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1 Introduction and the model problem

From the outset, the classical finite volume methods (see for instance [9]) were designed

for ensuring the local mass conservation as well as the robustness for complex applications

(multi-phase flow in geologically complex reservoirs for instance). But the imposed geo-

metric constraints to mesh elements was an important handicap for those methods. Further-

more, the finite volume computation of anisotropic flows was a real challenge. To overcome

these difficulties, several investigators have proposed variants finite volume methods. In

these methods the key idea consists in approximating the fluxes using multi-point schemes

known in the literature as Multi-Point Flux Approximation methods (see for instance [1],

[2], [5], [8], [13], [15], [17] and [25]). The Discrete Duality Finite Volume (DDFV) meth-

ods (see for instance [6], [21], [22], [3] and [4] ) combine the advantages of the above

mentioned methods, i.e. local and global mass conservation principle, accurate for rough

grids and coefficients. The DDFV methods can be considered as finite volume methods of

new generation.

This work is a contribution to the theoretical analysis of the DDFV formulation pre-

sented in [14], [20], [18], [19], [10] and [11]. The matrix kernel analysis of our linear

system is similar to [16] and [24]. Our analysis is focused on the case of anisotropic flow in

heterogeneous media with full Neumann boundary conditions covered with a quadrilateral

grid.

Let us consider the 2D diffusion problem consisting in finding a function ϕ in Ω that

satisfies the following partial differential equation associated with homogeneous Neumann

boundary conditions:

−div(D grad ϕ) = f in Ω (1.1)

−D grad ϕ ·η = g in Γ (1.2)

where Ω is a given open square domain, Γ its boundary, f and g are given functions and

η the unit normal vector} to Γ outward to Ω. D = D(x), with x = (x1, x2)t ∈ Ω, is a full

piecewise constant matrix describing the spatial variation of the diffusion coefficients. We

assume that the matrix structure depends solely on the geological structure of Ω. Let us set

LΩ = {L; L is a lithologic component o f Ω} (1.3)

and let us consider
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(1.4)

where DL denotes the full diffusion matrix with constant coefficients corresponding to the

lithologic component L. So σ is a strictly positive number that is mesh independent. As we

will see later this number plays a key role in stability analysis.

Let us formulate some basic assumptions:

•Symmetry:

∀1 ≤ i, j ≤ 2 Di j(x) = D ji(x) a.e. in Ω (1.5)
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•Uniform ellipticity and boundedness:

∃γmin, γmax ∈ R∗+ such that ∀ξ ∈ R2, ξ , 0

γmin |ξ|2 ≤ ξT D(x)ξ ≤ γmax |ξ|2 a.e. in Ω

(1.6)

where |·| denotes the euclidian norm in R2, and where Di j(·) are components of D. We also

suppose that f ∈ L2 (Ω) and g ∈ L2 (Γ) and that the following compatibility condition is

satisfied:
∫

Ω

f (x)dx−
∫

Γ

g(x)dτ(x) = 0 (1.7)

Under the previous assumptions the model problem (1.1)-(1.2) possesses a unique varia-

tional solution i.e. there exists a function u defined almost everywhere (a.e.) in Ω such

that:

u ∈ V = {v ∈ H1(Ω);

∫

Ω

v(x)dx = 0} (1.8)

and
∫

Ω

Du(x)v(x)dx =

∫

Ω

f (x)v(x)dx−
∫

∂Ω

g(x)γ0(v)(x)dτ ∀v ∈ H1(Ω). (1.9)

where γ0 is the ”trace” operator from H1(Ω) into L2(∂Ω) (or onto H
1
2 (∂Ω)).

Remark 1.1. The existence and uniqueness of solution of the problem (1.1), (1.2) and (1.5)

is proved theoretically in quotient space H1(Ω)/R (see for instance [12]). So if u is this

solution then, for any c ∈ R, u = u + c is also a solution. So the constraint
∫

Ω
vdx = 0

incorporated in the definition of V guarantees uniqueness of the solution to the problem

(1.1), (1.2) and (1.5) in V.

This paper is organized as follows. The second section deals with a finite volume for-

mulation of the model problem. Within this section we bring an affirmative answer to the

well posedness issue concerning the discrete problem. In the third section we investigate

the theoretical properties (stability and error estimates in convenient discrete norms) for the

solution of the discrete problem. The fourth section is devoted to the numerical tests.

2 A DDFV formulation of the model problem

We are going to focus on the case of diffusion problems governed by piece wise constant

full diffusion tensors. From the practical point of view this assumption is very realistic

(see [7] and [23]). Indeed a subsurface area is made up of a collection of various geologic

formations that may be characterized at intermediate scales by averaged full permeability

tensors.

2.1 Formulation of the discrete problem

In what follows, we present the matrix form of a DDFV formulation for (1.1)-(1.2). Let

us emphasize that this method applies for any convex polygonal domain covered with an

unstructured primary grid. However we develop here the convergence analysis of that

method on Ω =]0,1[2 which is associated at square primary grid denoted P whose size
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is h = 1
N

, where N is a given strictly positive integer. On the other hand, we denote Ki, j

the primary grid-block defined by: Ki, j =

[

x
i− 1

2

1
, x

i+ 1
2

1

]

×
[

x
j− 1

2

2
, x

j+ 1
2

2

]

where x
i+ 1

2

1
= x

i− 1
2

1
+h,

x
j+ 1

2

2
= x

j− 1
2

2
+h, f or i, j = 1, . . . ,N with x

1
2

1
= x

1
2

2
= 0.

Important assumption: The discontinuities of the diffusion coefficient D lie on gridblock

interfaces and naturally divideΩ into a finite number of convex sub-domains {Ωs}s∈S
From the boundary-value problem theory (see for instance [12]), the balance equation

(1.1)-(1.2) possesses a unique variational solution in V under the assumption (1.5)-(1.7) and

the condition f ∈ L2 (Ω) .

We now make the additional assumption that the restriction overΩs of the exact solution

to the system (1.1)-(1.2) denoted by ϕ|Ωs
, satisfies to

ϕ|Ωs
∈C2(Ωs) ∀ s ∈ S

We should look for a finite volume formulation of the problem (1.1)-(1.2) in terms of a

linear system which is derived from the elimination of auxiliary unknowns, namely in-

terface pressures, in flux balance equations over grid-blocks. This linear system involves
{

ui, j

}

1≤i, j≤N
and

{

ui+ 1
2 , j+

1
2

}

0≤i, j≤N
as discrete unknowns expected to be reasonable approxi-

mations of
{

ϕi, j

}

1≤i, j≤N
(cell center pressures) and

{

ϕi+ 1
2 , j+

1
2

}

0≤i, j≤N
(cell corner pressures)

respectively, where ϕi, j = ϕ
(

xi
1
, x

j

2

)

and ϕi+ 1
2 , j+

1
2
= ϕ

(

x
i+ 1

2

1
, x

j+ 1
2

2

)

, with:

xi
1 =

x
i− 1

2

1
+ x

i+ 1
2

1

2
, x

j

2
=

x
j− 1

2

2
+ x

j+ 1
2

2

2
1 ≤ i , j ≤ N (2.1)

We also adopt the following conventions:

x0
1 = x

1
2

1
, xN+1

1 = x
N+ 1

2

1
, x0

2 = x
1
2

2
, xN+1

2 = x
N+ 1

2

2
(2.2)

We now give a summary description of the procedure leading to the linear discrete

system. We integrate the balance equation (1.1) in the grid-block Ki, j, commonly called a

control volume and centered at the point
(

xi
1
, x

j

2

)

. Applying Ostrogradski’s theorem leads to

integrate the flux on the boundary of Ki, j. This integration is performed using an adequate

quadrature formula over each half-edge of Ki, j, and this leads to an expression involving the

pressure value at edge mid-points. This pressure value is dropped away thanks to the flux

continuity which is imposed over the grid-block interfaces.

Let us illustrate now our procedure for computing the fluxes across the gridblock bound-

aries. For this purpose, we consider the internal edge [Now,Noe] associated with the grid-

blocks Ki, j and Ki, j+1 centered respectively at C and C′ (see Figure 1 below).

