Ann. Funct. Anal. 4 (2013), no. 2, 131-143
&/NNALS OF .#UNCTIONAL &/ NALYSIS

unctional - JSYN: 2008-8752 (electronic)

nalysis URL:www.emis.de/journals/AFA /

nnals of

LOCAL SPECTRUM OF A FAMILY OF OPERATORS

SIMONA MACOVEI

Communicated by M. Mbekhta

ABSTRACT. Starting from the classic definitions of resolvent set and spectrum of a
linear bounded operator on a Banach space, we introduce the local resolvent set and
local spectrum, the local spectral space and the single-valued extension property of a
family of linear bounded operators on a Banach space. Keeping the analogy with the
classic case, we extend some of the known results from the case of a linear bounded
operator to the case of a family of linear bounded operators on a Banach space.

1. INTRODUCTION

Let X be a complex Banach space and B(X) the Banach algebra of linear bounded
operators on X. Let T be a linear bounded operator on X. The norm of T is

1T = sup {|T=[|| z € X, [l=f| <1}

The spectrum of an operator T € B(X) is defined as the set

sp () =C\r(T),
where 7(T) is the resolvent set of T and consists in all complex numbers A\ € C for
which the operator A\I — T is bijective on X.
An operator T' € B(X) is said to have the single-valued extension property if for any
analytic function f : Dy — X, where Dy C C is open, with (Al —T) f(A) = 0, it
results f(\) = 0.
For an operator T' € B(X) having the single-valued extension property and for x € X
we can consider the set rp (z) of elements Ay € C such that there is an analytic
function A — xz(\) defined in a neighborhood of Ay with values in X, which verifies
(M —T)x(X\) = x. The set rr () is said the local resolvent set of T at x, and the set
spr (x) =C\rr (x) is called the local spectrum of T at .
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132 S. MACOVEI

An analytic function f, : D, — X, where D, C C is open, is said the analytic extension
of function A= R\, T)z if r(T) C D, and (M —T) f. () = 2.
If T has the single-valued extension property, then, for any x € X there is a unique
mazimal analytic extension of function A — R (N, T)z : rr(z) — X, referred from
now as x (A). Moreover, rr () is an open set of C and r(T") C ry (x).
Let
Xr(a) = {o € X|spy (¢) € a}

be the local spectral space of T for all sets a C C. The space Xr (a) is a linear subspace
(not necessary closed) of X.
Two operators T, S € B(X) are quasinilpotent equivalent if

lim H(T—S)W " = lim H(S—T)W

n—oo n—oo
where (T — )" = S (=) FopTES ™ for any n € N.
The quasinilpotent equivalence relation is an equivalence relation (i.e. is reflexive,
symmetric and transitive) on B(X).

1
n

=0,

Theorem 1.1. Let T, S € B(X) be two quasinilpotent equivalent operators. Then

(i) sp (T) = sp (5);

()T has the single-valued extension property if an only if S has the single-valued
extension property. Moreover, spy (x) = spg ().

For an easier understanding of the results from this paper, we recall some definitions
and results introduced in [1]; see also [1, 2, 3].
We say that two families of operators {Sy}, {Tn} < B(X), with h € (0,1], are
asymptotically equivalent if

lim ||Sh - Th” =0.

h—0

Two families of operators {S,}, {T,} < B(X), with h € (0, 1], are asymptotically
quasinilpotent (spectral) equivalent if

1

" = lim limsup H(Th — 5

n—oo h—0

1
lim limsup H(Sh — T, "=0.

n—oo h—0

The asymptotic (quasinilpotent) equivalence between two families of operators {Sy},
{Th} € B(X) is an equivalence relation (i.e. reflexive, symmetric and transitive) on
L (X). Moreover, if {S,}, {Tn} are two bounded asymptotically equivalent families,
then are asymptotically quasinilpotent equivalent.

