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1 Introduction

The indefinite orthogonal group is among the most important groups that are broadly used in
physics. Particular cases of interest are made explicit in a variety of papers and their importance,
especially in quantum field theory [16], higher energy physics [8] and cosmology [6], make them re-
markable. Just to mention a few, we point out the conformal group S O(4,2) of the Minkowski space
[5] also known as the dynamical group of the 3-dimensional non-relativistic quantum mechanic Ke-
pler problem, the deSitter group S O(4,1) and the anti-deSitter group S O(3,2), the Lorentz group
S O(3,1) [18], the split orthogonal group S O(n,n) which is shown to be a Chevalley group [17], and
the quasi-split orthogonal group S O(n,n+1) which is shown to be a Steinberg group [3]. Also, the
representation theory [18, 14, 1, 15] of these groups has been seriously investigated. Recall that the
indefinite orthogonal group [4] O(p,q), p,q ∈Nwith p+q= n, consists of the matrices M ∈GL(n,R)
satisfying MT Ip,qM = Ip,q where

Ip,q =

[
Ip 0
0 −Iq

]
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with Ik denoting the k×k identity matrix. Note that O(p,q)�O(q, p) via the isomorphisms φ;O(p,q)→
O(q, p) with φ(M) = σMσ where σ is the skew diagonal matrix

σ =


0 · · · 1
...
. . .

...

1 · · · 0

 .
Starting with the Poincare group R3,1 o S O(3,1), we focus for n = p+ q, p,q ≥ 1 integers, on the
affine indefinite group Rp,q oS O(p,q) where Rp,q � Rp⊕Rq is the real vector space equipped with
the quadratic form

(u,v) =
p∑

i=1

xiyi−

p+q∑
i=p+1

xiyi

with u = (x1, . . . , xp+q) and v = (y1, . . . ,yp+q). Note that S O(p,q) acts on Rp,q via left multiplication
or standard representation.

Denote by hn, the Lie algebra of the affine indefinite orthogonal group. We calculate in this paper
several indefinite orthogonal invariants, and hn-invariants which are detected by Leibniz homology
via Lodder’s structure theorem [12]. The tools used to compute these invariants are inspired by the
author’s previous work for the definite case. The main result of the paper is the isomorphism of
graded vector spaces

HL∗(hn) � (R⊕
〈
α̃p,q
〉
)⊗T ∗(γ̃p,q),

where
〈
α̃p,q
〉

denotes a 1-dimensional vector space in degree n on

α̃n =
∑
σ∈S n

sgn(σ)
∂

∂xσ(1) ⊗
∂

∂xσ(2) ⊗
∂

∂xσ(3) ⊗ . . .⊗
∂

∂xσ(n)

and T ∗(γ̃p,q) denotes the tensor algebra on the (n−1)-degree generator γ̃p,q = γ̄p,q− γ̄
′
p,q with

γ̄p,q =
1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)Xi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)Xi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)Yi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

)

and

γ̄′p,q =
1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Xi j

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Xi j

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Yi j
)
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where
Xi j := −xi

∂

∂x j + x j
∂

∂xi , 1 ≤ i < j ≤ p, p+1 ≤ i < j ≤ n

and
Yi j := xi

∂

∂x j + x j
∂

∂xi , 1 ≤ i ≤ p, p+1 ≤ j ≤ n.

This result generalizes Lodder’s result obtained on the Poincaré group. We show in Section 4 that
α̃p,q and γ̃p,q are hn-invariant. Dually for cohomology, there is an isomorphism of Zinbiel algebras

HL∗(hn) � (R⊕
〈
α̃d

p,q

〉
)⊗T ∗(γ̃d

p,q),

where α̃d
p,q and γ̃d

p,q are respectively dual to α̃p,q and γ̃p,q with respect to the basis of hn.

2 The Affine Indefinite Orthogonal Lie Algebra

In the section we decompose the affine indefinite orthogonal Lie algebra hn. Let g be the Lie algebra
of the maximal compact subgroup O(p)×O(q) of O(p,q). Then g � so(p)⊕ so(q) as Lie algebras.
So there is a vector space isomorphism

hn � In⊕ g⊕ ł

where In denotes the abelian Lie algebra of Rp,q and ł is the orthogonal complement of g with
respect to the killing form of so(p,q). Roughly speaking, hn may be described as the Lie algebra of
a special relativity consisting of translations on space time, two non-abelian Lie algebras of p and
q-dimensional rotations, and boosts.

