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Abstract. In this article, we establish some existence results for solutions of a initial value problem
of a nonlinear fractional differential system on half line involving the sequential Riemann-Liouville
fractional derivatives. Our analysis relies on the Schauder fixed point theorem. An efficiency ex-
ample is presented to illustrate the main theorem. As far as the author knows, the present work is
perhaps the first one that deals with such kind of initial value problems for fractional differential
systems on half line.
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1 Introduction

Fractional differential equations have excited in recent years a considerable interest both in mathe-
matics and in applications. They were used in modelling of many physical and chemical processes
and in engineering, see the text books [21, 28, 19] and the references therein. For more details on
the geometric and physical interpretation for derivatives see [22, 14, 30].

Furati and Tatar in [11], Zhang in [33], Agarwal, Benchohra and Hamani [2] established suf-
ficient conditions for the existence of solutions for some boundary value problems of fractional
differential equations with Caputo fractional derivative on the finite intervals.
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Arara, Benchohra, Hamidi and Nieto [3], Zhao and Ge [34], Liu and Jia [18], Su and Zhang
[27] and Agarwal, Benchohra, Hamidi and Pinelas [1] studied the existence of solutions for some
boundary value problems for fractional order differential equations on half line.

Applications of fractional order differential systems are in many fields, as for example, rheology,
mechanics, chemistry, physics, bioengineering, robotics and many others, see [7]. Diethehm [8]
proposed the model of the type (which is called a multi-order fractional differential system):

cDni
0+yi(t) = fi(t,y1(t), · · · ,yn(t)), i = 1,2, · · · ,n

subjected to the initial conditions

y j(0) = y j,0( j = 1,2, · · · ,n).

This system contains many models as special cases, see Chen’s fractional order system [29] with a
double scroll attractor, Genesio-Tesi fractional-order system [13], Lu’s fractional order system [10],
Volta’s fractional-order system [23, 20], Rossler’s fractional-order system [17] and so on.

Boundary value problems of fractional order differential systems on finite intervals are a fasci-
nating subject. See papers [26, 31, 32, 12, 24, 4, 9, 25]. One knows that

Dp
0+Dq

0+ f (t) = Dq
0+Dp

0+ f (t) = Dp+q
0+ f (t)

does not hold for p > 0 or q > 0, where D0+ is Riemann-Liouville fractional derivative. Dp
0+Dq

0+ is
called a sequential fractional derivative operator.

Sequential fractional derivative operators can appear in the formulation of various applied prob-
lems in physics and applied science. Indeed, differential equations modelling processes or objects
arise usually as a result of a substitution of one relationship involving derivatives into another one.
If the derivatives in both relationships are fractional derivatives, then the resulting expression (equa-
tion) will contain, in general case, sequential fractional derivative operators ([21], P.88). Therefore
the consideration of sequential fractional derivative operators is of interest [21].

In [3, 34, 15, 29], the authors investigated the global existence of solutions of initial value
problems of nonlinear fractional differential equations on a semi-axis. More precisely, they studied
the folllowing initial value problem

Dα
0+ x(t) = f (t, x(t)) = 0, t ∈ (0,+∞),

lim
t→0

t1−αx(t) = x0,

where 0<α< 1, Dα
0+ is the standard Riemann-Liouville fractional derivative of order α, f : (0,+∞)×

R→ R is continuous.
There has been no paper concerned with the existence of solutions of initial value problems on

half lines for fractional differential systems with sequential fractional derivative operators and the
nonlinearities depending on the lower order derivatives [21].

In this paper, we fill this gap. We discuss the global existence of solutions of the following
initial value problem of nonlinear fractional differential system on half line with sequential fractional
derivative operators 

Dσn x(t)+φ(t) f (t,y(t),Dp
0+y(t)) = 0, t ∈ (0,+∞),

Dτmy(t)+ψ(t)g(t, x(t),Dq
0+ x(t)) = 0, t ∈ (0,+∞),

lim
t→0

t1−αi Dσi−1 x(t) = xi−1, i ∈ N1,n,

lim
t→0

t1−βi Dτi−1y(t) = yi−1, i ∈ N1,n,

(1.1)
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where
• D∗0+ is the standard Riemann-Liouville fractional derivative of order ∗ > 0,
• N0 is the set of all nonnegative integers, Na,b = {a,a+1,a+2, · · · ,b} for a,b ∈ N0 with a ≤ b,
• αi ∈ (0,1)(i ∈N1,n), σ j =α1+ · · ·+α j( j ∈N1,n), q ∈ (0,1) with q<σn, Dσ j x=Dα j

0+ · · ·D
α2
0+Dα1

0+ x( j ∈
N1,n) is a sequential fractional derivative operator, Dσ0 x = x,
• βi ∈ (0,1)(i ∈N1,m), τ j = β1+ · · ·+β j( j ∈N1,m), p ∈ (0,1) with p< τm, Dτ jy=Dβ j

0+ · · ·D
β2
0+Dβ1

0+y( j ∈
N1,m) is a sequential fractional derivative operator, Dβ0y = y,
• xi ∈ R(i ∈ N0,n−1), yi ∈ R(i ∈ N0,m−1) are initial data,
• φ,ψ : (0,+∞)→ R satisfy that there exist constants ki > −1(i = 1,2) such that

|φ(t)| ≤ tk1 , |ψ(t)| ≤ tk2 , t ∈ (0,∞),

• f ,g : (0,+∞)×R2→ R and f is a τ−Caratheodory function and g a σ−Caratheodory function
(see Definitions 2.3 and 2.4).