Let be the sets

={¢:(0,1] = B(X)|¢(h) =T} such that ¢ is countinous and bounded} =

- {{Th}he(o y C B(X)‘ {Th} e (0.1 18 @ bounded family, ie. sup [T;] < oo} :
’ ’ he (0,1]

and

Co((0.1], B(X)) = {w € Co((0,1], B(X)|lim ()] =0 } =

— {{T} e o) € BEX)| lim I T0) =0}
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Cy((0,1], B(X)) is a Banach algebra non-commutative with norm
{Th3 | = sup [|Thll,
he (0,1]

and Cy ((0,1], B (X)) is a closed bilateral ideal of C; ((0,1], B (X)). Therefore the
quotient algebra Cy, ((0,1], B (X)) /Co((0,1], B (X)), which will be called from now
B, is also a Banach algebra with quotient norm

T} = +{UM =  inf S}l
H{ n} {Un}he o, 1]ecO((oﬂ B(X)) 170} + (U = {Sh}ne (0,11 €{Tn} ISh 3
Then .
|| = b ISH < IS = sup ISl
{Sn}ne 0,1€{Th} he (0,1]
for any {Sh},c o) € {T}}. Moreover,
|7 = it CMSHI= b sup ISl
{Shthe (0,0 €{Tn} {Sh}ne 0.11€{Th} he (0,1]

If two bounded families {7}, 015 {Shtne 1) € B(X) are asymptotically equivalent,
then limy,_, ||Sh — Th” =0, i.e. {Th — Sh}he (0,1] e Cy ((0, 1] , B (X))
Let {Th}ne 010 {Shtneon € Cb((0,1], B (X)) be asymptotically equivalent. Then
limsup || Sy | —llmSUPHThH
h—0
Since
limsup [|Sk]| < sup || Sk,
h—0 he (0,1]

results that

limsup [|Sy] = inf limsup ||Sy|| <
h—0 {Sh}the (0,11 e{Th} h—0

< inf sup ||Sp
{Sh}ne (o, 1]€{Th} he (0,1]

for any {Sh},c o) € {T,}.
In particular

lim lim T3 < | {73}]| < LT} = sup |ITa).
h—0 he (0,1]

Definition 1.2. We say {5}, {I)} € Ba are spectral equivalent if

(51 "]~ - s

where ({S} — {1} = S0y (~)" * s,y (1)

n

(S =" = 3 ek

k=0

_ {zn: (_1)”’fcggshkThn—k} —{(s —‘Th)["]}.

k=0



134 S. MACOVEI

Therefore {S,}, {T},} € B. are spectral equivalent if

n—oo n—oo

lim H{(Sh —'Th)[”]}Hi = lim H{(Th —'Sh)["]}Hrll ~0.

Proposition 1.3. If {Sy}, {T),} € B are spectral equivalent, then any {Sy} € {Sp}

and {Th} € {Th} are asymptotically spectral equivalent.
Proof. Let {Sy} € {Si} and {T},} € {T} be arbitrary. Thus
" S lim {(Sh—Th)[n}} "

n—oo

n—o00 h—0

Since {Sh}, {Th} € B, are spectral equivalent, by Definition 1.2 and above relation,
it follows that

1
lim Tim H(sh | <o
n—o00 h—0
1
Analogously we can prove that lim,, . limy,_ ||(T}, — Sh)[”} " =0. O

Proposition 1.4. Let {T},{Sn} C B(X) be two continuous bounded families. Then
hn’lhﬁo HThSh — ShThH =0 Zf and only ’Lf {Sh}{Th} = {Th}{Sh}

Proof. limpo [ TwSh — SuThll = 0 & {T0Sk} = {SiTh} < {SuHT} = {THSh} O
Definition 1.5. We call the resolvent set of a family of operators {S,} € C,((0,1], B(X))

the set
r({S}) = { A€ C[3{R Skt € G ((0,1], B(X)), lim [|(AT = Sn) R (A, Sn) — 1| =

= lim [|[R (A, Sp) (AT — S,) — I|| = o}
h—0
We call the spectrum of a family of operators {S,} € C ((0,1], B (X)) the set

sp ({Sn}) =C\r ({Sh}) -
sp ({9n}) =C\r ({Sh}) -

r ({Sr}) is an open set of C. If {S),} is a bounded family, then sp ({S,}) is a compact
set of C.