Assume that Rn is given the coordinates (x1, x2, ..., xn), and let ∂
∂xi,

be the unit vector field parallel
to the xi- axis. It is easy to show that the Lie algebra so(p,q) endowed with the bracket of vector
fields is generated by the vector fields :

Xi j := −xi
∂

∂x j + x j
∂

∂xi , 1 ≤ i < j ≤ p, p+1 ≤ i < j ≤ n

and
Yi j := xi

∂

∂x j + x j
∂

∂xi , 1 ≤ i ≤ p, p+1 ≤ j ≤ n

where the Xi j constitute a basis of g and the Yi j constitute a basis of ł. Also, the Lie algebra In has
vector space basis:

∂

∂xi , 1 ≤ i ≤ n.

There is a short exact sequence of Lie algebras [7, p.203]

0 −→ In
i
−→ hn

π
−→ so(p,q) −→ 0

where i is the inclusion map and π is the projection

hn −→ (hn/In) � so(p,q).

The bracket on hn � In⊕ so(p,q) is the semi-direct product bracket, i.e.

[(m1, x1), (m2, x2)] = ([m1, x2]+ [x1,m2], [x1, x2]) [10].
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Also, the Lie algebra so(p,q) acts on In and on hn via the bracket of vector fields. This action is
extended to I∧k

n by

[α1∧α2∧ . . .∧αk, X] =
k∑

i=1

α1∧α2∧ . . .∧ [αi, X]∧ . . .∧αk

for αi ∈ In, X ∈ so(p,q), and the action of so(p,q) on hn⊗I∧k
n is given by

[h⊗α1∧α2∧ . . .∧αk, X] = [h, X]⊗α1∧ . . .∧αk

+

k∑
i=1

h⊗α1∧α2∧ . . .∧ [αi, X]∧ . . .∧αk

for h ∈ hn.

3 Some Invariants for the Indefinite Orthogonal Lie Algebras.

In this section, we provide several modules of invariants under the action of so(p,q). Recall that for
any so(p,q)-module M, the submodule Mso(p,q) of so(p,q)−invariants is defined by

Mso(p,q) = {m ∈ M | [m, g] = 0 for all g ∈ so(p,q)} .

Lemma 3.1.
[∧∗(In)]so(p,q) = R⊕〈α〉 for n ≥ 4

where
α =

∂

∂x1 ∧
∂

∂x2 ∧ . . .∧
∂

∂xn , the volume element.

Proof. Indeed, that [I∧0
n ]so(p,q) = R is clear. Also it is easy to show that

[I∧n
n ]so(p,q) =

〈
∂

∂x1 ∧
∂

∂x2 ∧ . . .∧
∂

∂xn

〉
.

The proof that [I∧1
n ]so(p,q) = {0} is identical to the definite case [2].

The standard so(p,q)-representation In splits as Ip ⊕ Iq where Ip =
〈
∂
∂x1 , . . .

∂
∂xp

〉
and Iq =〈

∂
∂xp+1 , . . .

∂
∂xn

〉
. Now we have by [2, Lemma 4.1] that [I∧k

p ]so(p,q) ⊆ [I∧k
p ]so(p) = 0 for k , 0,1, p and

[I∧k
q ]so(p,q) ⊆ [I∧k

q ]so(q) = 0 for k , 0,1,q. It follows that [I∧k
n ]so(p,q) = 0 for all k , 0,1, p,q. Now

since
[
∂

∂x1 ∧
∂

∂x2 ∧ . . .∧
∂

∂xp , Y1n] =
∂

∂xn ∧
∂

∂x2 ∧ . . .∧
∂

∂xp , 0

and
[
∂

∂xp+1 ∧
∂

∂xp+2 ∧ . . .∧
∂

∂xn , Y1n] =
∂

∂xp+1 ∧
∂

∂xp+2 ∧ . . .∧
∂

∂x1 , 0,

it follows that [I∧p
n ]so(p,q) = 0 and [I∧q

n ]so(p,q) = 0.
�

Lemma 3.2.

dim[In⊗I
∧k
n ]so(p,q) =

1, if k = 1, n−1
0, else
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Proof. Since [In⊗I
∧k
n ]so(p,q) and [In⊗I

∧k
n ]so(n) have the same complexification, it follows that they

have the same dimension. We conclude by [2, Lemma 4.2]. �

Lemma 3.3.
[In⊗In]so(p,q) =

〈
δp,q
〉

for n ≥ 4

where

δp,q =

p∑
i=1

∂

∂xi ⊗
∂

∂xi −

n∑
i=p+1

∂

∂xi ⊗
∂

∂xi .