In what follows, the restriction of ϕ over the closure of each gridblock, denoted again

ϕ, is supposed to be C2. From the definition of the gridblocks Ki, j, it is clear that (xi
1
,x

j

2
)t,

(x
i+ 1

2

1
,x

j+ 1
2

2
)t, (x

i− 1
2

1
,x

j+ 1
2

2
)t and (xi

1
,x

j+ 1
2

2
)t are respectively the coordinates of the points C,
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Figure 1. The edge [Now,Noe] associated with the grid-blocks Ki, j and Ki, j+1.

Noe, Now and No (see Figure 1 above). On the other hand, Di j and Di j+1 denote respec-

tively the diffusion tensor of the gridblocks Ki, j and Ki, j+1.

The flux expression over the edge [Noe,Now] satisfies to the relation: (for more details

see [19])

∫

[Noe,Now]

[

−Di jgradϕ ·n
]

ds = 2D
i j

22

[

ϕi, j −ϕi, j+ 1
2

]

− D
i j

21

[

ϕi+ 1
2
, j+ 1

2
−ϕi, j+ 1

2

]

−D
i j

21

[

ϕi, j+ 1
2
−ϕi− 1

2
, j+ 1

2

]

+ hRe
i, j

(2.3)

with
∣

∣

∣

∣
Re

i, j

∣

∣

∣

∣
≤ Ch, where C depends exclusively on Ω,

∂2ϕ

∂x2
2

and the lithologic structure of the

porous medium.

Furthermore the flux continuity over the interface between the gridblocks Ki, j and Ki, j+1

leads to the eliminating the edge mid-point pressure ϕi, j+ 1
2

in (2.3). Hence we have the

following approximation of the flux over the edge [Noe,Now]:

∫

[Noe,Now]

[

−Di j grad ϕ · n
]

ds ≈ 2D
i j

22
D

i j+1

22

D
i j

22
+D

i j+1

22

[

ϕ
i, j
−ϕ

i, j+1

]

+
D

i j

22
D

i j+1

21
+D

i j+1

22
D

i j

21

D
i j

22
+D

i j+1

22

[

ϕ
i− 1

2
, j+ 1

2

−ϕ
i+ 1

2
, j+ 1

2

]

Note that in the case of a boundary-edge satisfying Neumann conditions, the flux over this

edge is equal to the imposed flux leads to an easy elimination of the corresponding edge

mid-point pressure.

Let us introduce the fictitious gridblocks Ki,0; K0, j; Ki,N+1; KN+1, j i, j = 0, ...,N +

1 associated with the null permeability. The use of such fictitious gridblocks leads to a

synthetic formulation of discrete balance equation valid for any primary gridblock (without

discriminating between internal and boundary primary gridblocks): see Figure 2 below.

It is then clear that this procedure applies to the boundary of any gridblock Ki, j, with
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Figure 2. Left: Primary grid in black lines, dual grid in red dashed lines and fictitious

gridblocks in blue lines.

Right: Degenerated dual gridblocks in red dashed lines.

1 ≤ i, j ≤ N, and leads to the following system of relations:

D
i j,i j+1

22,22

[

ϕi, j −ϕi, j+1

]

+D
i j,i j+1

22,21

[

ϕi− 1
2 , j+

1
2
−ϕi+ 1

2 , j+
1
2

]

+ D
i j,i j−1

22,22

[

ϕi, j −ϕi, j−1

]

+D
i j,i j−1

22,21

[

ϕi+ 1
2
, j− 1

2
−ϕi− 1

2
, j− 1

2

]

+D
i j,i+1 j

11,11

[

ϕi, j −ϕi+1, j

]

+ D
i j,i+1 j

11,12

[

ϕi+ 1
2
, j− 1

2
−ϕi+ 1

2
, j+ 1

2

]

+D
i j,i−1 j

11,11

[

ϕi, j −ϕi−1, j

]

+D
i j,i−1 j

11,12

[

ϕi− 1
2
, j+ 1

2
−ϕi− 1

2
, j− 1

2

]

≈
∫

Ki, j
f (x)dx −

∫

Γ∩∂Ki, j
g(x)dτ(x) ∀ 1 ≤ i, j ≤ N

(2.4)

where

D
i j,i j±1

22,22
=

2D
i j

22
D

i j±1

22

D
i j

22
+D

i j±1

22

, D
i j,i j±1

22,21
=

D
i j

22
D

i j±1

21
+D

i j±1

22
D

i j

21

D
i j

22
+D

i j±1

22

(2.5)

D
i j,i±1 j

11,11
=

2D
i j

11
D

i±1 j

11

D
i j

11
+D

i±1 j

11

, D
i j,i±1 j

11,12
=

D
i j

11
D

i±1 j

21
+D

i±1 j

11
D

i j

21

D
i j

11
+D

i±1 j

11

(2.6)

Note that since D is a symmetric tensor we have: D
i j,i±1 j

11,12
= D

i j,i±1 j

11,21
and D

i j,i j±1

22,21
= D

i j,i j±1

22,12
.

The discrete system (2.4) is not closed since the number of unknowns is greater than the

number of equations. Indeed there are [N2
+ (N + 1)2] unknowns and only N2 equations.

Therefore we should look for (N + 1)2 supplementary equations for closing that system.

For this purpose let us introduce the dual grid D made of gridblocks Ki+ 1
2 , j+

1
2

defined by

Ki+ 1
2
, j+ 1

2
=

]

xi
1
, xi+1

1

[

×
]

x
j

2
, x

j+1

2

[

for i, j = 0, 1, ..., N where it is set

x0
1 = x

1
2

1
= 0, x0

2 = x
1
2

2
= 0, xN+1

1 = x
N+ 1

2

1
= 1, xN+1

2 = x
1
2

1
= 1.

Let us denote by D the generic name of dual gridblocks and xD its center. The centers

of some dual gridblocks are located on Γ the domain boundary. Such dual gridblocks are

named degenerated dual gridblocks defining a set denoted byDdeg (see figure 2 above).

In the same order of idea, let us denote by V(D) the set of the vertices of the dual

gridblock D, E the set of edges associated with the dual gridD, Eint the set of edges E from
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E such that E ⊂Ω, Eext the set of edges E from E such that E ⊂ Γ, ED the set of edges from

E such that ∪E∈ED E = ∂D, N(D) the set of dual gridblocks sharing a common edge with

D ∈ D.

Remark 2.1. One should note that:

• ∀D,C ∈ D such that mes(D∩C) , 0, there exists two gridblocks P and L of primary

gird such that D∩C = [xP, xL] .

• ∀D,C ∈ Ddeg such that mes(D∩C) , 0, there exists a unique P ∈ P satisfying to

C∩D = [xP, xCD] , where xCD is the midpoint of [xC , xD] ⊂ ∂P∩Γ.
• The boundary of each dual gridblock is a union of a finite number of edges of the

form [xP, xL] or [xP, xCD]. ^

Let us now look for supplementary equations that should help to close the discrete

system (2.4). For this purpose we introduce some useful notations: Eh is the set of mid-

edge points (note that this set is the same for the primary and the dual grids); let D ∈ D (be

a dual gridblock), ED
h

is a subset of Eh made of mid-edge points lying on ΓD the boundary

of D. For a given half-edge [xP, xI ] of D, where P ∈ P and I ∈ ED
h

, it is natural to introduce

ξD
[xP,xI]

the corresponding unit normal vector exterior to the half-plane from R2 containing

the point xD and bordered by the straight line (xP xI), and ξP
[xC ,xD]

the unit normal vector to

[xC , xD] exterior to the gridblock P ∈ P, where C ∈ N(D) is such that [xC , xD] is an edge

of P. Let DP denote the permeability tensor of any primary gridblock P. Then, it is easily

seen that the following decomposition holds:

DPξP
[xC,xD] = ah(DP)ξP

[xC ,xD] −bh(DP)ξD
[xP,xI]

(2.7)

DPξD
[xP,xI]

= ch(DP)ξP
[xC,xD] −dh(DP)ξD

[xP,xI]
(2.8)

where the real numbers ah(DP), bh(DP), ch(DP) and dh(DP) are given by the relations:

ah(DP) =
(

ξP
[xC ,xD]

)t
DP

(

ξP
[xC ,xD]

)

, bh(DP) =
(

ξD
[xP,xI]

)t
DP

(

ξP
[xC ,xD]

)

ch(DP) =
(

ξP
[xC ,xD]

)t
DP

(

ξD
[xP,xI]

)

, dh(DP) =
(

ξD
[xP,xI]

)t
DP

(

ξD
[xP,xI]

)

.