Remark 1.6. (i) If A € 7 (Sy) for any h € (0, 1], then A € r ({Sh}) . So (Nye(o 7 (Sn) C
r({Sh});

(ii) If A € sp ({Sy}), then |A| < limsup, . limy_o |[Si"| ™ ;

(iil) If ||Sh|| < |A| for any h € (0,1], then A € r ({Sh});

(iv) If {Sy} is bounded, then {R (A, Sy)} is also bounded, for every A € r ({Sh});
(v) If {Sh} is bounded, then limy_,o ||R (A, Sh)| # 0, for every A € r ({Si}) .
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Proposition 1.7. (resolvent equation - asymptotic) Let {Sp} C B(X) be a bounded
family and X\, € r({Sp}). Then

lim (R (A, 1) = R (1. 53) = (1 = )R (A S0 R (1, S,)]| = 0.
Proposition 1.8. Let {S,} C B(X) be a bounded family. If X € r ({Sy}) and

{Rz ()‘75’}1)} € Cb((07 1] , B (X))v L= m}
such that

lim [|(A] — Sk) Ri (A, Sp) — I = lim [[R; (A, Sp) (A = Sp) = 1I]| =0
h—0 h—0
fori=1,2, then
’135)% [R1 (A Sh) — Ra (A, Sn)|| = 0.

Theorem 1.9. Let {S,} € C, ((0,1], B(X)). Then

p ({Su}) = sp ({Su}).
Theorem 1.10. If two bounded families {Sy}, {In} C B(X) are asymptotically

equivalent, then
sp ({Sh}) = sp ({Th}).-

2. LOCAL SPECTRUM OF A FAMILY OF OPERATORS

Let O be the set of analytic functions families { f4},. 0,1] defined on an open complex
set with values in a Banach space X, having property

Tim || f (V)| < oo,

h—0
for any A from definition set.

Definition 2.1. A bounded continue family of operators {7,,} C B(X) we said to have
single-valued extension property, if for any family of analytic functions { f4},. 0,1 € O,
fn: D — X, where D C C open, with property

lim [[(A = T}) fr(N)|| =0,
h—0
it results limy, o || fr(A)]| = 0.

Remark 2.2. Let {Sp},{Th} C B(X) be two bounded continue families of operators
asymptotically equivalent . If {S,} has single-valued extension property, then {7} }
has also single-valued extension property.

Proof. Let {fu},c 1] € O be a family of functions, f, : D — X, where D C C open,
with limp, o [[(A — T}) fr(A)[| = 0. Then
lim [[(AL = 5p) fu(M]| = Lim [|(A] = Sy = Tiy + Th) (M| <

lim [[(A = Th) fu(N)[| + T [1(Sh = Th) fa(A)| < Jim [[(Sh = T) || Tim [ (V)]

for any A € D.
Raking into account {Sy},{7},,} are asymptotically equivalent, it follows
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lim [|(A] = T}) f(N)|| = 0.
h—0

Since {1},} has single-valued extension property, we obtain limy_ || f(A)|| = 0, thus

{S} has single-valued extension property.
0

Definition 2.3. Let {7},} C B(X) be a family with single-valued extension property
and x € X. From now we consider 7(7,} (x) being the set of elements Ay € C such that
there are the analytic functions from O A +— xj, (\) defined on an open neighborhood
of Ao D C ryp,y () with values in X for any h € (0, 1], having property
h—0
rir,y () is called the local resolvent set of {1} at x.
The local spectrum of {T,} at x is defined as the set
P,y () =C\ryz,y (7).
We also define the local spectral space of {T},} as
Xiny (@) = {z € X|sp(,, (x) C a},
for all sets a C C.