Proof. By Lemma 3.2, there is only one generator. Now set δp =
∑p

i=1
∂
∂xi ⊗

∂
∂xi and δq =

∑n
i=p+1

∂
∂xi ⊗

∂
∂xi . Then by [2, Lemma 4.4],

[δp,q, Xi j] = [δp, Xi j]− [δq, Xi j] = 0 for all 1 ≤ i < j ≤ p, p+1 ≤ i < j ≤ n.

Also it is not hard to check that for 1 ≤ i ≤ p and p+1 ≤ j ≤ n,

[δp,q, Yi j] = [δp, Yi j]− [δq, Yi j] = (
∂

∂x j ⊗
∂

∂xi +
∂

∂xi ⊗
∂

∂x j )− (
∂

∂xi ⊗
∂

∂x j +
∂

∂x j ⊗
∂

∂xi ) = 0.

Hence [δp,q]so(p,q) = 0. �

Lemma 3.4.
[In⊗∧

n−1(In)]so(p,q) =
〈
βp,q
〉

for n ≥ 4

where

βp,q =

p∑
m=1

(−1)m−1 ∂

∂xm ⊗
∂

∂x1 ∧
∂

∂x2 ∧ . . .
∂̂

∂xm . . .∧
∂

∂xp ∧ . . .∧
∂

∂xn

−

n∑
m=p+1

(−1)m−1 ∂

∂xm ⊗
∂

∂x1 ∧
∂

∂x2 ∧ . . .∧
∂

∂xp ∧ . . .
∂̂

∂xm . . .∧
∂

∂xn

Proof. By Lemma 3.2, there is only one generator. Set

βp =

p∑
m=1

(−1)m−1 ∂

∂xm ⊗
∂

∂x1 ∧
∂

∂x2 ∧ . . .
∂̂

∂xm . . .∧
∂

∂xp ∧ . . .∧
∂

∂xn

and

βq =

n∑
m=p+1

(−1)m−1 ∂

∂xm ⊗
∂

∂x1 ∧
∂

∂x2 ∧ . . .∧
∂

∂xp ∧ . . .
∂̂

∂xm . . .∧
∂

∂xn .

Then by [2, Lemma 4.5],

[βp,q, Xi j] = [βp, Xi j]− [βq, Xi j] = 0 for all 1 ≤ i < j ≤ p, p+1 ≤ i < j ≤ n.

Also it is not hard to check that for 1 ≤ i ≤ p and p+1 ≤ j ≤ n,

[βp,q, Yi j] = [βp, Yi j]− [βq, Yi j]

= [(−1)i−1 ∂

∂xi ⊗
∂

∂x1 ∧ . . .
∂̂

∂xi . . .∧
∂

∂xp ∧ . . .∧
∂

∂xn , Yi j]

− [(−1) j−1 ∂

∂x j ⊗
∂

∂x1 ∧ . . .∧
∂

∂xp ∧ . . .
∂̂

∂x j . . .∧
∂

∂xn , Yi j]

= 0

by skew symmetry of the wedge product. Hence [βp,q]so(p,q) = 0. �
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Lemma 3.5.

dim[so(p,q)⊗I∧k
n ]so(p,q) =

1, if k = 2, n−2
0, else

Proof. [so(p,q)⊗I∧k
n ]so(p,q) and [so(n)⊗I∧k

n ]so(n) have the same complexification, and thus the same
dimension. The result follows by [2, Lemma 4.2].

�

Lemma 3.6. There is a vector space isomorphism

[so(p,q)⊗I∧2
n ]so(p,q) =

〈
ρp,q
〉

for n ≥ 4

where

ρp,q =
∑

1≤i< j≤p

Xi j⊗
∂

∂xi ∧
∂

∂x j −
∑

p+1≤i< j≤n

Xi j⊗
∂

∂xi ∧
∂

∂x j +
∑

1≤i≤p
p+1≤ j≤n

Yi j⊗
∂

∂xi ∧
∂

∂x j .

Proof. By Lemma 3.5, there is only one generator. It is easy to check the result for n = 4 by direct
calculation on so(3,1) and so(2,2). Suppose the result true for so(p,q−1).Note that [so(p,q)]so(p,q) =

{0}. Now let Bp,q−1 be the vector space basis of so(p,q−1) given by Xi j with 1 ≤ i < j ≤ p, p+1 ≤
i < j ≤ n−1, and Yi j with 1 ≤ i ≤ p, p+1 ≤ j ≤ n−1. It is clear that the vector space basis of so(p,q)
is

Bp,q = Bp,q−1

⋃
{Xin, i = p+1, . . . ,n−1}

⋃
{Yin, i = 1, . . . , p}.

