left\| \left\{ \dot{x}_{h} \right\} \right\| = \inf_{\{u_{h}\}_{h \in (0,1]} \in X_{0}((0,1], X)} \left\| \left\{ x_{h} \right\} + \left\{ u_{h} \right\} \right\| = \\ & = \inf_{\{y_{h}\}_{h \in (0,1]} \in \left\{ \dot{x} \right\}} \left\| \left\{ y_{h} \right\} \right\| = \inf_{\{y_{h}\}_{h \in (0,1]} \in \left\{ \dot{x}_{h} \right\}} \sup_{h \in (0,1]} \left\| y_{h} \right\|. \end{aligned}$$

Thus

$$\left\| \{\dot{x_h}\} \right\| = \inf_{\{y_h\}_{h \in (0,1]} \in \{\dot{x_h}\}} \left\| \{y_h\} \right\| \le \left\| \{y_h\} \right\| = \sup_{h \in (0,1]} \left\| y_h \right\|,$$

for all $\{y_h\}_{h \in (0,1]} \in \{x_h\}$.

Let $B_{\infty} = C_b((0,1], B(X))/C_0((0,1], B(X))$ and we consider the application Ψ defines by

$$(\{\dot{T_h}\}, \{\dot{x_h}\}) \longmapsto \{\dot{T_h}\dot{x_h}\} : B_{\infty} \times X_{\infty} \to X_{\infty}.$$

Remark 2.4. X_{∞} is a B_{∞} – Banach module in rapport with the above application.

Proof. Is the application well defined (i.e. not depending by selection of representatives)?

Let
$$\{S_h\}_{h \in (0,1]} \in \{\dot{T}_h\}$$
 and $\{y_h\}_{h \in (0,1]} \in \{\dot{x}_h\}$. Then
$$\overline{\lim}_{h \to 0} \|S_h y_h - T_h x_h\| = \overline{\lim}_{h \to 0} \|S_h y_h - T_h y_h + T_h y_h - T_h x_h\| \le \overline{\lim}_{h \to 0} \|S_h y_h - T_h y_h\| + \overline{\lim}_{h \to 0} \|T_h y_h - T_h x_h\| \le \overline{\lim}_{h \to 0} \|S_h - T_h\| \overline{\lim}_{h \to 0} \|y_h\| + \overline{\lim}_{h \to 0} \|T_h\| \lim \|y_h - x_h\| = 0.$$

Therefore $\{S_h y_h\}_{h \in (0,1]} \in \{T_h x_h\}$, for any $\{S_h\}_{h \in (0,1]} \in \{T_h\}$ and $\{y_h\}_{h \in (0,1]} \in \{x_h\}$. Is Ψ a bilinear application?

$$\Psi\left(\alpha\{\dot{T}_{h}\} + \beta\{\dot{S}_{h}\}, \{\dot{x}_{h}\}\right) = \Psi\left(\{\alpha T_{h} + \beta S_{h}\}, \{\dot{x}_{h}\}\right) = \\
= \{(\alpha T_{h} + \beta S_{h})x_{h}\} = \{\alpha T_{h}x_{h} + \beta S_{h}x_{h}\} = \\
= \alpha\{\dot{T}_{h}x_{h}\} + \beta\{\dot{S}_{h}x_{h}\} = \alpha\Psi\left(\{\dot{T}_{h}\}, \{\dot{x}_{h}\}\right) + \beta\Psi\left(\{\dot{S}_{h}\}, \{\dot{x}_{h}\}\right),$$

for any $\alpha, \beta \in \mathbb{C}$.