We establish sufficient conditions for the global existence of solutions of IVP(1.1). The methods
used in this paper are based upon the Schauder fixed point theorem. The novelty of this paper is
that IVP(1.1) is defined on a half line, and f ,g involved with lower order fractional derivatives
are allowed to be linear or supper linear functions. An example is presented to illustrate the main
theorem.

The remainder of this paper is organized as follows: some preliminary results are given in
Section 2. The main result and its proof are presented in Section 3. In Section 4, an example is
given to show the efficiency of the main theorem.

2 Preliminary results

For the convenience of the reader, we present here the necessary definitions from fixed point theory
and fractional calculus theory. These definitions and properties can be found in the literatures [21,
28, 19]. Denote the Gamma function and Beta function by

Γ(α) =
∫ +∞

0 sα−1e−sds, B(α,β) =
∫ 1

0 (1− x)α−1xβ−1dx.

Definition 2.1. . Let c ∈ R. The Riemann-Liouville fractional integral of order α > 0 of a function
f : (c,+∞)→ R is given by

Iαc+ f (t) = 1
Γ(α)

∫ t
c (t− s)α−1 f (s)ds,

provided that the right-hand side exists.

Definition 2.2. Let c ∈ R. The Riemann-Liouville fractional derivative of order α > 0 of a function
f : (c,+∞)→ R is given by

Dα
c+ f (t) = 1

Γ(n−α)
dn

dtn
∫ t

c
f (s)

(t−s)α−n+1 ds,

where n−1 ≤ α < n, provided that the right-hand side exists.

Suppose that τ > τm+ k2+1 and σ > σn+ k1+1. Denote ρ(t) = t1−α1

1+tσ and %(t) = t1−β1

1+tτ .

Definition 2.3. f : (0,+∞)×R2→ R is called a τ−Caratheodory function if it satisfies the following
assumptions:

(i) t→ f
(
t, x

%(t) ,
y

tp%(t)

)
is measurable on (0,+∞) for each (x,y) ∈ R2;
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(ii) (x,y)→ f
(
t, x

%(t) ,
y

tp%(t)

)
is continuous on R2 for each t ∈ (0,+∞);

(iii) for each r > 0 there exists a constant Mr ≥ 0 such that |x|, |y| ≤ r imply∣∣∣∣ f (t, x
%(t) ,

y
tp%(t)

)∣∣∣∣ ≤ Mr, t ∈ (0,+∞).

Definition 2.4. g : (0,+∞)×R2→ R is called a σ−Caratheodory function if it satisfies the following
assumptions:

(i) t→ g
(
t, x

ρ(t) ,
y

tqρ(t)

)
is measurable on (0,+∞) for each (x,y) ∈ R2;

(ii) (x,y)→ g
(
t, x

ρ(t) ,
y

tqρ(t)

)
is continuous on R2 for each t ∈ (0,+∞);

(iii) for each r > 0 there exists a constant Mr > 0 such that |x|, |y| ≤ r imply∣∣∣∣g (
t, x

ρ(t) ,
y

tqρ(t)

)∣∣∣∣ ≤ Mr, t ∈ (0,+∞).

Definition 2.5. Let Z1 and Z2 be Banach spaces and T : Z1→ Z2. T is called completely continuous
if T is continuous and maps bounded sets into relatively compact sets.

For α > 0 and µ > −1, it holds that

Iα0+ t
µ =

Γ(µ+1)
Γ(µ+α+1) t

µ+α, Dα
0+ t

µ =
Γ(µ+1)
Γ(µ−α+1) t

µ−α.

Let A > B > 0. It is easy to show that

sup
t∈(0,+∞)

tB

1+tA =
A−B

A

(
B

A−B

) B
A =: MA,B.

Let σ > σn+ k1+1 and τ > τm+ k2+1. C(0,+∞) denotes the set of all continuous functions on
(0,+∞). Choose

X =

x :

x,Dq
0+ x ∈C(0,+∞) and the following limits exist

lim
t→0

ρ(t)x(t), lim
t→0

tqρ(t)Dq
0+ x(t),

lim
t→+∞

ρ(t)x(t), lim
t→+∞

tqρ(t)Dq
0+ x(t)


and

Y =

y :

y,Dp
0+y ∈C(0,+∞) and the following limits exist

lim
t→0

%(t)y(t), lim
t→0

tp%(t)Dp
0+y(t),

lim
t→+∞

%(t)y(t), lim
t→+∞

tp%(t)Dp
0+y(t)

 .
For x ∈ X, define

||x||X =max
 sup

t∈(0,+∞)
ρ(t)|x(t)|, sup

t∈(0,+∞)
tqρ(t)|Dq

0+ x(t)|
 .

For y ∈ Y , define

||y||Y =max
 sup

t∈(0,+∞)
%(t)|y(t)|, sup

t∈(0,+∞)
tp%(t)Dp

0+y(t)|
 .

Lemma 2.6. X is a Banach space with the norm || · ||X and Y a Banach space with the norm || · ||Y .
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Proof. We prove that X is a Banach space. Similarly we can prove that Y is a Banach space.
It is easy to see that X is a normed linear space. Let {xu} be a Cauchy sequence in X. Then

||xu− xv|| → 0, u,v→ +∞. It follows that

lim
t→0

ρ(t)xu(t), lim
t→+∞

ρ(t)xu(t) exist,

lim
t→0

tqρ(t)Dq
0+ xu(t), lim

t→+∞
tqρ(t)Dq

0+ xu(t) exist,

sup
t∈(0,+∞)

ρ(t)|xu(t)− xv(t)| → 0,u,v→ +∞,

sup
t∈(0,+∞)

tqρ(t)|Dq
0+ xu(t)−Dq

0+ xv(t)|,u,v→ +∞.