Integrating the balance equation (1.1) in each dual gridblock D = Ki+ 1
2 , j+

1
2

and applying

the Ostrogradski’s theorem to the left hand-side of the equality leads to diffusion flux com-

putations over the boundary of D. Thanks to a suitable quadrature formula, one derives (as

in the case of primary gridblocks) the following discrete balance equations in D = Ki+ 1
2
, j+ 1

2
:

D
i j+1,i+1 j+1

11,12

[

ϕi, j+1−ϕi+1, j+1

]

+∆
i j+1,i+1 j+1

22

[

ϕi+ 1
2
, j+ 1

2
−ϕi+ 1

2
, j+ 3

2

]

+D
i j,i+1 j

11,12

[

ϕi+1, j −ϕi, j

]

+∆
i j,i+1 j

22

[

ϕi+ 1
2
, j+ 1

2
−ϕi+ 1

2
, j− 1

2

]

+D
i+1 j,i+1 j+1

22,21

[

ϕi+1, j−ϕi+1, j+1

]

+∆
i+1 j,i+1 j+1

11

[

ϕi+ 1
2
, j+ 1

2
−ϕi+ 3

2
, j+ 1

2

]

+D
i j,i j+1

22,21

[

ϕi, j+1 −ϕi, j

]

+∆
i j,i j+1

11

[

ϕi+ 1
2 , j+

1
2
−ϕi− 1

2 , j+
1
2

]

≈
∫

K
i+ 1

2
, j+ 1

2

f (x)dx −
∫

Γ∩∂K
i+ 1

2
, j+ 1

2

gdτ +
∑

C∈N(D)∩Ddeg

ch(DP)

ah(DP)

∫

[xC , xD]
g(x)dτ

∀ 0 ≤ i, j ≤ N

(2.9)
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where P ∈ P is a primary grid accepting xD as its vertex and where we have set:

∆
i j,i j+1

11
= −

(

D
i j+1

12
−D

i j

12

)2

2
(

D
i j

22
+D

i j+1

22

) +
D

i j

11
+D

i j+1

11

2

∆
i+1 j,i+1 j+1

11
= −

(

D
i+1 j+1

12
−D

i+1 j

12

)2

2
(

D
i+1 j

22
+D

i+1 j+1

22

) +
D

i+1 j

11
+D

i+1 j+1

11

2

(2.10)

∆
i j,i+1 j

22
= −

(

D
i+1 j

21
−D

i j

21

)2

2
(

D
i j

11
+D

i+1 j

11

) +
D

i j

22
+D

i+1 j

22

2

∆
i j+1,i+1 j+1

22
= −

(

D
i+1 j+1

21
−D

i j+1

21

)2

2
(

D
i j+1

11
+D

i+1 j+1

11

) +
D

i j

22
+D

i+1 j+1

22

2

(2.11)

It is important to emphasize that the coefficients above are simply null if i or j ∈ {0, N +1}.
Recall that the coefficients Dkl,mn

11,12
and Dkl,mn

22,21
involved in the above discrete balance equa-

tions i.e. (2.9) are defined by relations (2.5)-(2.6)

Note that the exact solutionϕ does not satisfy (2.4) and (2.9) with equalities everywhere.

We derive the discrete system from (2.4)-(2.9) replacing ϕ and ” ≈ ” with u and ” = ” respec-

tively. Therefore the discrete problem consists in finding
{

ui, j

}

1≤i, j≤N
and

{

ui+ 1
2
, j+ 1

2

}

0≤i, j≤N

real unknowns such that:

D
i j,i j+1

22,22

[

ui, j −ui, j+1

]

+D
i j,i j+1

22,21

[

ui− 1
2 , j+

1
2
−ui+ 1

2 , j+
1
2

]

+ D
i j,i j−1

22,22

[

ui, j −ui, j−1

]

+D
i j,i j−1

22,21

[

ui+ 1
2
, j− 1

2
−ui− 1

2
, j− 1

2

]

+D
i j,i+1 j

11,11

[

ui, j −ui+1, j

]

+ D
i j,i+1 j

11,12

[

ui+ 1
2 , j−

1
2
−ui+ 1

2 , j+
1
2

]

+D
i j,i−1 j

11,11

[

ui, j −ui−1, j

]

+D
i j,i−1 j

11,12

[

ui− 1
2 , j+

1
2
−ui− 1

2 , j−
1
2

]

=

∫

Ki, j
f (x)dx −

∫

Γ∩∂Ki, j
g(x)dτ ∀ 1 ≤ i, j ≤ N

(2.12)

D
i j+1,i+1 j+1

11,12

[

ui, j+1 −ui+1, j+1

]

+∆
i j+1,i+1 j+1

22

[

ui+ 1
2
, j+ 1

2
−ui+ 1

2
, j+ 3

2

]

+D
i j,i+1 j

11,12

[

ui+1, j−ui, j

]

+∆
i j,i+1 j

22

[

ui+ 1
2 , j+

1
2
−ui+ 1

2 , j−
1
2

]

+D
i+1 j,i+1 j+1

22,21

[

ui+1, j −ui+1, j+1

]

+∆
i+1 j,i+1 j+1

11

[

ui+ 1
2 , j+

1
2
−ui+ 3

2 , j+
1
2

]

+D
i j,i j+1

22,21

[

ui, j+1−ui, j

]

+∆
i j,i j+1

11

[

ui+ 1
2
, j+ 1

2
−ui− 1

2
, j+ 1

2

]

=

∫

K
i+ 1

2
, j+ 1

2

f (x)dx −
∫

Γ∩∂K
i+ 1

2
, j+ 1

2

gdτ +
∑

C∈N(D)∩Ddeg

ch(DP)

ah(DP)

∫

[xC , xD]
g(x)dτ

∀ 0 ≤ i, j ≤ N

(2.13)
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2.2 Existence of discrete solutions and conditions for uniqueness

We are going to deal now with the existence and uniqueness of a solution for the discrete

problem (2.12)-(2.13). Let us assume that the discrete unknowns are numbered from 1 to

m = N2
+ (N + 1)2. Therefore the matrix form of this discrete system may be expressed as

follows:
(

A B

E C

) (

Ucc

Uvc

)

=

(

Fcc

Fvc

)

(2.14)

where we have set:

Ucc =

{

u( j−1)N+i

}

1≤i, j≤N
, Uvc =

{

u j(N+1)+i+1+N2

}

0≤i, j≤N
(2.15)

Fcc =

{

F( j−1)N+i

}

1≤i, j≤N and Fvc =

{

F j(N+1)+i+1+N2

}

0≤i, j≤N
(2.16)

where

F( j−1)N+i ≡ Fi, j =

∫

Ki, j

f (x)dx −
∫

Γ∩∂Ki, j

g(x)dτ ∀ 1 ≤ i, j ≤ N

F j(N+1)+i+1+N2 ≡ Fi+ 1
2 , j+

1
2
=

∫

K
i+ 1

2
, j+ 1

2

f (x)dx −
∫

Γ∩∂K
i+ 1

2
, j+ 1

2

gdτ

+

∑

C∈N(D)∩Ddeg

ch(DP)

ah(DP)

∫

[xC, xD]

g(x)dτ ∀ 0 ≤ i, j ≤ N

A is a N2 symmetric matrix, associated to the classical grid-centered finite volume

when D(.) is diagonal i.e.D12(.) = D21(.) ≡ 0.

C is a (N + 1)2 symmetric matrix, associated to the classical vertex-centered finite

volume when D is diagonal.

B is a N2× (N +1)2 matrix and E is a (N +1)2×N2 matrix. The following remarks will

play a key role in what follows.

Remark 2.2.

∑

1≤i, j≤N

Fi, j =

∫

Ω

f (x)dx−
∫

Γ

gdτ = 0

∑

0≤i, j≤N

Fi+ 1
2 , j+

1
2
=

∫

Ω

f (x)dx−
∫

Γ

gdτ = 0. ^

Remark 2.3.