Analogously we can prove that

$$\Psi\left(\{\dot{T}_h\}, \alpha\{\dot{y}_h\} + \beta\{\dot{x}_h\}\right) = \alpha\Psi\left(\{\dot{T}_h\}, \{\dot{y}_h\}\right) + \beta\Psi\left(\{\dot{T}_h\}, \{\dot{x}_h\}\right).$$

Is Ψ a continue application?

$$\|\Psi\left(\{\dot{T}_{h}\},\{\dot{x}_{h}\}\right)\| = \|\{T_{h}\dot{x}_{h}\}\| =$$

$$= \inf_{\{T_{h}\dot{x}_{h}\}} \|\{T_{h}x_{h}\}\| = \inf_{\{T_{h}\dot{x}_{h}\}} \sup_{h \in \{0,1\}} \|T_{h}x_{h}\| \le$$

$$\leq \inf_{\{T_{h}\dot{x}_{h}\}} \sup_{h \in \{0,1\}} \|T_{h}\| \|x_{h}\| \le \inf_{\{T_{h}\},\{\dot{x}_{h}\}} \sup_{h \in \{0,1\}} \|T_{h}\| \|x_{h}\| \le$$

$$\leq \inf_{\{\dot{T}_{h}\}} \sup_{h \in \{0,1\}} \|T_{h}\| \inf_{\{x_{h}\}} \sup_{h \in \{0,1\}} \|x_{h}\| = \|\{\dot{T}_{h}\}\| \|\{\dot{x}_{h}\}\|.$$

Thus $\left\|\Psi\left(\{\dot{T}_h\},\{\dot{x}_h\}\right)\right\| \leq \left\|\{\dot{T}_h\}\right\| \left\|\{\dot{x}_h\}\right\|.$

Let $\{T_h\} \in B_{\infty}$ be fixed. The application $\{x_h\} \longmapsto \{T_h x_h\}$ is a linear bounded operator on X_{∞} ?

$$\{T_h(\alpha x_h + \beta y_h)\} = \{\alpha T_h x_h + \beta T_h y_h\} = \alpha \{T_h x_h\} + \beta \{T_h y_h\}.$$

In addition, since

$$\left\| \left\{ T_h \dot{x}_h \right\} \right\| \le \left\| \left\{ \dot{T}_h \right\} \right\| \left\| \left\{ \dot{x}_h \right\} \right\|,$$

it follows the application $\{\dot{x_h}\} \longmapsto \{T_h\dot{x}_h\}$ is a bounded operator.

Therefore, $B_{\infty} \subseteq B(X_{\infty})$, where $B(X_{\infty})$ is the algebra of linear bounded operators on X_{∞} .

Definition 2.5. We say that $\{\dot{T}_h\}_{h\in(0,1]}\in B_\infty$ has single-valued extension property if for any analytic function $f:D_0\to X_\infty$, where D_0 is an open complex set with $\left(\lambda\{\dot{I}\}-\{\dot{T}_h\}\right)f(\lambda)\equiv 0$, we have $f(\lambda)\equiv 0$, where $0=\{\dot{0}\}=X_0\left(\left(0,1\right],X\right)$.

Since $f(\lambda) \in X_{\infty}$, it follows there is $\{x_h(\lambda)\} \in X_{\infty}$ such that $f(\lambda) = \{x_h(\lambda)\}$. Then $0 \equiv (\lambda \{\dot{I}\} - \{\dot{T}_h\}) f(\lambda) = \{\lambda \dot{I} - T_h\} \{x_h(\lambda)\} = \{(\lambda I - \dot{T}_h)x_h(\lambda)\},$ i.e. $\lim_{h\to 0} \|(\lambda I - T_h)x_h(\lambda)\| = 0.$

Definition 2.6. We say $\{T_h\}_{h\in(0,1]}\in B_\infty$ has the *single-valued extension property* if for any analytic function $f:D_0\to X_\infty$, where D_0 is an open complex set with $\lim_{h\to 0}\|(\lambda I-T_h)x_h(\lambda)\|\equiv 0$ we have $\lim_{h\to 0}\|x_h(\lambda)\|\equiv 0$.

The resolvent set of an element $\{x_h\} \in X_{\infty}$ in rapport with $\{T_h\}_{h \in (0,1]} \in B_{\infty}$ is

$$r_{\{\dot{T}_h\}}\left(\{\dot{x}_h\}\right) = \left\{\lambda_0 \in \mathbb{C} | \exists \ an \ analytic \ function\left(\lambda\{\dot{I}\} - \{\dot{T}_h\}\right) \{\dot{x}_h(\lambda)\} \equiv \{\dot{x}_h\} \right\} =$$

$$= \left\{\lambda_0 \in \mathbb{C} | \exists \ an \ analytic \ function \ \lambda \mapsto \{x_h(\lambda)\} : V_{\lambda_0} \to X_{\infty},$$

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x_h\| \equiv 0 \right\},$$

when V_{λ_0} is an open neighborhood of λ_0 .