Set S = {x1, x2, . . . , xn} and S ′ = {x1, x2, . . . , xn−1}. A vector space basis of

(so(p,q)⊗I∧2
n )/(so(p,q−1)⊗I∧2

n−1)

is given by the families of elements:
1) e⊗ ∂

∂xn ∧
∂
∂z , e ∈ Bp,q−1, z ∈ S ′

2) Xin⊗
∂
∂z1 ∧

∂
∂z2 , z j ∈ S , p+1 ≤ i ≤ n−1

3) Yin⊗
∂
∂z1 ∧

∂
∂z2 , z j ∈ S , 1 ≤ i ≤ p.

Now let ω ∈ [so(p,q)⊗I∧2
n ]so(p,q) with ω = u+ v where

u ∈ (so(p,q−1)⊗I∧2
n−1), v ∈ (so(p,q)⊗I∧2

n )/(so(p,q−1)⊗I∧2
n−1).

Write v = S 1+S 2+S 3 with

S 1 =
∑
z∈S ′

c1,∗ e⊗
∂

∂xn ∧
∂

∂z
,

S 2 =
∑

z1,z2∈S ′
p+1≤i≤n−1

c2,∗ (Xin)⊗
∂

∂z1 ∧
∂

∂z2 +
∑
z∈S ′

p+1≤i≤n−1

ci
4,∗ (Xin)⊗

∂

∂z
∧
∂

∂xn

and
S 3 =

∑
z1,z2∈S ′
1≤i≤p

c3,∗ (Yin)⊗
∂

∂z1 ∧
∂

∂z2 +
∑
z∈S ′

1≤i≤p

ci
5,∗ (Yin)⊗

∂

∂z
∧
∂

∂xn .

For all X ∈ so(p,q− 1) ⊆ so(p,q), as a Lie subalgebra, we have 0 = [X, ω] = [X, u]+ [X, v]. This
implies that [X, u] and [X, v] are zero; otherwise both are non-zero and thus not linearly inde-
pendent; a contradiction since [X, v] contains at least one term involving the vector field ∂

∂xn in its
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expression whereas [X, u] does not. So u ∈ [so(p,q− 1)⊗I∧2
n−1]so(p,q−1), i.e. u = cρp,q−1 for some

constant c ∈ R. Since 0 = [X, v] = [X, S 1+ S 2+ S 3] = [X, S 1]+ [X, S 2]+ [X, S 3], we must have
[X, S 1] = [X, S 2] = [X, S 3] = 0 by linear independence. So

0 = [X, S 1] = −
∑
z∈S ′

c1,∗ [X,e⊗
∂

∂z
]∧
∂

∂xn ,

thus ∑
z∈S ′

c1,∗ [X,e⊗
∂

∂z
] = 0

and thus
∑

z∈S ′ c1,∗ e⊗ ∂∂z ∈ [so(p,q−1)⊗In−1]so(p,q−1) = {0}. It follows that S 1 = 0.
In particular for X = Xp+1n := −xp+1

∂
∂xn + xn

∂
∂xp+1 ∈ so(p,q), we have

0 = [X, ω] =[X, u]+ [X, S 2]+ [X, S 3] =∑
p+2≤ j≤n−1

c Xp+1 j⊗
∂

∂x j ∧
∂

∂xn −
∑

p+2≤ j≤n−1

c Xn j⊗
∂

∂xp+1 ∧
∂

∂x j

+
∑

1≤i≤p

c Yin⊗
∂

∂xi ∧
∂

∂xp+1 +
∑

1≤i≤p

c Yip+1⊗
∂

∂xi ∧
∂

∂xn

+
∑

z1,z2∈S
p+2≤i≤n−1

c2,∗ Xp+1i⊗
∂

∂z1 ∧
∂

∂z2 +
∑

z1,z2∈S
p+1≤i≤n−1

c2,∗ Xin⊗ [Xp+1n,
∂

∂z1 ∧
∂

∂z2 ]

−
∑

z1,z2∈S
1≤i≤p

c3,∗ Yp+1i⊗
∂

∂z1 ∧
∂

∂z2 +
∑

z1,z2∈S
1≤i≤p

c3,∗ Yin⊗ [Xp+1n,
∂

∂z1 ∧
∂

∂z2 ]