Let be the set
Xy ((0,1], X)={p: (0,1 = X|¢ (h) = x} such that ¢ is continue and bounded} =

= {{xh}he 01 C X‘ {Zn}he (0,1 @ bounded sequence, ie. sup [z4| < oo} :
’ ’ he (0,1]

and
X0 ((0.1], X) = { € X, ((0,1], X)|lim [l(h)]| =0 } =

= { tonbne oy € X lim flzall =0}
X ((0,1], X) is a Banach space in rapport with norm

lell = sup o)l & [{eatll = sup |zl
he (0,1] he (0,1]

and X, ((0,1], X)is a closed subspace of X} ((0,1], X). Therefore, the quotient space
Xy ((0,1], X) /X0 ((0,1], X), which will be called from now X, is a Banach space in
rapport with quotient norm

{za}|| = inf [{an} + {undl =
)

{untne (0,1]EX0((0,1]7 X

= inf  |{w} = inf  sup |yl
{yh}he (0,1] €{z} {yh}he (0,1]€{xh} he (0,1]

Thus )
[t = it < Mo = sup .
he (0,1]

{untne 0.1€{zn}

for all {yn}ye 0.1 € {70 }-
Let B, = Cy((0,1], B(X))/Co((0,1], B(X)) and we consider the application ¥
defines by

({Th}, {:c'h}) s {Thrn} s B X Xoo — Xoo.

Remark 2.4. X is a B, — Banach module in rapport with the above application.
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Proof. Is the application well defined (i.e. not depending by selection of representa-
tives)? ' '
Let {Sh}e ©01] € {Th} and {yn})c ©01] € {n}. Then

lim HShyh — Thth = lim HShyh — Thyh + Thyh — Thth S

h—0 h—0

< Im ||Spyn — Thyn|| + Im | Thyn — Than|| <
h—0 h—0

< lim [[Sy = T} lim [|yp[| + Lim [| 73 lim [y, — 2p]| = 0.
h—0 h—0 h—0
h—0

Therefore {Shyn}pe01) € {Thxn}, for any {Shtne o € {T;,} and {Yntne o € {z1}.
Is ¥ a bilinear application?

U <a{Th} + B{Su}. {a:'h}) — ({aTh YT {l:h}> _
= {(aTy, + BSp)xn} = {aThxy + BShan} =

= a{Th.xh} + 5{Sh.xh} =aV¥ ({Th}, {%}) + BW <{Sh}7 {JJh}) ;

for any «, 5 € C.
Analogously we can prove that

© ({Th} adyn} + B{en}) = ¥ ({Ti}, {mn}) + B9 ({Th} {n} )
Is ¥ a continue application? . . '
I (60, 6)| - ] -

= inf |{Thzp}l| = inf sup [[Thas| <
Th:vh} {Thmh} he (0,1]

< inf sup ||Th| ||lznll < inf  sup |[Th[| [|zall <
{Thzn} e (0,1] {Th}A=n} he (0,1]

e ]

<inf sup ||Tp] inf sup |lzs) =
{T1} he (0,1] {zn} he (0,1]

Thus | (7], (b )| < 2 e
Let {T,} € B be fixed. The application {z,} — {T)z,} is a linear bounded
operator on X7

{Th<05xh.+ Byn)} = {aThwy +‘6Thyh} =« {Thxh} + ﬂ{Th.yh}'
In addition, since

i < ] e

it follows the application {z),} — {T,z5,} is a bounded operator.
Therefore, By, C B(X4), where B(X,) is the algebra of linear bounded operators on
Xoo- UJ

Definition 2.5. We say that {Th}he 01 € By has single-valued extension property
if for any analytic function f : Dy — X, where Dy is an open complex set with

<)\{J} - {Th}> F(\) = 0, we have f(\) = 0, where 0 = {0} = X, ((0,1], X).
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Since f(\) € X, it follows there is {x,(A\)} € X such that f(A) = {x,(N\)}. Then
0= (MI}—{Ti}) F () = I = TN} = {M = Tan (W)},

i.e. limh_)() ||<)\I - Th)xh(A)H =0.