Let $\{x\} \in X_{\infty}$, where $\{x\} = \{\{x_h\} \in X_b((0,1], X) | \lim_{h\to 0} ||x_h - x|| = 0\}$. We will call from now

$$X_{\infty}^{0} = \left\{ \left\{ \dot{x} \right\} \in X_{\infty} \middle| x \in X \right\} \subset X_{\infty}.$$

Thus

$$r_{\{\dot{T}_h\}}\left(\{\dot{x}\}\right) = \{\lambda_0 \in \mathbb{C} | \exists \text{ an analytic function } \lambda \mapsto \{x_h(\lambda)\} : V_{\lambda_0} \to X_{\infty}, \lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| \equiv 0 \}.$$

Theorem 2.7. $\{\dot{T}_h\}_{h\in\{0,1]}\in B_\infty$ has the single-valued extension property if and only if there is $\{T_h\}\in\{\dot{T}_h\}$ with single-valued extension property.

Proof. Let $\{f_h\}_{h\in(0,1]}\in\mathcal{O}, f_h:D\to X$, be a family of analytic functions, when $D\subset\mathbb{C}$ open, with $\lim_{h\to 0}\|(\lambda I-T_h)f_h(\lambda)\|\equiv 0$.

Since $\{f_h\}_{h\in(0,1]}\in\mathcal{O}$, it follows that $\overline{\lim_{h\to 0}}\|f_h(\lambda)\|<\infty$, for all $\lambda\in D$. Thus $\{f_h(\lambda)\}\in X_b\left((0,1],X\right)$.

Let $f: D \to X_{\infty}$ be an application defined by $f(\lambda) = \{f_h(\lambda)\}$. We prove that f is an analytic function.

Having in view $\{f_h\}$ are analytic functions on D, for any $\lambda_0 \in D$, we obtain

$$\lim_{\lambda \to \lambda_0} \frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} = \lim_{\lambda \to \lambda_0} \frac{\{f_h(\lambda)\} - \{f_h(\lambda_0)\}}{\lambda - \lambda_0} =$$

$$= \lim_{\lambda \to \lambda_0} \left\{ \frac{f_h(\lambda) - f_h(\lambda_0)}{\lambda - \lambda_0} \right\} = \left\{ \lim_{\lambda \to \lambda_0} \frac{f_h(\lambda) - f_h(\lambda_0)}{\lambda - \lambda_0} \right\},$$

for any $\lambda \in D$. Therefore, f is analytic function on D.

By relation $\lim_{h\to 0} \|(\lambda I - T_h) f_h(\lambda)\| \equiv 0$, i.e. $\left(\lambda \{\dot{I}\} - \{\dot{T}_h\}\right) f(\lambda) \equiv \{\dot{0}\}$, since $\{\dot{T}_h\}$ has the single-valued extension property, it follows that $f() \equiv \{\dot{0}\}$, i.e.

$$\lim_{h\to 0} ||f_h(\lambda)|| \equiv 0.$$

Hence $\{T_h\}$ has the single-valued extension property.

Reciprocal: Let $\{T_h\}$ has the single-valued extension property. We prove $\{T_h\}$ has also the single-valued extension property.