∑

D∈D

∑

C∈N(D)∩Ddeg

ch(DP)

ah(DP)

∫

[xC, xD]

g(x)dτ = 0. ^

Remark 2.4. Setting

M =

[

A B

E C

]

=

(

Msp

)

1≤s,p≤m
, m = N2

+ (N +1)2.

The matrix A, B, C, E and M satisfy the following properties:
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1. M is symmetric matrix

2. ∀ 1 ≤ s ≤ N2
N2
∑

p=1

Asp = 0 and
(N+1)2
∑

p=1

Bsp = 0

3. ∀ 1 ≤ s ≤ (N +1)2
N2
∑

p=1

Esp = 0 and
(N+1)2
∑

p=1

Csp = 0

4.

∀ 1 ≤ s ≤ m

m
∑

p=1

Msp = 0 (2.17)

∀ 1 ≤ p ≤ m

m
∑

s=1

Msp = 0 ^

Proposition 2.5. Let Λcc and Λvc be two vectors of Rm such that

(Λcc)s =

{

1 if 1 ≤ s ≤ N2

0 otherwise
and (Λvc)s =

{

1 if N2
+1 ≤ s ≤ m

0 otherwise

. Then dim(Ker(M)) = 2 and the family of vectors {Λcc,Λvc} defines a basis of Ker(M). ^

Proof. First remark that the vectors Λcc and Λvc are in Ker(M) and that: for any v ∈ Rm

v ∈ Ker(M) implies vt Mv = 0. It remains to show that vtMv = 0 implies v ∈ Ker(M).

Step 1: We show that there exist a real number ρ only depending on Ω such that

[

Ut
cc Ut

vc

]

[

A B

E C

] [

Ucc

Uvc

]

≥ ρ
(

|uh|∗1,L
)2

(2.18)

where

|uh|∗1,L =



























∑

1≤i≤N
1≤ j≤N−1

{

[

ui+ 1
2
, j+ 1

2
−ui− 1

2
, j+ 1

2

]2

+

[

ui, j+1−ui, j

]2
}

(2.19)

+

∑

1≤i≤N−1
1≤ j≤N

{

[

ui+1, j −ui, j

]2
+

[

ui+ 1
2 , j+

1
2
−ui+ 1

2 , j−
1
2

]2
}

+

N
∑

j=1

{

[

u 1
2 , j+

1
2
−u 1

2 , j−
1
2

]2

+

[

uN+ 1
2 , j+

1
2
−uN+ 1

2 , j−
1
2

]2
}

+

N
∑

i=1

{

[

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

]2

+

[

ui+ 1
2
,N+ 1

2
−ui− 1

2
,N+ 1

2

]2
}















1
2

.

Let us emphasize that notation |·|∗1,L will be made clear in Section 3.
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Multiplying (2.12) by ui, j and (2.13) by ui+ 1
2 , j+

1
2

and summing leads to (here notations

(2.15) are utilized)

[

Ut
cc Ut

vc

]

[

A B

E C

] [

Ucc

Uvc

]

= RHS 1+RHS 2+RHS 3 (2.20)

where we have set

RHS 1 =
∑

1≤i≤N
1≤ j≤N−1

{

D
i j,i j+1

22,22

[

ui, j+1−ui, j

]2
+∆

i j,i j+1

11

[

ui+ 1
2
, j+ 1

2
−ui− 1

2
, j+ 1

2

]2

+ 2D
i j,i j+1

22,21

[

ui+ 1
2 , j+

1
2
−ui− 1

2 , j+
1
2

]

[

u
i, j+1
−ui, j

]

}

(2.21)

RHS 2 =
∑

1≤i≤N−1
1≤ j≤N

{

D
i j,i+1 j

11,11

[

u
i+1, j
−ui, j

]2
+∆

i j,i+1 j

22

[

ui+ 1
2
, j+ 1

2
−ui+ 1

2
, j− 1

2

]2

+ 2 D
i j,i+1 j

11,12

[

ui+ 1
2 , j+

1
2
−ui+ 1

2 , j−
1
2

]

[

u
i+1, j
−ui, j

]

}

(2.22)

RHS 3 =

N
∑

j=1

∇1 j

11

[

u 1
2 , j+

1
2
−u 1

2 , j−
1
2

]2

+

N
∑

j=1

∇N j

11

[

uN+ 1
2 , j+

1
2
−uN+ 1

2 , j−
1
2

]2

+

N
∑

i=1

∇i1
22

[

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

]2

+

N
∑

i=1

∇iN
22

[

ui+ 1
2
,N+ 1

2
−ui− 1

2
,N+ 1

2

]2

where

∇k j

11
=

D
k j

22
D

k j

11
−

(

D
k j

12

)2

2D
k j

11

∀ 1 ≤ j ≤ N k = 1,N

and

∇ik
22 =

Dik
22

Dik
11
−

(

Dik
12

)2

2Dik
22

∀ 1 ≤ i ≤ N k = 1,N

Let us note Di j,i j+1 and Di j,i+1 j the homogenized symmetric permeability tensors

which appear respectively into the left hand-side of (2.21) and (2.22). It is easy

to check that

det(Di j,i+1 j) =
D

i+1 j

11

D
i j

11
+D

i+1 j

11

×det(Di j)+
D

i j

11

D
i j

11
+D

i+1 j

11

×det(Di+1 j) (2.23)

and

det(Di j,i j+1) =
D

i j

22

D
i j

22
+D

i j+1

22

×det(Di j+1)+
D

i j+1

22

D
i j

22
+D

i j+1

22

×det(Di j) (2.24)

Due to the positive definiteness of D(x) and the relations (2.23) and (2.24) the sym-

metric matrices Di j,i j+1 and Di j,i+1 j are positive definite. Therefore each of these
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matrices possesses two strictly positive eigenvalues. Let λ
i j,i j+1

min
and λ

i j,i+1 j

min
be respec-

tively their lowest eigenvalues. So we have

RHS 1 ≥
∑

1≤i≤N
1≤ j≤N−1

λ
i j,i j+1

min

{

[

ui+ 1
2 , j+

1
2
−ui− 1

2 , j+
1
2

]2

+

[

ui, j+1 −ui, j

]2
}

RHS 2 ≥
∑

1≤i≤N−1
1≤ j≤N

λ
i j,i+1 j

min

{

[

ui+1, j −ui, j

]2
+

[

ui+ 1
2
, j+ 1

2
−ui+ 1

2
, j− 1

2

]2
}

RHS 3 ≥ δ
N

∑

j=1

{

[

u 1
2 , j+

1
2
−u 1

2 , j−
1
2

]2

+

[

uN+ 1
2 , j+

1
2
−uN+ 1

2 , j−
1
2

]2
}

+β

N
∑

i=1

{

[

ui− 1
2 ,

1
2
−ui+ 1

2 ,
1
2

]2

+

[

ui+ 1
2 ,N+

1
2
−ui− 1

2 ,N+
1
2

]2
}

where

δ = min

{

min
1≤ j≤N

(∇1 j

11
), min

1≤ j≤N
(∇N j

11
)

}

> 0

β = min

{

min
1≤ j≤N

(∇iN
22), min

1≤ j≤N
(∇iN

22)

}

> 0

Thus

RHS 1+RHS 2+RHS 3

≥
∑

1≤i≤N
1≤ j≤N−1

λ
i j,i j+1

min

{

[

ui+ 1
2 , j+

1
2
−ui− 1

2 , j+
1
2

]2

+

[

ui, j+1 −ui, j

]2
}

+

∑

1≤i≤N−1
1≤ j≤N

λ
i j,i+1 j

min

{

[

ui+1, j −ui, j

]2
+

[

ui+ 1
2 , j+

1
2
−ui+ 1

2 , j−
1
2

]2
}

+δ

N
∑

j=1

{

[

u 1
2
, j+ 1

2
−u 1

2
, j− 1

2

]2

+

[

uN+ 1
2
, j+ 1

2
−uN+ 1

2
, j− 1

2

]2
}

+β

N
∑

i=1

{

[

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

]2

+

[

ui+ 1
2
,N+ 1

2
−ui− 1

2
,N+ 1

2

]2
}

≥ ρ
(

|uh|∗1,L
)2

where

ρ =min























β,δ, min
1≤i≤N

1≤ j≤N−1

λ
i j,i j+1

min
, min
1≤i≤N−1

1≤ j≤N

λ
i j,i+1 j

min























is actually a real positive number depending exclusively on the geological structure

of the medium. According to what precedes we have

tvMv = 0 =⇒ 0 ≤ ρ
(

|v|∗1,L
)2 ≤ 0 =⇒ |v|∗1,L = 0
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Thus there exists two constant real numbers θ and µ such that

∀1 ≤ s ≤ N2 (vcc)s = θ and ∀N2
+1 ≤ s ≤ m (vvc)s = µ.