(2.1)

Thus there exists two functions x0,y0 defined on (0,+∞) such that

lim
u→+∞

ρ(t)xu(t) = x0(t), lim
u→+∞

tqρ(t)Dq
0+ xu(t) = y0(t).

It follows that
sup

t∈(0,+∞)
|ρ(t)xu(t)− x0(t)| → 0,u→ +∞,

sup
t∈(0,+∞)

∣∣∣tqρ(t)Dq
0+ xu(t)− y0(t)

∣∣∣ ,u→ +∞. (2.2)

This means that functions x0,y0 : (0,+∞)→ R are well defined.
Step 1. Prove that x0,y0 ∈C(0,+∞).
We have t0 ∈ (0,+∞) that

|x0(t)− x0(t0)| ≤ |x0(t)−ρ(t)xN(t)|+ |ρ(t)xN(t)−ρ(t)xN(t0)|+ |ρ(t)xN(t0)− x0(t0)|

≤ 2 sup
t∈(0,+∞)

|ρ(t)xN(t)− x0(t)|+ |ρ(t)xN(t)−ρ(t)xN(t0)| .

Since sup
t∈(0,+∞)

|ρ(t)xu(t)− x0(t)|→ 0,u→+∞ and ρ(t)xu(t) is continuous on (0,+∞), then for any ε > 0

we can choose N and δ > 0 such that sup
t∈(0,+∞)

|ρ(t)xN(t)− x0(t)| < ε and |ρ(t)xN(t)−ρ(t)xN(t0)| < ε for

all |t− t0| < δ. Thus |x0(t)− x0(t0)| < 3ε foe all |t− t0| < δ. So x0 ∈C(0,+∞). Similarly we can prove
that y0 ∈C(0,+∞).

Step 2. Prove that the limits lim
t→0

x0(t), lim
t→+∞

x0(t), lim
t→0

y0(t), lim
t→+∞

y0(t) exist.

Suppose that lim
t→0

ρ(t)xu(t) = Au. By sup
t∈(0,+∞)

ρ(t)|xu(t)− xv(t)| → 0,u,v→ +∞, we know that Au is

a Cauchy sequence. Then lim
u→+∞

Au exists. By sup
t∈(0,+∞)

|ρ(t)xu(t)− x0(t)| → 0,u→ +∞, we get that

lim
t→0

x0(t) = lim
t→0

lim
u→+∞

ρ(t)xu(t) = lim
u→+∞

lim
t→0

ρ(t)xu(t) = lim
u→+∞

Au.

Hence lim
t→0

x0(t) exists. Similarly we can prove that lim
t→+∞

x0(t), lim
t→0

y0(t), lim
t→+∞

y0(t) exist.

Step 3. Prove that y0(t)
tqρ(t) = Dq

0+
(

x0(t)
ρ(t)

)
.
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We have for some cu ∈ R that∣∣∣∣xu(t)+ cutq−1− Iq
0+

(
y0(t)
tqρ(t)

)∣∣∣∣
=

∣∣∣∣Iq
0+Dq

0+ xu(t)− Iq
0+

(
y0(t)
tqρ(t)

)∣∣∣∣
=

∣∣∣∣∫ t
0

(t−s)q−1

Γ(q)

(
Dq

0+ xu(s)− y0(s)
tqρ(s)

)
ds

∣∣∣∣
≤

∫ t
0

(t−s)q−1

Γ(q) sqρ(s)ds sup
t∈(0,+∞)

∣∣∣tqρ(t)Dq
0+ xu(t)− y0(t)

∣∣∣
≤

∫ t
0

(t−s)q−1

Γ(q) sqs1−α1ds sup
t∈(0,+∞)

∣∣∣tqρ(t)Dq
0+ xu(t)− y0(t)

∣∣∣
= t1+2q−α1 B(q,2+q−α1)

Γ(q) sup
t∈(0,+∞)

∣∣∣tqρ(t)Dq
0+ xu(t)− y0(t)

∣∣∣
→ 0 as u→ +∞.

So lim
u→+∞

(
xu(t)+ cutq−1

)
= Iq

0+
(

y0(t)
tqρ(t)

)
. Then x0(t)

ρ(t) +c0tq−1 = Iq
0+

(
y0(t)
tqρ(t)

)
. It follows that y0(t)

tqρ(t) =Dq
0+

(
x0(t)
ρ(t)

)
.

So t→ x0(t)
ρ(t) is a element in X with xu →

x0
ρ(t) as u→ +∞. It follows that X is a Banach space.

The proof of Lemma 2.1 is completed.

We define for x ∈ X that ρ(t)x(t)|t=0 = lim
t→0

ρ(t)x(t) and tqρ(t)D0+ x(t)|t=0 = lim
t→0

tqρ(t)D0+ x(t). Then

for x ∈ X, both t→ ρ(t)x(t) and t→ tqρ(t)Dq
0+ x(t) are continuous on [0,+∞).

�

Lemma 2.7. Let M be a subset of X. Then M is relatively compact if and only if the following
conditions are satisfied:

(i) both {t→ ρ(t)x(t) : x ∈ M} and {t→ tqρ(t)Dq
0+ x(t) : x ∈ M} are uniformly bounded,

(ii) both {t→ ρ(t)x(t) : x ∈ M} and {t→ tqρ(t)Dq
0+ x(t) : x ∈ M} are equicontinuous in any subin-

terval [a,b] in [0,+∞),
(iii) both {t→ ρ(t)x(t) : x ∈ M} and {t→ tqρ(t)Dq

0+ x(t) : x ∈ M} are equiconverges as t→ +∞.