+
∑
z∈S ′

p+2≤i≤n−1

ci
4,∗ Xp+1i⊗

∂

∂z
∧
∂

∂xn +
∑
z∈S ′

p+1≤i≤n−1

ci
4,∗ Xin⊗ [Xp+1n,

∂

∂z
∧
∂

∂xn ]

−
∑
z∈S ′

1≤i≤p

ci
5,∗ Yip+1⊗

∂

∂z
∧
∂

∂xn +
∑
z∈S ′

1≤i≤p

ci
5,∗ Yin⊗ [Xp+1n,

∂

∂z
∧
∂

∂xn ].

Clearly, all the basis vectors except Xp+1 j⊗
∂
∂x j ∧

∂
∂xn , Xn j⊗

∂
∂xp+1 ∧

∂
∂x j , Yin⊗

∂
∂xi ∧

∂
∂xp+1 , and Yip+1⊗

∂
∂xi ∧

∂
∂xn with p+ 2 ≤ j ≤ n− 1, 1 ≤ i ≤ p appear only once in the summation above. So all the

coefficients c2,∗, c3,∗, ci
4,∗, ci

5,∗ are zero except ci
4,i and c j

5, jwith i , p+ 1 which satisfy ci
4,i + c = 0

and c j
5, j− c = 0. So

ω = cρp,q−1− c
∑

p+1≤i≤n−1

Xin⊗
∂

∂xi ∧
∂

∂xn + c
∑

1≤i≤p

Xin⊗
∂

∂xi ∧
∂

∂xn + cp+1
4,p+1Xp+1n⊗

∂

∂xp+1 ∧
∂

∂xn .

To finish, we apply X = Xp+2n := −xp+2
∂
∂xn + xn

∂
∂xp+2 to the condition [X,ω] = 0 to have cp+1

4,p+1 = −c.
Hence ω = cρp,q.

�

Lemma 3.7.
[so(p,q)⊗I∧n−2

n ]so(p,q) =
〈
γp,q
〉

for n ≥ 4
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where

γp,q =
∑

1≤i< j≤p

(−1)i+ j+1Xi j⊗
∂

∂x1 ∧ . . .
∂̂

∂xi . . .
∂̂

∂x j . . .∧
∂

∂xn

−
∑

p+1≤i< j≤n

(−1)i+ j+p+1Xi j⊗
∂

∂x1 ∧ . . .
∂̂

∂xi . . .
∂̂

∂x j . . .∧
∂

∂xn

+
∑

1≤i≤p
p+1≤ j≤n

(−1)i+ jYi j⊗
∂

∂x1 ∧ . . .
∂̂

∂xi . . .
∂̂

∂x j . . .∧
∂

∂xn .

Proof. By Lemma 3.5, there is only one generator and the rest of the proof is similar to the case
k = n−2 in the proof of [2, Lemma 4.2] and follows the path of the proof of the previous lemma. �

4 The Leibniz Homology of hn

Recall that for the Leibniz algebra h, the Leibniz homology of h with coefficients in R denoted
HL∗(h,R), is the homology of the Loday complex T ∗(h), namely

k
0
←− h

[ , ]
←− h⊗

2 d
←− . . .

d
←− h⊗

n−1 d
←− h⊗

n
← . . .

where h⊗
n

is the nth tensor power of h over R, and where

d(h1⊗h2⊗ . . .⊗hn) = ∑
1≤i< j≤n

(−1) jh1⊗h2⊗ . . .⊗hi−1⊗ [hi,h j]⊗hi+1⊗ . . . ĥ j . . .⊗hn [9].

Remark 4.1. The antisymmetrization of the invariants δ and β determined in Lemma 3.3 and Lemma
3.4 are cancelled in the Pirashvili spectral sequence and ρ is not a cycle in the Leibniz complex (see
the proof of [2, theorem 5.2]).

Lemma 4.2. Let γ̃p,q = γ̄p,q+ γ̄
′
p,q with

γ̄p,q =
1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)Xi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)Xi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)Yi j⊗
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n)

)

and
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γ̄′p,q =
1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Xi j

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Xi j

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)
∂

∂xσ(1) ⊗ . . .
∂̂

∂xσ(i) . . .
∂̂

∂xσ( j) . . .⊗
∂

∂xσ(n) ⊗Yi j
)
.