For 1 ≤ s ≤ N2

(Mv)s =

N2
∑

p=1

Asp (vcc)p+

m
∑

p=N2+1

Bs,p−N2 (vvc)p

= θ

N2
∑

p=1

Asp+µ

(N+1)2
∑

p=1

Bsp = 0

and for N2
+1 ≤ s ≤ m

(Mv)s =

N2
∑

p=1

Esp (vcc)p+

m
∑

p=N2+1

Cs,p−N2 (vvc)p

= θ

N2
∑

p=1

Esp +µ

(N+1)2
∑

p=1

Csp = 0

by using the remark 2.4. Therefore Mv = 0 and v ∈ Ker(M).

Step 2: Deduce from Step 1 that for v ∈ Rm:

vtMv = 0⇔∃ θ,µ ∈ R such that v = θΛcc+µΛvc (2.25)

For all v ∈ Rm,vt Mv = 0 implies (according to Step1) that

∃ θ,µ ∈ R such that v = θΛcc+µΛvc (2.26)

Reversely, if v satisfies (2.26) then Mv = 0 thanks to Remark 2.4. From Step 1 we

deduce that vtMv = 0. Then dim(Ker(M)) = 2 and the family of vectors {Λcc,Λvc}
defines a basis of Ker(M). The proof of Proposition 2.5 is ended.

�

Proposition 2.6. The discrete problem (2.12)-(2.13) possesses an infinite number of solutions. ^

Proof. It is based upon the discrete version of Fredholm Alternative and Remark 2.2. �

Proposition 2.7. There is a unique vector of uh ∈ Rm satisfying the discrete equations

(2.12)-(2.13) together with the following constraints

∑

P∈P

mes(P)

5

∑

xP∈T
u(xP) = 0 (2.27)

∑

T∈T

mes(T )

3

∑

xT∈T
u(xT ) = 0. ^ (2.28)
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Proof. It suffices to show that for v ∈ Rm

[

vtMv = 0 and v satisfies (2.27)-(2.28)
]⇒ v = 0.

Consider v ∈ Rm such that for all v ∈ Rm vtMv = 0. Then (according to what precedes):

∃ θ,µ ∈ R such that v = θΛcc+µΛvc

If v satisfies (2.27) and (2.28) then

θ+4µ = 0 and θ+2µ = 0

Therefore θ = µ = 0 and thus v = 0. �

3 Stability and error estimates

In what precedes we have shown the existence and uniqueness of a solution to the discrete

problem (2.12)-(2.13) with the constraints (2.27)-(2.28). In what follows we derive from

that solution some approximate solutions for the model problem (1.1)-(1.2).

3.1 A piecewise constant approximate solution

Let us start with introducing a new grid L made up of rhombi recovering Ω as indicated in

Figure 3 below. With the grid L is associated a space E(L) made up of functions v defined

Figure 3. An example of grid L made up of rhombi associated with a primary square

mesh.

almost every in Ω such that v is constant in L∩Ω, for any L ∈ L. We equip the space E(L)

with the following discrete H1(Ω) norm:

∀v ∈ E(L) ‖v‖E(L) =



















∑

s∈V(L)

(∆sv)2
+

(∫

Ω

v dx

)2


















1
2

(3.1)

where V(L) is the set of vertices associated with the grid L and where we have set:

∆sv =
∑

L,K∈L such that

ΓK∩ΓL={s}

|vL− vK |2

with ΓE denoting the boundary of any mesh element E. Let S h(L) be the subspace of E(L)

made up of functions v that satisfy to (2.27)-(2.28). S h(L) is not empty as it contains the



Convergence analysis on quadrilateral grids of a DDFV method ... 15

cell-wise constant function corresponding to the solution to the discrete problem (2.12)-

(2.13). In what follows this function is denoted by uL and is called ”piecewise constant

approximate solution” to the model problem.

Remark 3.1. The discrete H1 semi-norm

v 7→ |v|∗1,L =



















∑

s∈V(L)

(∆sv)2



















1
2

(3.2)

defines a norm over S h(L) and this norm is equivalent to the discrete H1 norm defined by

relation (3.1).

3.2 A piecewise linear approximate solution

One can easily define a piecewise linear approximate solution for the model problem (1.1)-

(1.2) by using an adequate triangulation T of the domain Ω ( see Figure 4 below). As in

P1 finite element theory this solution denoted by uT is continuous over Ω = [0,1]× [0,1].

Recall that the quadrature formulae (2.27) is exact for functions of class P1 over triangular

elements from T . Since uT is in H1(Ω), it is clear that uT satisfies to the constraint (1.8)

which is imposed to the exact solution i.e.

uT ∈ V = {v ∈ H1(Ω);

∫

Ω

v(x)dx = 0} (3.3)

Figure 4. Triangulation of the domain associated with the primary grid

3.3 Stability of the piecewise constant approximate solution

Let us start with the following important remark.

Remark 3.2. One can prove that there exists a constant C without dependence on the spatial

discretization such that (see [9]):

∀v ∈ E(L) ‖v‖2
L2(Ω)

≤C ‖v‖2E(L) . ^ (3.4)

An immediate consequence of the preceding remark is that the mappings

‖v‖E(L) =



















∑

s∈V(L)

(∆sv)2
+

(
∫

Ω

vdx

)2


















1
2

(3.5)
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and

|||v|||E(L) =



















∑

s∈V(L)

(∆sv)2
+

∫

Ω

v2dx



















1
2

(3.6)

define two equivalent norms over the space E(L).

Let us introduce now two projection operators defined as follows:

v ∈ E(L) 7−→ ΠPv ≡ vP = {vP}P∈P ∈ E(P)

and

v ∈ E(L) 7−→ ΠDv ≡ vD = {vD}D∈D ∈ E(D)

where E(P) and E(D) are respectively the spaces of constant functions over primary and

dual grid blocks. These spaces are endowed respectively with the following norms:

‖w‖E(P) =





























∑

i∈I(L)

∑

K,L∈P with
i∈ΓK∩ΓL

|wK −wL|2





























1
2

(3.7)

and

‖w‖E(D) =





























∑

i∈I(L)

∑

K∗,L∗∈D with
i∈ΓK∗∩ΓL∗

|wK∗ −wL∗ |2





























1
2

(3.8)

where I(L) is the set of gridblock centres with respect to the grid L.

Remark 3.3. Note that:

|v|∗1,L =
{

∥

∥

∥vP
∥

∥

∥

2

E(P)
+

∥

∥

∥vD
∥

∥

∥

2

E(D)

}
1
2 ∀v ∈ E(L). (3.9)

and that
∥

∥

∥vP
∥

∥

∥

E(P)
≤ ‖v‖E(L) ,

∥

∥

∥vD
∥

∥

∥

E(D)
≤ ‖v‖E(L) ∀v ∈ E(L) (3.10)

These obvious relations play a key-role in what follows. ^

The following result ([9]) plays a central role in the proof of the stability of the piece-

wise constant approximate solution to the model problem.

Lemma 3.4. Let F be a rectangular grid defined over Ω and E(F ) the space of functions

v defined on Ω such that v |M is a constant for all M ∈ F . For every v ∈ E(F ), define:
[

γ0(v)
]

(x) = vM for almost every (in the sense of 1D-Lebesgue measure) x ∈ Γ∩ΓM , where

M is a gridblock from F adjacent to the domain boundary Γ. Then we have

‖γ0(v)‖L2(Γ) ≤C ‖v‖E(F ) ∀v ∈ E(F )

where

‖v‖E(F ) =



















∑

s∈V(F )

(∆sv)2
+

(∫

Ω

vdx

)2


















1
2

∀v ∈ E(F ). ^
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All the ingredients are gathered for proving the following important result.