Proof. ”⇐ ”. From Lemma 2.1, we know X is a Banach space. In order to prove that the subset M
is relatively compact in X, we only need to show M is totally bounded in X, that is for all ε > 0, M
has a finite ε-net.

For any given ε > 0, by (i) and (iii), there exist constants A,B, T > 0, we have

|ρ(t1)x(t1)−ρ(t2)x(t2)| ≤ ε
3 , t1, t2 ≥ T, x ∈ M,

|tq
1ρ(t1)Dq

0+ x(t1)− tq
2ρ(t2)Dq

0+ x(t2)| < ε
3 , t1, t2 ≥ T, x ∈ M,

ρ(t)|x(t)| ≤ A, tqρ(t)|Dq
0+ x(t)| < A, t ∈ [0,+∞), x ∈ M.

For T > 0, define

X|(0,T ] =

x :
x,Dq

0+ x ∈C(0,T ] and the following limits exist
lim
t→0

ρ(t)x(t), lim
t→0

tqρ(t)Dq
0+ x(t)

 .
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For x ∈ X|(0,T ], define

||x||T =max
 sup

t∈(0,T ]
ρ(t)|x(t)|, sup

t∈(0,T ]
tqρ(t)|Dq

0+ x(t)|
 .

Similarly to Lemma 2.1, we can prove that X(0,T ] is a Banach space. Let M|(0,T ] = {t → x(t), t ∈
(0,T ] : x ∈ M}. Then M|(0,T ] is a subset of X|(0,T ]. By (i) and (ii), and Ascoli-Arzela theorem, we
can know that M|(0,T ] is relatively compact. Thus, there exist x1, x2, · · · , xk ∈ M such that, for any
x ∈ M|(0,T ], we have that there exists some i = 1,2, · · · ,k such that

||x− xi||T =max
 sup

t∈(0,T ]
ρ(t)|x(t)− xi(t)|, sup

t∈(0,T ]
tqρ(t)|Dq

0+ x(t)−Dq
0+ xi(t)|

 ≤ ε
3 .

Therefore,

||x− xi||X =max
 sup

t∈(0,T ]
ρ(t)|x(t)− xi(t)|, sup

t∈(0,T ]
tqρ(t)|Dq

0+ x(t)−Dq
0+ xi(t)|,

sup
t≥T

ρ(t)|x(t)− xi(t)|, sup
t≥T

tqρ(t)|Dq
0+ x(t)−Dq

0+ xi(t)|
}
.

For t, t1 ≥ T , we have

ρ(t)|x(t)− xi(t)| ≤ |ρ(t)x(t)−ρ(t1)x(t1)|+ |ρ(t1)x(t1)−ρ(t1)xi(t1)|+ |ρ(t1)xi(t1)−ρ(t)xi(t)|

< ε
3 +

ε
3 +

ε
3 = ε.

Similarly we have sup
t≥T

tqρ(t)|Dq
0+ x(t)−Dq

0+ xi(t)| < ε. Then ||x− xi||X < ε. So, for any ε > 0, M has a

finite ε-net {Ux1 ,Ux2 , · · · ,Uxk }, that is, M is totally bounded in X. Hence M is relatively compact in
X.
⇒. Assume that M is relatively compact, then for any ε > 0, there exists a finite ε-net of M. Let

the finite ε-net be {Ux1 ,Ux2 , · · · ,Uxk } with Uxi ⊂ M. Then for any x ∈ M, there exists Uxi such that
x ∈ Uxi and

ρ(t)|x(t)| ≤ ρ(t)|x(t)− xi(t)|+ρ(t)|xi(t)| ≤ ε +max
{

sup
t∈R
|xi(t)| : i = 1,2, · · · ,k

}
,

tqρ(t)|D0+qx(t)| ≤ ε +max
{

sup
t∈R

tqρ(t)|Dq
)+ xi(t)| : i = 1,2, · · · ,k

}
.

It follows that both M and {ρ(t)Dq
0+ x : x ∈ M} are uniformly bounded. Then (i) holds.

Furthermore, there exists T > 0 such that |ρ(t1)xi(t1)− ρ(t2)xi(t2)| < ε for all t1, t2 ≥ T and i =
1,2, · · · ,k. Then we have for t1, t2 ≥ T that

|ρ(t1)x(t1)−ρ(t2)x(t2)| ≤ |ρ(t1)x(t1)−ρ(t1)xi(t1)|+ |ρ(t1)xi(t1)−ρ(t2)xi(t2)|

+|ρ(t2)xi(t2)−ρ(t2)x(t2)| < 3ε, x ∈ M.

Similarly we have for t1, t2 ≥ T that

|tq
1ρ(t1)Dq

0+ x(t1)− tq
2ρ(t2)Dq

0+ x(t2)| ≤ 3ε, x ∈ M.

Thus (iii) is valid. Similarly we can prove that (ii) holds. Consequently, the Lemma is proved. �
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Remark 2.8. Let Z = X × Y be normed with ||(x,y)|| = max{||x||X , ||y||Y } for (x,y) ∈ Z. Then Z is a
Banach space too. Let Ω = {(x,y)} ⊂ Z. Then Ω is relatively compact if and only if both Ω|X =
{x : there exists y ∈ Y such that (x,y) ∈ Ω} and Ω|X = {y : there exists x ∈ X such that (x,y) ∈ Ω} are
relatively compact.