Let $f: D \to X_{\infty}$ be an analytic application defined by $f(\lambda) = \{x_h(\lambda)\}$ such that

$$\left(\lambda\{\dot{I}\} - \{\dot{T}_h\}\right) f(\lambda) \equiv \{\dot{0}\}.$$

Then $\lim_{h\to 0} \|(\lambda I - T_h) x_h(\lambda)\| \equiv 0.$

We prove that the applications $\lambda \longmapsto x_h(\lambda) : D \to X$ are analytical for all $h \in (0,1]$. Since f is analytical function, it follows that

$$f^{'}(\lambda_{0}) = \lim_{\lambda \to \lambda_{0}} \frac{f(\lambda) - f(\lambda_{0})}{\lambda - \lambda_{0}} = \lim_{\lambda \to \lambda_{0}} \frac{\{x_{h}(\lambda)\} - \{x_{h}(\lambda_{0})\}}{\lambda - \lambda_{0}} = \lim_{\lambda \to \lambda_{0}} \left\{ \frac{x_{h}(\lambda) - x_{h}(\lambda_{0})}{\lambda - \lambda_{0}} \right\}.$$

Therefore, there is $\left\{\lim_{\lambda \to \lambda_0} \frac{\dot{x_h(\lambda)} - x_h(\lambda_0)}{\lambda - \lambda_0}\right\} \in X_{\infty}$ and thus there is $\lim_{\lambda \to \lambda_0} \frac{x_h(\lambda) - x_h(\lambda_0)}{\lambda - \lambda_0} \in X$ for all $h \in (0, 1]$.

Since $\left(\lambda\{\dot{I}\}-\{\dot{T}_h\}\right)f(\lambda)\equiv\{\dot{0}\}$, i.e. $\lim_{h\to 0}\|(\lambda I-T_h)x_h(\lambda)\|\equiv 0$, taking into account $\{T_h\}$ has the single-valued extension property, we have $\lim_{h\to 0}\|x_h(\lambda)\|\equiv 0$, i.e. $\{x_h(\lambda)\}=\{\dot{0}\}$. Therefore, $\{\dot{T}_h\}$ has the single-valued extension property.

Proposition 2.8. Let $\{\dot{T}_h\}_{h\in\{0,1]}\in B_\infty$ with the single-valued extension property. Then

$$r_{\{T_h\}}(x) = r_{\{\dot{T_h}\}}\left(\{\dot{x}\}\right),\,$$

for all $x \in X$.

Proof. If $\{\dot{T}_h\}_{h\in(0,1]}\in B_\infty$ has the single-valued extension property, then $\{T_h\}\in\{\dot{T}_h\}$ has the single-valued extension property (Theorem 2.7).

Let $\lambda_0 \in r_{\{T_h\}}(x)$. Hence there are the analytic functions from $\mathcal{O} \lambda \mapsto x_h(\lambda)$ defined on an open neighborhood of $\lambda_0 D \subset r_{\{T_h\}}(x)$ with values in X for all $h \in (0, 1]$, having property

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| \equiv 0.$$

Similar to proof of Theorem 2.7, we prove that the application $f: D \to X_{\infty}$ defined by $f(\lambda) = \{x_h(\lambda)\}$ is analytical. Thus $\lambda_0 \in r_{\{T_h\}}(\{\dot{x}\})$.

Reciprocal: Let

$$\lambda_0 \in r_{\{\dot{T}_h\}}\left(\{\dot{x}\}\right) = \{\lambda_0 \in \mathbb{C} | \exists \text{ an analytic function } \lambda \mapsto \{x_h(\lambda)\} : V_{\lambda_0} \to X_{\infty},$$

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| \equiv 0 \}.$$

Analog proof of Theorem 2.7, we prove that the applications $\lambda \mapsto x_h(\lambda) : V_{\lambda_0} \to X$ are analytical for all $h \in (0,1]$. Thus $\lambda_0 \in r_{\{T_h\}}(x)$.

Remark 2.9. Let $\{T_h\}\subset B(X)$ be a continuous bounded family of operators having the single-valued extension property and $x\in X$. Then

(i) $r(\{T_h\}) \subset r_{\{T_h\}}(x)$.

(ii) $X_{\{T_h\}}(a) = X_{\{T_h\}}(\operatorname{sp}\{T_h\} \cap a)$, for each $a \subset \mathbb{C}$.