Theorem 3.5. (Stability result)

Let us assume that the data f and g are sufficiently regular and satisfy to the compatibility

condition (1.7). Then the piecewise constant approximate solution to the model problem

(1.1)-(1.2) obeys to the following inequality:

‖uL‖E(L) ≤C
[

‖ f ‖L2(Ω)+ ‖g‖L2(Γ)

]

,

or equivalently

|uL|∗1,L ≤C
[

‖ f ‖L2(Ω)+ ‖g‖L2(Γ)

]

where the strictly positive number C represents diverse constants mesh independent. ^

Proof.

[Ucc Uvc]

[

A B

E C

] [

Ucc

Uvc

]

= [Ucc Uvc]

[

Fcc

Fvc

]

(3.11)

LHS = [Ucc Uvc]

[

A B

E C

][

Ucc

Uvc

]

RHS = [Ucc Uvc]

[

Fcc

Fvc

]

From the step 1 of the proof of Proposition 2.5 we know that the left hand side of (3.11)

satisfies to the following inequality:

ρ
(

|uh|∗1,L
)2 ≤ LHS (3.12)

In addition, the right hand side of (3.11) obeys to the following relation

RHS =

∑

P∈P

∫

P

f (x)uP dx+
∑

D∈D

∫

D

f (x)uD dx

+

∑

P∈P

∫

Γ∩ΓP

g(x)uP dτ(x)−
∑

D∈D

∫

Γ∩ΓD

g(x)uD dτ(x)

+

N
∑

i=1

[

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

] Di1
12

Di1
22

∫

Ki1∩Γ
gdτ

+

N
∑

i=1

[

ui+ 1
2
,N+ 1

2
−ui− 1

2
,N+ 1

2

] DiN
12

DiN
22

∫

KiN∩Γ
gdτ (3.13)

+

N
∑

j=1

[

u 1
2 , j+

1
2
−u 1

2 , j−
1
2

] D
1 j

12

Di1
11

∫

K1 j∩Γ
gdτ

+

N
∑

j=1

[

uN+ 1
2 , j−

1
2
−uN+ 1

2 , j+
1
2

] D
1 j

12

Di1
22

∫

KN j∩Γ
gdτ
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where the convention that the integral term is zero if Γ∩ΓP or Γ∩ΓD are empty sets. Recall

thatP andD are respectively the (set of gridblocks defining the) primary grid and the (set of

gridblocks defining the) dual grid. By a double application of Cauchy-Schwarz inequality

and thanks to Remark 3.1 and Remark 3.3 one can see that on one hand we have
∣

∣

∣

∣

∣

∣

∣

∑

P∈P

∫

P

f (x)uP dx+
∑

D∈D

∫

D

f (x)uD dx

∣

∣

∣

∣

∣

∣

∣

≤
√

2‖ f ‖L2(Ω) |uh|∗1,L (3.14)

and
∣

∣

∣

∣

∣

∣

∣

∑

P∈P

∫

Γ∩ΓP

g(x)uP dτ(x)−
∑

D∈D

∫

Γ∩ΓD

g(x)uD dτ(x)

∣

∣

∣

∣

∣

∣

∣

≤ ‖g‖L2(Γ)

∥

∥

∥γ0[(uL)P]
∥

∥

∥

L2(Γ)
+ ‖g‖L2(Γ)

∥

∥

∥γ0[(uL)D]
∥

∥

∥

L2(Γ)

≤ C ‖g‖L2(Γ)

∥

∥

∥(uL)P
∥

∥

∥

E(P)
+C ‖g‖L2(Γ)

∥

∥

∥(uL)D
∥

∥

∥

E(D)
(3.15)

≤ C ‖g‖L2(Γ) |uh|∗1,L
where C represents diverse strictly positive number mesh independent. On the other hand,

we have
∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

[

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

] Di1
12

Di1
22

∫

Ki1∩Γ
gdτ

∣

∣

∣

∣

∣

∣

∣

≤ σ

N
∑

i=1

mes(Ki1∩Γ)
∣

∣

∣

∣
ui− 1

2 ,
1
2
−ui+ 1

2 ,
1
2

∣

∣

∣

∣

(∫

Ki1∩Γ
g2dτ

)
1
2

≤ σmes(Γ)

















N
∑

i=1

(

ui− 1
2
, 1

2
−ui+ 1

2
, 1

2

)2
















1
2
















N
∑

i=1

∫

Ki1∩Γ
g2dτ

















1
2

≤ σmes(Γ)‖g‖L2(Γ) |uh|∗1,L (3.16)

where σ a real positive number given by (1.4). From the above estimates it follows that

RHS ≤C
[

‖ f ‖L2(Ω) + ‖g‖L2(Γ)

]

|uh|∗1,L (3.17)

Thanks to (3.12) and (3.17) we get

|uh|∗1,L ≤C
[

‖ f ‖L2(Ω) + ‖g‖L2(Γ)

]

.

This ends the proof. �

3.4 Error estimates for piecewise constant/linear solutions

Theorem 3.6. (Error estimates for piecewise constant solution uL)

Under the assumptions (1.5)-(1.7) and the condition f ∈ L2 (Ω) , the unique variational

solution to the model problem (1.1)-(1.2) is such that its restriction to any primary gridblock

P ∈ P lies in C2(P) and the error function εh = ϕh − uL obeys to the following inequalities:

‖εh‖L2(Ω) + |εh|∗1,L ≤ Ch (3.18)
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where C represents diverse positive constants mesh independent. Recall that uL = {uN}N∈L
and ϕh = {ϕ(xN )}N∈L, xN being the center of the gridblock, N ∈ L and h being the size of

L. ^

Proof. Taking account truncation errors, the equations (2.12)-(2.13) are transformed as fol-

lows :

D
i j,i j+1

22,22

[

ui, j −ui, j+1

]

+D
i j,i j+1

22,21

[

ui− 1
2 , j+

1
2
−ui+ 1

2 , j+
1
2

]

+ D
i j,i j−1

22,22

[

ui, j −ui, j−1

]

+D
i j,i j−1

22,21

[

ui+ 1
2
, j− 1

2
−ui− 1

2
, j− 1

2

]

+D
i j,i+1 j

11,11

[

ui, j −ui+1, j

]

+ D
i j,i+1 j

11,12

[

ui+ 1
2 , j−

1
2
−ui+ 1

2 , j+
1
2

]

+D
i j,i−1 j

11,11

[

ui, j −ui−1, j

]

+D
i j,i−1 j

11,12

[

ui− 1
2 , j+

1
2
−ui− 1

2 , j−
1
2

]

=

∫

Ki, j
f (x)dx +

∑

e∈Ei, j

hRe
i, j
∀ 1 ≤ i, j ≤ N

(3.19)

D
i j+1,i+1 j+1

11,12

[

ui, j+1 −ui+1, j+1

]

+∆
i j+1,i+1 j+1

22

[

ui+ 1
2
, j+ 1

2
−ui+ 1

2
, j+ 3

2

]

+D
i j,i+1 j

11,12

[

ui+1, j−ui, j

]

+∆
i j,i+1 j

22

[

ui+ 1
2 , j+

1
2
−ui+ 1

2 , j−
1
2

]

+D
i+1 j,i+1 j+1

22,21

[

ui+1, j −ui+1, j+1

]

+∆
i+1 j,i+1 j+1

11

[

ui+ 1
2
, j+ 1

2
−ui+ 3

2
, j+ 1

2

]

+D
i j,i j+1

22,21

[

ui, j+1−ui, j

]

+∆
i j,i j+1

11

[

ui+ 1
2 , j+

1
2
−ui− 1

2 , j+
1
2

]

=

∫

K
i+ 1

2
, j+ 1

2

f (x)dx −
∫

Γ∩∂K
i+ 1

2
, j+ 1

2

gdτ +
∑

C∈N(D)∩Ddeg

ch(DP)

ah(DP)

∫

[xC , xD]
g(x)dτ

+
∑

e∈E
i+ 1

2
, j+ 1

2

hRe

i+ 1
2
, j+ 1

2

for all 0 ≤ i, j ≤ N

(3.20)

where Ei, j and Ei+ 1
2
, j+ 1

2
are sets of edges associated respectively with Ki, j and Ki+ 1

2
, j+ 1

2
,

and where Re
i, j

and Re

i+ 1
2 , j+

1
2

denote the truncation error associated with the approximation

of the flux over the edges ei, j and ei+ 1
2
, j+ 1

2
respectively. Moreover, under the assumption

ϕ ∈ C2 over the closure of primary grid-blocks, the truncation error satisfy the following

inequalities :
∣

∣

∣

∣

Re
i, j

∣

∣

∣

∣

≤Ch and

∣

∣

∣

∣

∣

Re

i+ 1
2 , j+

1
2

∣

∣

∣

∣

∣

≤Ch (3.21)

In what follows, the notation Re
K

will be used to denote the truncation error for the approx-

imation of the flux over the edge eK of any control volume K. Due to the conservatively

property of the proposed finite volume formulation, we have

Re
K + Re

I = 0 (3.22)
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where K and I are two adjacent control volumes such that e = ΓK ∩ΓI .