Lemma 2.9. Suppose that h : (0,+∞)→ R satisfies that |h(t)| ≤ tk1 for all t ∈ (0,+∞). Then u ∈ X is
a solution of system 

Dσnu(t)+h(t) = 0, t ∈ (0,∞),

lim
t→0

t1−αi Dσi−1u(t) = xi−1, i ∈ N1,n

(2.3)

if and only if u ∈ X satisfies

u(t) = −
∫ t

0
(t−s)σn−1

Γ(σn) h(s)ds+
n−1∑
j=0

Γ(α j+1)
Γ(σ j+1) x jtσ j+1−1. (2.4)

Proof. Suppose that x ∈ X is a solution of (2.3). From (2.3), we have that there exists a constant c1
such that

Dαn−1
0+ · · ·D

α1
0+u(t) = −

∫ t
0

(t−s)αn−1

Γ(αn) h(s)ds+ c1tαn−1. (2.5)

By
lim
t→0

t1−αn Dαn−1
0+ · · ·D

α1
0+u(t) = xn−1,

we get that

Dαn−1
0+ · · ·D

α1
0+u(t) = −

∫ t
0

(t−s)αn−1

Γ(αn) h(s)ds+ xn−1tαn−1.

Similarly we use
lim
t→0

t1−αn−1 Dαn−2
0+ · · ·D

α1
0+u(t) = xn−2

Then
Dαn−2

0+ · · ·D
α1
0+u(t) = −

∫ t
0

(t−s)αn−1+αn−1

Γ(αn−1+αn) h(s)ds

+xn−1
Γ(αn)

Γ(αn−1+αn) t
αn−1+αn−1+ xn−2tαn−1−1.

(2.6)

Using similar methods, by the other boundary conditions, we get

u(t) = −
∫ t

0
(t−s)α1+···+αn−1

Γ(α1+···+αn) h(s)ds+
n−1∑
j=0

x j
Γ(α j+1)

Γ(α1+···+α j+1) t
α1+···+α j+1−1.

It is easy to show that

ρ(t)u(t) = − 1
Γ(σn)

t1−α1

1+tσ
∫ t

0 (t− s)σn−1h(s)ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ .

Since
ρ(t)

∫ t
0 (t− s)σn−1|h(s)|ds ≤ t1−α1

1+tσ
∫ t

0 (t− s)σn−1sk1ds

≤ t1−α1

1+tσ tσn+k
∫ 1

0 (t−w)σn−1wk1dw

= tσn+k1+1−α1

1+tσ B(σn,k1+1),
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then u ∈C(0,∞) and both lim
t→0

ρ(t)u(t) and lim
t→+∞

ρ(t)u(t) exist. One sees that

Dq
0+u(t) = −

∫ t
0

(t−s)σn−q−1

Γ(σn−q) h(s)ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1−q) t

σ j+1−q−1.

So
tqρ(t)

∫ t
0 (t− s)σn−q−1|h(s)|ds ≤ t1+q−α1

1+tσ
∫ t

0 (t− s)σn−q−1sk1ds

≤ tσn+k1+1−α1

1+tσ B(σn−q,k1+1).

Similarly we can show that Dq
0+u ∈C(0,∞) and both lim

t→0
tqρ(t)Dq

0+u(t) and lim
t→+∞

tqρ(t)Dq
0+u(t) exist.

Then u ∈ X satisfies (2.4). On the other hand, if u ∈ X satisfies (2.4), then we can prove that
u ∈ X satisfies (2.3) easily. The proof is completed. �

Lemma 2.10. Suppose that h : (0,+∞)→ R satisfies that |h(t)| ≤ tk2 for all t ∈ (0,+∞). Then v ∈ Y
is a solution of system 

Dτmv(t)+h(t) = 0, t ∈ (0,∞),

lim
t→0

t1−β1v(t) = y0,

lim
t→0

t1−βi Dτi−1v(t) = yi−1, i = 2,3, · · · ,m

(2.7)

if and only if v ∈ Y satisfies

v(t) = −
∫ t

0
(t−s)τm−1

Γ(τm) h(s)ds+
m−1∑
j=0

y j
Γ(β j+1)
Γ(τ j+1) tτ j+1−1. (2.8)

Proof. The proof is similar to that of the proof of Lemma 2.3 and is omitted. �

For (x,y) ∈ X×Y , let us define T by T (x,y)(t) = ((T1y)(t), (T2x)(t)) with

(T1y)(t) = − 1
Γ(σn)

∫ t
0 (t− s)σn−1φ(s) f (s,y(s),Dp

0+y(s))ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1) t

σ j+1−1,

(T2x)(t) = − 1
Γ(τm)

∫ t
0 (t− s)τm−1ψ(s)g(s, x(s),Dq

0+ x(s))ds+
m−1∑
j=0

y j
Γ(β j+1)
Γ(τ j+1) tτ j+1−1.

(2.9)

It is easy to show that

Dq
0+(T1y)(t) = − 1

Γ(σn−q)

∫ t
0 (t− s)σn−q−1φ(s) f (s,y(s),Dp

0+y(s))ds

+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1−q) t

σ j+1−q−1,

Dp
0+(T2x)(t) = − 1

Γ(τm−p)

∫ t
0 (t− s)τm−p−1ψ(s)g(s, x(s),Dq

0+ x(s))ds

+
m−1∑
j=0

y j
Γ(β j+1)
Γ(τ j+1−p) t

τ j+1−p−1.