(iii) Let $\lambda_0 \in r_{\{T_h\}}(x)$ and the families of holomorphic function from $\mathcal{O} \lambda \mapsto x_h(\lambda)$ and $\lambda \mapsto y_h(\lambda)$ defined on D, an open neighborhood of λ_0 , with values in X for all $h \in (0,1]$, having properties

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| = 0$$

and

$$\lim_{h \to 0} \|(\lambda I - T_h) y_h(\lambda) - x\| = 0,$$

for each $\lambda \in D$. Then

$$\lim_{h\to 0} \|x_h(\lambda) - y_h(\lambda)\| = 0,$$

for each $\lambda \in D$.

(iv) If $\{T_h\}$, $\{S_h\} \in C_b((0,1], B(X))$ are asymptotically equivalent, then $r_{\{T_h\}}(x) = r_{\{S_h\}}(x) \quad (x \in X)$.

Proof. (i) By Proposition 2.8 we have

$$r_{\{\dot{T_h}\}}\left(\left\{\dot{x}\right\}\right) = r_{\{T_h\}}\left(x\right) \quad (x \in X).$$

Moreover, by Theorem 1.9, we know that

$$r\left(\{\dot{T}_h\}\right) = r\left(\{T_h\}\right).$$

Combing the above relations, we obtain

$$r\left(\left\{T_{h}\right\}\right) = r\left(\left\{\dot{T}_{h}\right\}\right) \subset r_{\left\{\dot{T}_{h}\right\}}\left(\left\{\dot{x}\right\}\right) = r_{\left\{T_{h}\right\}}\left(x\right) \quad (x \in X).$$

(ii) By i) it results

$$\operatorname{sp}_{\{T_h\}}(x) \subset \operatorname{sp}(\{T_h\}).$$

Therefore $x \in X_{\{T_h\}}(a)$ if and only if

$$\operatorname{sp}_{\{T_h\}}(x) \subset a \bigcap \operatorname{sp}(\{T_h\}),$$

i.e. $x \in X_{\{T_h\}}(a \cap \operatorname{sp}(\{T_h\})).$

(iii) By Definition 2.3., it results that the analytic functions $\lambda \mapsto x_h(\lambda)$ are defined on an open neighborhood of λ_0 $D_1 \subset r(\{T_h\})$ with values in X and the analytic functions $\lambda \mapsto y_h(\lambda)$ are defined on an open neighborhood of λ_0 $D_2 \subset r(\{T_h\})$ on X.

Let $D \subset D_1 \cap D_2 \subset r(\{T_h\})$ be an open neighborhood of λ_0 . Since

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| = 0$$

and

$$\lim_{h \to 0} \|(\lambda I - T_h) y_h(\lambda) - x\| = 0,$$

for each $\lambda \in D$, thus

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - (\lambda I - T_h) y_h(\lambda)\| = \lim_{h \to 0} \|(\lambda I - T_h) (x_h(\lambda) - y_h(\lambda))\| = 0,$$

for each $\lambda \in D$.

Having in view that the families of functions $\mapsto x_h(\lambda)$ and $\lambda \mapsto y_h(\lambda)$ are analytical on D, hence the functions $\lambda \mapsto x_h(\lambda) - y_h(\lambda)$ are analytical. Since $\{T_h\}$ has the single-valued extension property, it follows that

$$\lim_{h\to 0} \|x_h(\lambda) - y_h(\lambda)\| = 0,$$

for all $\lambda \in D$.

(iv) Let $\lambda_0 \in r_{\{T_h\}}(x)$. Then there is a family of functions $\{x_h\}$ from \mathcal{O} , with the property

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| \equiv 0.$$

Thus

$$\overline{\lim_{h\to 0}} \|(\lambda I - S_h) x_h(\lambda) - x\| = \overline{\lim_{h\to 0}} \|(\lambda I - S_h - T_h + T_h) x_h(\lambda) - x\| \le
\le \lim_{h\to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| + \overline{\lim_{h\to 0}} \|(S_h - T_h) x_h(\lambda)\| \le
\le \lim_{h\to 0} \|S_h - T_h\| \overline{\lim_{h\to 0}} \|x_h(\lambda)\|.$$

Since $\{T_h\}$, $\{S_h\}$ are asymptotically equivalent, by above relation it follows that $\lim_{h\to 0} \|(\lambda I - S_h) x_h(\lambda) - x\| \equiv 0.$

Therefore $\lambda_0 \in r_{\{S_h\}}(x)$.