Let us define a function εh almost everywhere in Ω in the following way:

εh (x) = εL if x ∈ Int(L) with L ∈ L (3.23)

where we have set εL = ϕL−uL for all L ∈ L. Note that the element L of the additive mesh

L is necessary centered on a point whose cartesian coordinates are of the form
(

xi
1
, x

j

2

)

or
(

x
i+ 1

2

1
, x

j+ 1
2

2

)

. εL is a generic name of εi, j or εi+ 1
2 , j+

1
2
.

Remark 3.7. From the relation (3.22) we see that the function εh is actually in the space

E(L) . This function expresses the error in some sense (i.e. the difference between the exact

and the weak approximate solution uh) and certain estimates of this error are given in what

follows ·

We immediately should show that the following quantities
{

εi, j

}

1≤ i, j≤ N

and

{

εi+ 1
2
, j+ 1

2

}

1≤ i, j≤ N−1
are a solution of a discrete problem of the form (2.12)-(2.13).

Subtracting (2.12) from (3.19) and (2.13) from (3.20), and reordering the terms yields:

D
i j,i j+1

22,22

[

εi, j −εi, j+1

]

+D
i j,i j+1

22,21

[

εi− 1
2 , j+

1
2
−εi+ 1

2 , j+
1
2

]

+ D
i j,i j−1

22,22

[

εi, j −εi, j−1

]

+D
i j,i j−1

22,21

[

εi+ 1
2
, j− 1

2
−εi− 1

2
, j− 1

2

]

+D
i j,i+1 j

11,11

[

εi, j −εi+1, j

]

+ D
i j,i+1 j

11,12

[

εi+ 1
2 , j−

1
2
−εi+ 1

2 , j+
1
2

]

+D
i j,i−1 j

11,11

[

εi, j −εi−1, j

]

+D
i j,i−1 j

11,12

[

εi− 1
2
, j+ 1

2
−εi− 1

2
, j− 1

2

]

=
∑

e∈Ei, j

hRe
i, j
∀ 1 ≤ i, j ≤ N

(3.24)

and

D
i j+1,i+1 j+1

11,12

[

εi, j+1 −εi+1, j+1

]

+∆
i j,i+1 j+1

22

[

εi+ 1
2
, j+ 1

2
−εi+ 1

2
, j+ 3

2

]

+D
i j+1,i+1 j

11,12

[

εi+1, j −εi, j

]

+∆
i j,i+1 j

22

[

εi+ 1
2 , j+

1
2
−εi+ 1

2 , j−
1
2

]

+D
i+1 j,i+1 j+1

22,21

[

εi+1, j −ui+1, j+1

]

+∆
i+1 j,i+1 j+1

11

[

εi+ 1
2
, j+ 1

2
−εi+ 3

2
, j+ 1

2

]

+D
i j,i j+1

22,21

[

εi, j+1−εi, j

]

+∆
i+1 j,i+1 j+1

11

[

εi+ 1
2 , j+

1
2
−εi− 1

2 , j+
1
2

]

=
∑

e∈E
i+ 1

2
, j+ 1

2

hRe

i+ 1
2
, j+ 1

2

for all 1 ≤ i, j ≤ N −1

(3.25)
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Multiplying (3.24) by εi, j and (3.25) by εi+ 1
2 , j+

1
2

and summing over i, j and reordering

the terms of the left hand side after summation side by side of the results obtained, leads to

the following inequality, thanks to (1.6) and (3.22):

γ
(

|εh|∗1,L
)2 ≤

∑

1≤i≤N
1≤ j≤N−1

h

{

(

εi, j −εi, j+1

)

Rei j,i j+1

i, j
+

(

εi− 1
2
, j+ 1

2
−εi+ 1

2
, j+ 1

2

)

Re
i− 1

2
j+ 1

2
,i+ 1

2
j+ 1

2

i− 1
2
, j+ 1

2

}

+
∑

1≤i≤N−1
1≤ j≤N

h

{

(

εi, j −εi+1, j

)

Rei j,i+1 j

i, j
+

(

εi+ 1
2 , j−

1
2
−εi+ 1

2 , j+
1
2

)

Re
i+ 1

2
j− 1

2
,i+ 1

2
j+ 1

2

i+ 1
2
, j− 1

2

}

+

N
∑

i=1

h

{

(

εi− 1
2 ,

1
2
−εi+ 1

2 ,
1
2

)

Re
i− 1

2
1
2
,i+ 1

2
1
2

i− 1
2
, 1
2

+

(

εi− 1
2 ,N+

1
2
−εi+ 1

2 ,N+
1
2

)

Re
i− 1

2
N+ 1

2
,i+ 1

2
N+ 1

2

i− 1
2
,N+ 1

2

}

+

N
∑

j=1

h

{(

ε 1
2
, j− 1

2
−ε 1

2
, j+ 1

2

)

Re
1
2

j− 1
2
, 1
2

j+ 1
2

1
2
, j− 1

2

+

(

εN+ 1
2
, j− 1

2
−εN+ 1

2
, j+ 1

2

)

Re
N+ 1

2
j− 1

2
,N+ 1

2
j+ 1

2

i+ 1
2
,N− 1

2

}

where eK,L
= ΓK ∩ΓL.

Therefore

γ
(

|εh|∗1,h
)2 ≤ h

∑

1≤i≤N, 1≤ j≤N−1

ai j

[∣

∣

∣

∣
εi, j −εi, j+1

∣

∣

∣

∣
+

∣

∣

∣

∣
εi− 1

2 , j+
1
2
−εi+ 1

2 , j+
1
2

∣

∣

∣

∣

]

+h
∑

1≤i≤N−1, 1≤ j≤N

bi j

[
∣

∣

∣

∣

εi, j −εi+1, j

∣

∣

∣

∣

+

∣

∣

∣

∣

εi+ 1
2 , j−

1
2
−εi+ 1

2 , j+
1
2

∣

∣

∣

∣

]

+h
N
∑

i=1

[

Ci, 12

∣

∣

∣

∣

εi− 1
2 ,

1
2
−εi+ 1

2 ,
1
2

∣

∣

∣

∣

+Ci,N+ 1
2

∣

∣

∣

∣

εi− 1
2 ,N+

1
2
−εi+ 1

2 ,N+
1
2

∣

∣

∣

∣

]

+h
N
∑

j=1

[

C 1
2
, j

∣

∣

∣

∣
ε 1

2
, j− 1

2
−ε 1

2
, j+ 1

2

∣

∣

∣

∣
+CN+ 1

2
, j

∣

∣

∣

∣
εN+ 1

2
, j− 1

2
−εN+ 1

2
, j+ 1

2

∣

∣

∣

∣

]

where we have set, for 1 ≤ i ≤ N and 0 ≤ j ≤ N −1 :

ai, j =max

{

Ri, j , Ri− 1
2 , j+

1
2

}

with

Ri, j = max
e

∣

∣

∣

∣

Re
i, j

∣

∣

∣

∣

, R
i− 1

2
, j+ 1

2

=max
e

∣

∣

∣

∣

∣

Re

i− 1
2 , j+

1
2

∣

∣

∣

∣

∣

for 1 ≤ i ≤ N −1 and 1 ≤ j ≤ N :

bi, j =max

{

Ri, j , Ri+ 1
2
, j− 1

2

}

with

Ri, j = max
e

∣

∣

∣

∣
Re

i, j

∣

∣

∣

∣
, Ri+ 1

2
, j− 1

2
=max

e

∣

∣

∣

∣

∣

Re

i+ 1
2 , j−

1
2

∣

∣

∣

∣

∣
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for 1 ≤ i ≤ N and k ∈ {0,N}:

Ci− 1
2 ,k+

1
2
=max

e

∣

∣

∣

∣

∣

Re

i− 1
2 ,k+

1
2

∣

∣

∣

∣

∣

for 1 ≤ j ≤ N and k ∈ {0,N}:

Ck+ 1
2 , j−

1
2
=max

e

∣

∣

∣

∣

∣

Re

k+ 1
2 , j−

1
2

∣

∣

∣

∣

∣

.