(2.10)
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Lemma 2.11. Suppose that both f is a τ−Caratheodory function and g aσ−Caratheodory function.
Then

(i) both T1 : Y → X and T2 : X→ Y are well defined and so T : X→ X is well defined too;
(ii) the fixed point of the operator T coincides with the solution of IVP(1.1);
(iii) both T1 : Y→ X and T2 : X→ Y are completely continuous and so T : X→ X is completely

continuous.

Proof. (i) For y ∈ Y , we get ||y|| = r < +∞. Since f is a τ−Caratheodory function, then there exist a
positive number Mr such that

| f (t,y(t),Dp
0+y(t))| =

∣∣∣∣∣ f (t, %(t)y(t)
%(t) ,

tp%(t)Dp
0+

y(t)
tp%(t)

)∣∣∣∣∣ ≤ Mr. (2.11)

It is easy to show by similar methods used in the proof of Lemma 2.1 that T1y ∈ C(0,+∞) and
Dq

0+T1y ∈C(0,∞) and

lim
t→0

ρ(t)(T1y)(t), lim
t→+∞

ρ(t)(T1y)(t), and lim
t→0

tp%(t)Dp
0+y(t), lim

t→+∞
tpρ(t)Dq

0+(T1y)(t) exist.

Hence T1y ∈ X. Then T1 : Y → X is well defined.
Similarly we can prove that T2 : X→ Y is well defined. So T : Z→ Z is well defined.

(ii) It follows from Lemma 2.3 and Lemma 2.4 that the fixed point of the operator T coincides
with the solution of IVP(1.1).

To prove that T is completely continuous, we must show that both T1 and T2 are completely
continuous. We need to prove that
• both T1 and T2 are continuous,
• both T1 and T2 map bounded sets to relatively compact sets.
The remainder of the proof is completed by the following five steps.
Step 1. We prove that both T1 and T2 are continuous.
Let yn ∈ Y with yn→ y0 as n→∞. We will prove that T1yn→ T1y0 as n→∞. It is easy to see

that there exists r > 0 such that ||yn|| ≤ r <∞ for all n = 0,1,2, · · · ,. Then there exists Mr ≥ 0 such
that (12) holds with y being replaced by yn. One sees that

(T1yn)(t) = − 1
Γ(σn)

∫ t
0 (t− s)σn−1φ(s) f (s,yn(s),Dp

0+yn(s))ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1) t

σ j+1−1, (2.12)

and
Dq

0+(T1yn)(t) = − 1
Γ(σn−q)

∫ t
0 (t− s)σn−q−1φ(s) f (s,yn(s),Dp

0+yn(s))ds

+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1−q) t

σ j+1−q−1.

(2.13)

It follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

ρ(t)|(T1yn)(t)− (T1y0)(t)| = 0, lim
n→+∞

qρ(t)|Dq
0+(T1yn)(t)−Dq

0+(T1y0)(t)| = 0.

Hence we get
lim
n→∞

T1yn = T1y0.

Then T1 is continuous. Similarly we can prove that T2 is continuous.
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Let Ω1 ⊆ Y and Ω2 ⊆ X be bounded subsets.
One sees that there exists r > 0 such that ||y|| ≤ r for all y ∈ Ω1. Since f is a τ−Caratheodory

function, then there exist a positive number Mr such that (12) holds for all y ∈Ω1.
Step 2. We prove that both T1(Ω1) and T2(Ω2) are uniformly bounded sets.
By the similar methods used in the proof of Lemma 2.1, it is easy to see that T1Ω1 is uniformly

bounded. We omit the details. Similarly we can prove that T2(Ω2) are uniformly bounded.
Step 3. We prove that both T1(Ω1) and T2(Ω2) are equi-continuous on finite closed interval on

(0,+∞).
For [a,b] ⊂ (0,+∞) with t1, t2 ∈ [a,b] with t1 > t2 and y ∈Ω1, we have∣∣∣∣∣ t1−α1

1
1+tσ1
|(T1y)(t1)−

t1−α1
2
1+tσ2

(T1y)(t2)
∣∣∣∣∣

=

∣∣∣∣∣∣∣− 1
Γ(σn)

t1−α1
1
1+tσ1

t1∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds+

n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1)

t
σ j+1−α1
1
1+tσ1

−

− 1
Γ(σn)

t1−α1
2
1+tσ2

t2∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds+

n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1)

t
σ j+1−α1
2
1+tσ2


∣∣∣∣∣∣∣

≤ 1
Γ(σn)

∣∣∣∣∣∣∣ t1−α1
1
1+tσ1

t1∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

−
t1−α1
2
1+tσ2

t2∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

∣∣∣∣∣∣∣
+

n−1∑
j=0
|x j|
Γ(α j+1)
Γ(σ j+1)