Proposition 2.10. Let $\{T_h\} \subset B(X)$ be a continuous bounded family of operators having the single-valued extension property. Then

- (i) For any $a \subset b$ we have $X_{\{T_h\}}(a) \subset X_{\{T_h\}}(b)$;
- (ii) $X_{\{T_h\}}(a)$ is a linear sub-space of X for all $a \subset \mathbb{C}$;

(iii)
$$\left\{ \left\{ \dot{x} \right\} \in X_{\infty} \middle| x \in X_{\{T_h\}}(a) \right\} = X_{\infty}^0 \cap X_{\left\{ \dot{T_h} \right\}}(a) \text{ for all } a \subset \mathbb{C}.$$

Proof. (i) Let $a, b \subset \mathbb{C}$ such that $a \subset b$ and $x \in X_{\{T_h\}}(a)$. Then $\operatorname{sp}_{\{T_h\}}(x) \subset a$, and thus $\operatorname{sp}_{\{T_h\}}(x) \subset b$. Therefore $x \in X_{\{T_h\}}(b)$.

(ii) Let $x, y \in X_{\{T_h\}}(a)$ and $\alpha, \beta \in \mathbb{C}$. In addition, for any $\lambda_0 \in r_{\{T_h\}}(x) \cap r_{\{T_h\}}(y)$ there are the analytic functions families $\{x_h\}$ and $\{y_h\}$ defined on an open neighborhood D of λ_0 such that

$$\lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| = 0$$

and

$$\lim_{h \to 0} \|(\lambda I - T_h) y_h(\lambda) - y\| = 0,$$

for each $\lambda \in D$.

Let $z_h(\lambda) = \alpha x_h(\lambda) + \beta y_h(\lambda)$, for any $\lambda \in D$ and $h \in (0,1]$. Since $\{x_h\}$ and $\{y_h\}$ are analytic functions families on D, it follows that $\{z_h\}$ is also an analytic functions family on D and more

$$\lim_{h \to 0} \|(\lambda I - T_h) z_h(\lambda) - (\alpha x + \beta y)\| \le$$

$$\le |\alpha| \lim_{h \to 0} \|(\lambda I - T_h) x_h(\lambda) - x\| + |\beta| \lim_{h \to 0} \|(\lambda I - T_h) y_h(\lambda) - y\| = 0,$$

for each $\lambda \in D$.

Therefor $\lambda_0 \in r_{\{T_h\}}(\alpha x + \beta y)$ and

$$r_{\{T_h\}}(x) \bigcap r_{\{T_h\}}(y) \subset r_{\{T_h\}}(\alpha x + \beta y)$$
.

Moreover

$$\operatorname{sp}_{\{T_h\}}(\alpha x + \beta y) \subset \operatorname{sp}_{\{T_h\}}(x) \bigcup \operatorname{sp}_{\{T_h\}}(y).$$

Since $x, y \in X_{\{T_h\}}(a)$, i.e. $\operatorname{sp}_{\{T_h\}}(x) \subset a$ and $\operatorname{sp}_{\{T_h\}}(y) \subset a$, by above relation, it follows that

$$\operatorname{sp}_{\{T_h\}}(\alpha x + \beta y) \subset a,$$

S. MACOVEI

hence $\alpha x + \beta y \in X_{\{T_h\}}(a)$.

142

(iii) By Proposition 2.8 we have $(r_{\{T_h\}}(x) = r_{\{T_h\}}(\dot{x}\})$, it follows that $x \in X_{\{T_h\}}(a)$ if and only if $\dot{x} \in X_{\{T_h\}}(a)$. Hence

$$\left\{ \left\{ \dot{x} \right\} \in X_{\infty} \middle| x \in X_{\{T_h\}} \left(a \right) \right\} = \left\{ \left\{ \dot{x} \right\} \in X_{\infty} \middle| \operatorname{sp}_{\{T_h\}} \left(x \right) \subset a \right\} =$$

$$= \left\{ \left\{ \dot{x} \right\} \in X_{\infty} \middle| \operatorname{sp}_{\{\dot{T}_h\}} \left(\left\{ \dot{x} \right\} \right) \subset a \right\} = X_{\infty}^{0} \bigcap X_{\{\dot{T}_h\}} \left(a \right).$$