Definition 2.6. We say {Th}he 01 € By has the single-valued extension property

if for any analytic function f : Dy — X, where Dy is an open complex set with

limy, 0 [[(AM — Th)zn(A)[| = 0 we have limyo |lzn(A)[] =0.

The resolvent set of an element {xs} € Xo in rapport with {Th},c ) € B is

Tigy <{xh}> = {)\0 € C| 3 an analytic function(A{f} — {Th}> {zn(N)} = {x1} } =

= { o € C| 3 an analytic function A — {xn(N)} : V), = Xo,
lim ||(AM = T}) xp (A) — ]| =0},
h—0
when V), is an open neighborhood of .

Let {2} € X, where {z} = {{zs} € X, ((0,1], X)|limy_ ||zn — || = 0}.
We will call from now

X0 = {{:&} eXoo‘xeX} C Xoo.
Thus
Tig) ({x}) = {Xo € C|3 an analytic function A\ — {z,(\)} : Va, = Xeo,
lm (M = T3 a () 2| =0 .

Theorem 2.7. {Th}he(o,l] € B, has the single-valued extension property if and only
if there is {T),} € {T,} with single-valued extension property.

Proof. Let {fx},c ©0,1] € O, fn: D — X, be a family of analytic functions, when D C C
open, with limy ¢ [|(A — T}) fr(A)|| = 0.

Since {fn}yc oy € O, it follows that limpo [ fu(A)|| < oo, for all A € D. Thus
(h(V) € % ((0.1], X). |

Let f: D — X be an application defined by f (\) = {fn(\)}. We prove that f is an
analytic function.

Having in view {f,} are analytic functions on D, for any Ay € D, we obtain

fO)=f Qo) _ o A0} = {0}

lim

A= Ao A— X A= Ao A— X
I N C T O B S OV A0
_Ahl?o{ A — Ao } _{}5310 A — Ao }

for any A € D. Therefore, f is analytic function on D.
By relation limy_o (A — T3) fa(A)]| = 0, i.c. ()\{I} - {Th}) F(\) = {0}, since {T},}
has the single-valued extension property, it follows that f() = {O}, ie.

lim [ f(A)]| = 0.

Hence {T},} has the single-valued extension property.
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Reciprocal: Let {73} has the single-valued extension property. We prove {Th} has
also the single-valued extension property. .
Let f: D — X, be an analytic application defined by f (\) = {z,(\)} such that

(M1} = {70}) £ = {0},
Then limy, ¢ [|(A — T3) 2, (N)]| = 0.

We prove that the applications A — xp, (A) : D — X are analytical for all h € (0, 1].
Since f is analytical function, it follows that

fovy e S = o) AN — (X))
f (o) = Jim === = i X — o =

{ﬂfh O\))\ : f\h (AO)} .

M
A—Xo

zn(N)=zn(Xo)

} € X and thus there is limy_, , e

Therefore, there is {lim,\_, Ao €

X for all h € (0,1].

Since (/\{]} - {Th}> F(\) = {0}, ie. limy |[(A — T3)zn(N)|| = 0, taking into ac-
count {73} has the single-valued extension property, we have limyo [|[zn(A)[| =0, i.e.
{zn(A\)} = {0}. Therefore, {T},} has the single-valued extension property. O

Proposition 2.8. Let {Th}he(o,l} € By with the single-valued extension property.
Then

riny (2) =715, <{1’}> ;
forallz € X.