∣∣∣∣∣∣ t
σ j+1−α1
1
1+tσ1

−
t
σ j+1−α1
2
1+tσ2

∣∣∣∣∣∣ .
We know that ∣∣∣∣∣∣∣ t1−α1

1
1+tσ1

t1∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

−
t1−α1
2
1+tσ2

t2∫
0

(t1− s)σn−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

∣∣∣∣∣∣∣
≤

∣∣∣∣∣ t1−α1
1
1+tσ1
−

t1−α1
2
1+tσ2

∣∣∣∣∣ t1∫
0

(t1− s)σn−1|φ(s) f (s,y(s),Dp
0+ x(s)))|ds

+
t1−α1
2
1+tσ2

t2∫
t2

(t1− s)σn−1|φ(s) f (s,y(s),Dp
0+y(s)))|ds

+
t1−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1||φ(s) f (s,y(s),Dp

0+y(s)))|ds
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≤ Mr

∣∣∣∣∣ t1−α1
1
1+tσ1
−

t1−α1
2
1+tσ2

∣∣∣∣∣ ∫ t1
0 (t1− s)σn−1sk1ds

+Mr
t1−α1
2
1+tσ2

t1∫
t2

(t1− s)σn−1sk1ds

+Mr
t1−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds

≤ Mr

∣∣∣∣∣ t1−α1
1
1+tσ1
−

t1−α1
2
1+tσ2

∣∣∣∣∣ tσn+k1
1

∫ 1
0 (1−w)σn−1wk1dw

+Mr
t1−α1
2
1+tσ2

tσn+k1
1

∫ 1
t2
t1

(1−w)σn−1wk1dw

+Mr
t1−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds

≤ Mr

(
max{aσn+k1 ,bσn+k1}B(σn,k1+1)

∣∣∣∣∣ t1−α1
1
1+tσ1
−

t1−α1
2
1+tσ2

∣∣∣∣∣
+Mσ,1−α1 max{aσn+k1 ,bσn+k1}

1∫
t2
t1

(1−w)σn−1wk1dw

+Mσ,1−α1

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds

 .
It is easy to show that |uν − vν| ≤ νbν−1|u− v| for all u,v ∈ [0,b], ν > 1 and |uν − vν| ≤ |u− v|ν for

all u,v ∈ [0,b], ν ∈ (0,1].

If σn > 2, then

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds ≤

b∫
0

[(t1− s)σn−1− (t2− s)σn−1]sk1ds

≤

b∫
0

[σn−1](t1− t2)sk1ds = (t1− t2)[σn−1] 1
k1+1 bK1+1→ 0 as t2→ t1.

If 1 < σn ≤ 2, then

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds ≤

b∫
0

[(t1− s)σn−1− (t2− s)σn−1]sk1ds

≤

b∫
0

(t1− t2)σn−1sk1ds = (t1− t2)σn−1 1
k1+1 bk1+1→ 0 as t2→ t1.
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If 0 < σn ≤ 1, then

t2∫
0
|(t1− s)σn−1− (t2− s)σn−1|sk1ds =

t2∫
0

[(t2− s)σn−1− (t1− s)σn−1]sk1ds

= tσn+k1
2

1∫
0

(1−w)σn−1wk1dw− tσn+k1
1

t2
t1∫

0
(1−w)σn−1wk1dw

= [tσn+k1
2 − tσn+k1

1 ]B(σn,k1+1)+ tσn+k1
1

1∫
t2
t1

(1−w)σn−1wk1dw

≤ [tσn+k1
2 − tσn+k1

1 ]B(σn,k1+1)+max{aσn+k1 ,bσn+k1}

1∫
t2
t1

(1−w)σn−1wk1dw

→ 0 as t2→ t1.

Hence ∣∣∣∣∣∣∣ t1−α1
1

1+ tσ1
|(T1y)(t1)−

t1−α1
2

1+ tσ2
(T1y)(t2)

∣∣∣∣∣∣∣→ 0 uniformly in Ω1 as t2→ t1. (2.14)

On the other hand, we have∣∣∣∣∣ t1+q−α1
1
1+tσ1

Dq
0+(T1y)(t1)−

t1+q−α1
2
1+tσ2

Dq
0+(T1y)(t2)

∣∣∣∣∣
=

∣∣∣∣∣∣∣− 1
Γ(σn−q)

t1+q−α1
1
1+tσ1

t1∫
0

(t1− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

+
∑n−1

j=0 x j
Γ(α j+1)
Γ(σ j+1−q)

t
σ j+1−α1
1
1+tσ1

−

− 1
Γ(σn−q)

t1+q−α1
2
1+tσ2

t2∫
0

(t2− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

+
∑n−1

j=0 x j
Γ(α j+1)
Γ(σ j+1−q)

t
σ j+1−α1
2
1+tσ2

)∣∣∣∣∣∣
≤

∑n−1
j=0 |x j|

Γ(α j+1)
Γ(σ j+1−q)

∣∣∣∣∣∣ t
σ j+1−α1
2
1+tσ2

−
t
σ j+1−α1
1
1+tσ1

∣∣∣∣∣∣
+ 1
Γ(σn−q)

∣∣∣∣∣∣∣ t1+q−α1
1
1+tσ1

t1∫
0

(t1− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

− −
t1+q−α1
2
1+tσ2

t2∫
0

(t2− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

∣∣∣∣∣∣∣ .
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Since ∣∣∣∣∣∣∣ t1+q−α1
1
1+tσ1

t1∫
0

(t1− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

−
t1+q−α1
2
1+tσ2

t2∫
0

(t2− s)σn−q−1φ(s) f (s,yn(s),Dp
0+yn(s))ds

∣∣∣∣∣∣∣
≤

∣∣∣∣∣ t1+q−α1
1
1+tσ1

−
t1+q−α1
2
1+tσ2

∣∣∣∣∣ t1∫
0

(t1− s)σn−q−1L1sk1 Mrds

+
t1+q−α1
2
1+tσ2

t1∫
t2

(t1− s)σn−q−1L1sk1 Mrds

+
t1+q−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−q−1− (t1− s)σn−q−1|L1sk1 Mrds