Then

• γ̃p,q is an hn- invariant

• π∗3([γ̃p,q]) = π∗3([γ̄p,q]) = [γp,q] in HLie
n−2(hn; hn) where π3 : h⊗n

n−1 −→ hn⊗ h
∧n−2 is the projection

and h∧n−2 is the (n− 2)th wedge product over R. More precisely, γ̄p,q is a cycle in h⊗(n−1)
n

homologous to the hn-invariant γ̃p,q. Thus

Kk := Ker[HLie
k (In; hn)so(p,q)→ HLie

k+1(hn)] =


〈
γ̃p,q
〉
, if k = n−2,

0, else.

Proof. Clearly, γ̄p,q and γ̄′p,q are so(p,q)-invariant, so is γ̃p,q. That γ̃p,q is an In-invariant follows
from the fact that [ ∂

∂xi , γ̄p,q] = [ ∂
∂xi , γ̄

′
p,q] for all i = 1 . . .n. The second assertion follows by definition

of π3. �

The following is the main result of the paper. It generalizes the Leibniz homology of the
Poincaré Lie algebra [12, Corollary 4.5].

Theorem 4.3. There is an isomorphism of vector spaces

HL∗(hn) � (R⊕
〈
α̃p,q
〉
)⊗T ∗(γ̃p,q),

and an algebra isomorphism

HL∗(hn) � (R⊕
〈
α̃d

p,q

〉
)⊗T ∗(γ̃d

p,q),

where

α̃p,q =
∑
σ∈S n

sgn(σ)
∂

∂xσ(1) ⊗
∂

∂xσ(2) ⊗
∂

∂xσ(3) ⊗ . . .⊗
∂

∂xσ(n) ,

α̃d
p,q =

∑
σ∈S n

sgn(σ)dxσ(1)⊗dxσ(2)⊗ . . .⊗dxσ(n),
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and γ̃d
p,q = γ̄

d
p,q− γ̄

′d
p,q with

γ̄d
p,q =

1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)Xi j⊗dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n)

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)Xi j⊗dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n)

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)Yi j⊗dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n) )

and
γ̄′dp,q =

1
n!
( ∑

1≤i< j≤p,
σ∈S n

(−1)i+ j+1sgn(σ)dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n)⊗Xi j

−
∑

p+1≤i< j≤n
σ∈S n

(−1)i+ j+p+1sgn(σ)dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n)⊗Xi j

+
∑

1≤i≤p
p+1≤ j≤n
σ∈S n

(−1)i+ jsgn(σ)dxσ(1)⊗ . . . d̂xσ(i) . . . d̂xσ( j) . . .⊗dxσ(n)⊗Yi j
)

and HL∗ is afforded the Zinbiel algebra [11].

Proof. We have by Lodder’s structure theorem [12, Lemma 3.6] that

HL∗(hn) � [∧∗(I)]so(p,q)⊗T (K∗) where T (K∗) =
∑
n≥0

K⊗n
∗

denotes the tensor algebra. This combined with Lemma 3.1 and Lemma 4.2 yield the graded vector
space isomorphism

HL∗(hn) � (R⊕
〈
α̃p,q
〉
)⊗T ∗(γ̃p,q).

For the cohomology, we use the vector space isomorphism

HL∗(hn; R) � Hom(HL∗(hn; R), R),

to conclude that
HL∗(hn) � (R⊕

〈
α̃d

p,q

〉
)⊗T ∗(γ̃d

p,q),

where α̃d
p,q and γ̃d

p,q are respectively dual to α̃p,q and γ̃p,q with respect to the basis of hn. �

Concluding Remark

We have determined the Leibniz homology of a semi-direct product hn � In ⊕ so(p,q) of the Lie
algebra so(p,q) and the real vector space In so that In is the standard representation Rn, (n = p+q).
A similar, but more interesting result may be obtained if one considers a more general approach.
More precisely, let M be a so(p,q)-module. Then the vector space h of all linear combinations of
elements in so(p,q) with coefficients in M is a semi-direct product of so(p,q) and M, and h is a Lie
algebra via the bracket

[g1+m1,g2+m2] = [g1,g2]+ [g1,m2]− [g2,m1]
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where g1,g2 ∈ so(p,q), m1,m2 ∈ M, and [g,m] is the action of so(p,q) on M. This fits into the
Lodder’s structure theorem for Leibniz homology and the action map so(p,q)×M → M of Lie-
modules may be captured as a Leibniz homology class. This was suggested by Jerry Lodder and is
part of a future work.
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