Proof. If {Th}c 1] € Boo has the single-valued extension property, then {74} € {T)}
has the single-valued extension property (Theorem 2.7).
Let Ao € ryp,y (z). Hence there are the analytic functions from O A — x, (\) defined
on an open neighborhood of Ay D C 7z, () with values in X for all h € (0, 1], having
property

lim |[(AM — Ty) zp () — z|] = 0.

h—0

Similar to proof of Theorem 2.7, we prove that the application f : D — X, defined
by f(A) ={zn(A)} is analytical. Thus A € 77, ({x})
Reciprocal: Let

Ao € Trgyy ({x}) = { X\ € C| 3 an analytic function A\ — {z;(\)} : V), = X,
lim [[(M —Tp) xp (N) —z|| =0 }.
h—0

Analog proof of Theorem 2.7, we prove that the applications A — x, (M) : V), = X are
analytical for all h € (0,1]. Thus A\g € 77,3 (). O

Remark 2.9. Let {T},} C B(X) be a continuous bounded family of operators having
the single-valued extension property and x € X. Then

() r (7)) C rigy (2)

(ii) Xy, (@) = Xqn,y (sp{Th} N a), for each a C C.
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(iii) Let Ao € (g, (x) and the families of holomorphic function from O A — x;, (\)
and A — y, (A) defined on D, an open neighborhood of A\, with values in Xfor all
h € (0, 1], having properties

lim [|(\] — Tp) 20 (\) — 2| = 0

h—0
and
}Zii% (A = Th) yn (A) — ]| =0,
for each A € D. Then
tim [, ()~ (V)] =0,
for each A\ € D.
(iv) If {7}, {Sn} € C, ((0,1], B (X)) are asymptotically equivalent, then
rmy (@) =15y (@) (2 € X).
Proof. (i) By Proposition 2.8 we have

ry ({2}) =iy (@) (@€ X),

Moreover, by Theorem 1.9, we know that

r({7}) =r (T}
Combing the above relations, we obtain

rn)) =r ({T0}) €y (23) = vy (@) (0 € X).

(ii) By i) it results

sPyr,y () Csp ({Th}) -
Therefore x € Xyr,3 (a) if and only if

sp(p, () C a[\sp ({Th})

ie. x € Xy (asp({Th})).

(iii) By Definition 2.3., it results that the analytic functions A — xp, (A) are defined on
an open neighborhood of \g Dy C r ({7}}) with values in X and the analytic functions
A = yp, (A) are defined on an open neighborhood of A\ Dy C r ({7}}) on X.

Let D C D1\ D2 C r({T}) be an open neighborhood of .

Since

lim [|(M = Ty) 2 (A) — || =0
h—0

and
lim [[(A — T3) yn (A) — || = 0,
h—0
for each A € D, thus
lim [[(AL = Tp) 25 (A) — (M = Th) yp (N)[| = lim [[(A = T,) (2 (A) — yn ()] = 0,
h—0 h—0
for each \ € D.
Having in view that the families of functions + x; (A\) and A — y, (A) are analytical

on D, hence the functions A — x (A\) — y, () are analytical. Since {7}} has the
single-valued extension property, it follows that

lim ||z, (A) — yn (A)[] =0,
h—0
for all A € D.
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(iv) Let Ao € ryp,) (x). Then there is a family of functions {z;} from O, with the

property
lim |[(AM — Ty) zp, () — z|] = 0.

h—0
Thus

lim ||(A — Sp) 2, (A) — z|| = lim ||(AM — S, = Th + Th) xp (N) — || <
h—0 h—0
< lim [[(A = Th) 2, () — 2]l + lim [|(S, = Th) zn (M| <
h—0 h—0
< lim ||Sy — Tp|| Tim [|lzn (A)]] -
h—0 h—0

Since {T},}, {Sin} are asymptotically equivalent, by above relation it follows that
—

Therefore \g € 7¢s,} (). O

Proposition 2.10. Let {T;,} C B(X) be a continuous bounded family of operators
having the single-valued extension property. Then

(i) For any a C b we have X7,y (a) C Xz, (b);

(ii) X(z,3 (a) is a linear sub-space of X for all a C C;

(iii) {{50} GXOO‘x € Xz (a)} X0 Xz, (a) for alla C C.