Theorem 2.11. Let $\{S_h\}$, $\{T_h\} \subset B(X)$ be two continuous bounded families of operators having the single-valued extension property, such that $\lim_{h\to 0} ||T_hS_h - S_hT_h|| = 0$. If $\{S_h\}$, $\{T_h\}$ are asymptotically spectral equivalent, then

$$\operatorname{sp}_{\{T_h\}}(x) = \operatorname{sp}_{\{S_h\}}(x) \quad (x \in X).$$

Proof. Since $\{S_h\}$, $\{T_h\}$ have the single-valued extension property, by Theorem 2.7 it results that $\{\dot{T}_h\}_{h\in(0,1]}$, $\{\dot{S}_h\}_{h\in(0,1]}\in B_\infty$ have the single-valued extension property. If $\{S_h\}$, $\{T_h\}$ are asymptotically spectral equivalent, by Proposition 1.3 have that $\{\dot{T}_h\}_{h\in(0,1]}$, $\{\dot{S}_h\}_{h\in(0,1]}$ are spectral equivalent. Moreover, we obtain that for any $\{\dot{T}_h\}_{h\in(0,1]}$, $\{\dot{S}_h\}_{h\in(0,1]}\in B_\infty$ have the single-valued extension property and being spectral equivalent, it follows that

$$\operatorname{sp}_{\{\dot{T}_h\}}\left(\left\{\dot{x}\right\}\right) = \operatorname{sp}_{\left\{\dot{S}_h\right\}}\left(\left\{\dot{x}\right\}\right),\,$$

for any $x \in X$.

Therefore, applying Proposition 2.8, we have

$$\operatorname{sp}_{\{T_h\}}(x) = \operatorname{sp}_{\{\dot{T}_h\}}(\dot{\{x\}}) = \operatorname{sp}_{\{\dot{S}_h\}}(\dot{\{x\}}) = \operatorname{sp}_{\{S_h\}}(x) \quad (x \in X).$$

Remark 2.12. Let $\{S_h\}$, $\{T_h\} \subset B(X)$ be two continuous bounded families of operators having the single-valued extension property, such that $\lim_{h\to 0} ||T_hS_h - S_hT_h|| = 0$. If $\{S_h\}$, $\{T_h\}$ are asymptotically spectral equivalent, then

$$X_{\{T_h\}}(a) = X_{\{S_h\}}(a),$$

for any $a \subset \mathbb{C}$.

Proof. Since $\{S_h\}$, $\{T_h\}$ are asymptotically spectral equivalent, by Theorem 2.11, it follows that $\operatorname{sp}_{\{T_h\}}(x) = \operatorname{sp}_{\{S_h\}}(x)$, for all $x \in X$. Then, for any $x \in X_{\{T_h\}}(a)$, i.e. $\operatorname{sp}_{\{T_h\}}(x) \subset a$, it results that $x \in X_{\{S_h\}}(a)$, thus

$$X_{\{T_h\}}\left(a\right)\subseteq X_{\{S_h\}}\left(a\right).$$

Analog, we can show that $X_{\{S_h\}}(a) \subseteq X_{\{T_h\}}(a)$.

REFERENCES

- 1. I. Colojoar, Elemente de teorie spectral, Editura Academiei, 1968.
- 2. I. Colojoar and C. Foias, *Theory of Generalized Spectral Operators*, Gordon and Breanch Science Publisher, 1968.
- 3. K.B. Laursen and M.M. Neuman, An Introduction on Local Spectral Theory, Calerdon Press, Oxford, 2000.
- 4. S. Macovei, Spectrum of a Family of Operators, Surv. Math. Appl. 6 (2011), 137–159.

University of Bucharest, Str. Academiei nr.14, Bucureşti, Romania.

 $E ext{-}mail\ address: simonamacovei@yahoo.com}$