By applications of Cauchy-Schwarz inequality we have:

γ
(

|εh|∗1,h
)2 ≤ 2h

[

∑

1≤i≤N, 1≤ j≤N−1
a2

i, j
+

∑

1≤i≤N−1, 1≤ j≤N
b2

i, j

+

N
∑

i=1

(

C2

i, 1
2

+C2

i,N+ 1
2

)

+

N
∑

j=1

(

C2
1
2
, j
+C2

N+ 1
2
, j

)

]
1
2

|εh|∗1,L

(3.26)

Therefore, we deduce thanks to (3.21) that if ϕ ∈C2
(

K
)

for any grid-block K, we have

|εh|∗1,L ≤Ch (3.27)

where C is a positive real number depending exclusively on ϕ, Ω and γ.

Thanks to (3.4), we have

‖εh‖L2(Ω) ≤
√

C h

�

An L2−Error estimate can be derived for the piecewise linear approximate solution to

the model problem (1.1)-(1.2).

Proposition 3.8. (L2−Error estimate for piecewise linear solution uT )

Under the same assumptions as those of Theorem 3.6, the difference between the exact solu-

tion ϕ and the piecewise linear approximate solution uT satisfies to the following estimate:

‖ϕ−uT ‖L2(Ω) ≤ Ch (3.28)

where C represents a positive constant which is mesh independent. ^

4 Test simulation

We deal in what follows with a test case of diffusion problems in anisotropic heterogeneous

media.
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Notations

• nunkw: number of unknowns

• nnmat: number of nonzero terms in the matrix

• sumflux the discrete flux balance, that is: sum f lux = f lux0+ f lux1+ f luy0+ f luy1,

where f lux0, f lux1, f luy0 and f luy1 are respectively the outward numerical fluxes

through the boundaries x = 0, x = 1, y = 0 and y = 1 (for instance f lux0 is an approxi-

mation of
∫

x=0
K∇u ·n ds) and sum f =

∑

K∈T |K| f (xK) where xK denotes some point

of the control volume K. Note that the residual sum f lux is a measure of the global

conservativity of the scheme.

• umin: value of the minimum of the approximate solution.

• umax: value of the maximum of the approximate solution.

• ener1, ener2, where ener1 and ener2 are approximations of the energy following

the two expressions

E1 =

∫

Ω

K∇u ·∇udx, E1 =

∫

Γ

K∇u ·n uds

Let us denote by u the exact solution, by T the mesh and by uT = (uK)K∈T the piecewise

constant approximate solution.

• erl2, relative discrete L2 norm of the error, that is, for instance:

erl2 =























∑

K∈T
|K| (u(xK)−uK)2

∑

K∈T
|K|u(xK)2























1/2

• ergrad relative L2 norm of the error on the gradient, if available

• ratiol2: for i ≥ 2,

ratiol2(i)= −2
ln(erl2(i))− ln(erl2(i−1))

ln(numkw(i))− ln(numkw(i−1))

• ratiograd: for i ≥ 2, same formula as above with ergrad instead of erl2.

• erflx0, erflx1, erfly0, erfly1 relative error between f lux0, f lux1, f luy0, f luy1 and

the corresponding flux of the exact solution:

er f lx0 =

∣

∣

∣

∣

∣

∣

∣

f lux0+
∫

x=0
K∇u ·n ds

∫

x=0
K∇u ·n ds

∣

∣

∣

∣

∣

∣

∣



24 A. Kinfack Jeutsa, A. Njifenjou and J. Nganhou

• ocvl2 order of convergence of the method for the L2 norm of the solution as defined

by errl2 with respect to the mesh size:

ocvl2 =
ln(erl2(imax))− ln(erl2(imax−1))

ln(h(imax))− ln(h(imax−1))

where h is the maximum of the diameter of the control volume.

• ocvenerdisc order of convergence of the method for the norm ‖.‖E(L) defined by (3.1).

• ocvgradl2 order of convergence of the method in the L2 norm of the gradient as

defined by ergradl2 with respect to the mesh size, same formula as above with ergrad

instead of erl2.

Test problem

We consider a diffusion problem formulated as (1.1)-(1.2), where the permeability tensor is

defined as:

D =

(

1 0

0 105

)

.

Consider

f = (2π)2(105−10−5)sin(2πy)exp(−2πx10−5/2)

and

g =































−2π105 cos(2πy)exp(−2πx10−5/2) i f 0 ≤ x ≤ 1 and y = 1

−2π10−5/2 sin(2πy)exp(−2πx10−5/2) i f x = 0 and 0 ≤ y ≤ 1

2π10−5/2 sin(2πy)exp(−2πx10−5/2) i f x = 1 and 0 ≤ y ≤ 1

2π105 cos(2πy)exp(−2πx10−5/2) i f 0 ≤ x ≤ 1 and y = 0

(4.1)

The exact solution

ϕ(x,y) = sin(2πy)e−2πx
√

1/105
on Ω =]0,1[×]0,1[.

of the problem (1.1)-(1.2) satisfies the following null average condition

∫

Ω

ϕ(x)dx = 0

and the following compatibility condition is checked

∫

Ω

f (x)dx−
∫

Γ

g(x)dγ(x) = 0.

Let us consider the following square meshes (see for instance the figure below) The ap-

proximate solution of the problem (1.1)-(1.2) satisfies the following discrete null average

conditions:
∑

P∈P
UP +2

∑

D∈Dext

UD +4
∑

D∈Dint

UD +2

4
∑

i=1

UDi = 0



Convergence analysis on quadrilateral grids of a DDFV method ... 25

Figure 5. A primary mesh (full black lines) and the dual mesh (dotted red lines), including

cell-points and vertices respectively in black and red colors.

and
∑

D∈Dint

UD +
1

2

∑

D∈Dext

UD +
1

3
(UD2 +UD3)+

1

6
(UD1 +UD4) = 0

where Dint is the subset of D made up cells strictly included into Ω and Dext is the subset

ofD made up cells having only an adjacent edge with the boundary of Ω.

Comments about numerical simulations:

Numerical simulations of a diffusion phenomenon governed by full Neumann boundary

conditions together with the permeability tensor defined above have been performed.

For that purpose we have utilized the Discrete Duality Finite Volumes exposed and analyzed

in this work. The different quantities arising from computations confirm our theoretical re-

sults, namely error estimates given in Theorem 3.6 and Proposition3.8 (see Table 1 - (d)

below).

Indeed, according to these results a convergence of order one at least was expected for both

L2-norm and the discrete energy norm ‖.‖E(L) . We have obtained much better in terms of

order of convergence: a quadratic convergence for L2-norm and a quasi-quadratic conver-

gence for the discrete energy norm ‖.‖E(L).

Note that there is no contradictions between the theoretical results and the numerical com-

putations obtained here. In fact the theoretical results are established for a permeability

tensor with piecewise constant coefficients. In this case study the physical medium is taken

to be homogeneous.

Let us emphasize the fact the Discrete Duality Finite Volume method under consideration

here has shown a strong capability for honoring the mass balance law as depicted in Table 1:

(a), (b) and (c) below. Since our Finite Volume Scheme is conservative, the results from

Tables 4.3: (a), (b) and (c) were expected.
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Table 1. Diverse numerical results for the test problem:

(a) is devoted to flux and energy computations combined with error on energy computations;

(b) is dealing with error on flux computations and min-max principle validation;

(c) is concerned with numerical flux balance;

(d) is giving orders of convergence for L2-norm and for the discrete energy norm ‖.‖E(L).
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