Proof. (i) Let a,b C C such that a C b and x € X(g,) (a). Then spg,, (r) C a, and
thus spyr, (z) C b. Therefore z € X(7,3 (b).

(ii) Let z,y € X1,y (@) and o, € C. In addition, for any A\ € rign,y () \rin,y (v)
there are the analytic functions families {z;} and {y,} defined on an open neighbor-
hood D of Ay such that

lim [[(M —Tp)zp (N) —z|| =0
h—0

and
lim [|(A] —T5) yn () —yl| =0,
h—0

for each A € D.

Let z, (A) = axp (A) + Byn (A), for any A € D and h € (0,1]. Since {z,} and {y.}
are analytic functions families on D, it follows that {z,} is also an analytic functions
family on D and more

lim [[(A — T3) 2 (A) — (0 + By)]| <
<lallim [[(A = Tp,) zp (A) — || + B[ lim (AL — T3) yn (A) =yl =0,
h—0 h—0

for each A € D.
Therefor \g € ryp,y (ax + fy) and

rim.y () ﬂT{Th} (y) C rimy (o + By) .
Moreover

sPizy (0 + BY) C spgr,y (@) | Jspea,y (v

Since z,y € Xz,} (@), i.e. spypy(z) C a and spip,y (y) C a, by above relation, it
follows that

spyr,y (ax + By) Ca
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hence ax + By € X¢r,3 (a).
(iii) By Proposition 2.8 we have (r(z,} () =z, ({x}) ), it follows that z € X7,y (a)
if and only if {z} € Xz, (a). Hence

{{i} © X°°‘ € Xy (a)} :{{i} < XOO‘ spyr;,y () C a} -

= {{a:} € XOO‘ SP(7,) ({x}) C a} = X2 ﬂX{T-h} (a).
0
Theorem 2.11. Let {S,}, {Tn} C B(X) be two continuous bounded families of oper-

ators having the single-valued extension property, such that limy,_q || T3Sy, — SpTh|| = 0.
If {Sn}, {Th} are asymptotically spectral equivalent, then

Pty (T) =spyg,y (2) (7 € X).

Proof. Since {S}, {T} have the single-valued extension property, by Theorem 2.7 it
results that {77}, ©0.1] {Sh}ne (0,1] € Boo have the single-valued extension property.

If {Sn}, {T)} are asymptotically spectral equivalent, by Proposition 1.3 have that
{Th}he 0 {Shtne(a are spectral equivalent. Moreover, we obtain that for any

{Th}he ©0.1]> {Sh}he 01 € B, have the single-valued extension property and being
spectral equivalent, it follows that

iy ((73) = spgs (123).

for any x € X.
Therefore, applying Proposition 2.8, we have

pery (1) = 5oy ({21) = sps,, (15}) =spgsy () (@ € ).
0

Remark 2.12. Let {Si}, {Trn} C B(X) be two continuous bounded families of opera-
tors having the single-valued extension property, such that limy, .o ||75,5, — SpTh|| = 0.
If {Sn}, {1} are asymptotically spectral equivalent, then

X,y (a) = Xys, (a)
for any a C C.

Proof. Since {S,}, {1} are asymptotically spectral equivalent, by Theorem 2.11, it
follows that spir,y (¥) = spyg,; (), for all z € X. Then, for any x € X(r,) (a), ie.
spyr,} (2) C a, it results that = € X(s,} (a), thus

Xiny () € Xis,y (a).
Analog, we can show that X(g,; (a) C X(z,} (a). O
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