= Mr

∣∣∣∣∣ t1+q−α1
1
1+tσ1

−
t1+q−α1
2
1+tσ2

∣∣∣∣∣ tσn−q+k1
1

1∫
0

(1−w)σn−q−1wk1dw

+
t1+q−α1
2
1+tσ2

tσn−q+k1
1

1∫
t2
t1

(1−w)σn−q−1wk1dw

+
t1+q−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−q−1− (t1− s)σn−q−1|sk1ds


≤ Mr

(∣∣∣∣∣ t1+q−α1
1
1+tσ1

−
t1+q−α1
2
1+tσ2

∣∣∣∣∣max{aσn−q+k1 ,bσn−q+k1}B(σn−q,k1+1)

+Mσ,1+q−α1 max{aσn−q+k1 ,bσn−q+k1}

1∫
t2
t1

(1−w)σn−q−1wk1dw

+
t1+q−α1
2
1+tσ2

t2∫
0
|(t1− s)σn−q−1− (t1− s)σn−q−1|sk1ds

 .
If σn−q > 2, then

t2∫
0
|(t1− s)σn−q−1− (t2− s)σn−q−1|sk1ds

≤

b∫
0

[(t1− s)σn−q−1− (t2− s)σn−q−1]sk1ds ≤
b∫

0
[σn−q−1](t1− t2)sk1ds

= (t1− t2)[σn−q−1] 1
k1+1 bk1+1→ 0 as t2→ t1.
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If 1 < σn−q ≤ 2, then

t2∫
0
|(t1− s)σn−q−1− (t2− s)σn−q−1|sk1ds

≤

b∫
0

[(t1− s)σn−q−1− (t2− s)σn−q−1]sk1ds

≤

b∫
0

(t1− t2)σn−q−1sk1ds = (t1− t2)σn−q−1 1
k1+1 bk1+1→ 0 as t2→ t1.

If 0 < σn−q ≤ 1, then

t2∫
0
|(t1− s)σn−q−1− (t2− s)σn−q−1|sk1ds

=
t2∫

0
[(t2− s)σn−q−1− (t1− s)σn−q−1]sk1ds

= tσn−q+k1
2

1∫
0

(1−w)σn−q−1wk1dw− tσn−q+k1
1

t2
t1∫

0
(1−w)σn−q−1wk1dw

= [tσn−q+k1
2 − tσn−q+k1

1 ]B(σn−q,k1+1)+ tσn−q+k1
1

1∫
t2
t1

(1−w)σn−q−1wk1dw

≤ [tσn−q+k1
2 − tσn−q+k1

1 ]B(σn−q,k1+1)

+max{aσn−q+k1 ,bσn−q+k1}
∫ 1

t2
t1

(1−w)σn−q−1wk1dw

→ 0 as t2→ t1.

Hence∣∣∣∣∣ t1+q−α1
1
1+tσ1

Dq
0+(T1y)(t1)−

t1+q−α1
2
1+tσ2

Dq
0+(T1y)(t2)

∣∣∣∣∣→ 0 uniformly in Ω1 as t2→ t1. (2.15)

From (2.14) nd (2.15), we get that {t → ρ(t)(T1y)(t) : y ∈ Ω1} is equi-continuous on finite closed
interval on (0,∞).

Similarly we can show that {t→ ρ(t)(T2x)(t) : x ∈Ω2} is equi-continuous on finite closed interval
on (0,∞).

Step 4. We prove that both {t→ ρ(t)(T1y)(t) : y ∈ Ω1} and {t→ ρ(t)(T2x)(t) : x ∈ Ω2} are equi-
convergent as t→ 0.
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We see that∣∣∣∣ t1−α1

1+tσ |(T1y)(t)− x0

∣∣∣∣
=

∣∣∣∣∣∣∣− 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s) f (s,y(s),Dp
0+y(s))ds+

∑n−1
j=1 x j

Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ

∣∣∣∣∣∣∣
≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1L1sk1 Mrds+
∑n−1

j=1 |x j|
Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ

=
Mr
Γ(σn)

tσn+k1+1−α1

1+tσ

1∫
0

(1−w)σn−1wk1ds+
∑n−1

j=1 |x j|
Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ

→ 0 uniformly in Ω1 as t→ 0.

Furthermore, we have∣∣∣∣ t1+q−α1

1+tσ Dq
0+(T1y(t)− x0

∣∣∣∣ ≤ Mr
Γ(σn−q)

t1+q−α1

1+tσ

t∫
0

(t− s)σn−q−1sk1ds+
n−1∑
j=1
|x j|

Γ(α j+1)
Γ(σ j+1−q)

tσ j+1−α1

1+tσ

=
Mr

Γ(σn−q)
tσn+k1+1−α1

1+tσ

1∫
0

(1−w)σn−q−1wk1dw+
n−1∑
j=1
|x j|

Γ(α j+1)
Γ(σ j+1−q)

tσ j+1−α1

1+tσ

→ 0 uniformly in Ω1 as t→ 0.

Hence T1(Ω1) id equi-convergent as t→ 0.
Similarly we can show that T2(Ω2) id equi-convergent as t→ 0.

Step 5. We prove that both T1(Ω1) and T2 are equi-convergent as t→ +∞.
We get ∣∣∣∣ t1−α1

1+tσ |(T1y)(t)
∣∣∣∣ ≤ Mr
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1sk1ds+
n−1∑
j=0
|x j|
Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ

=
Mr
Γ(σn)

tσn+k1+1−α1

1+tσ

1∫
0

(1−w)σn−1wk1dw+
∑n−1

j=0 |x j|
Γ(α j+1)
Γ(σ j+1)

tσ j+1−α1

1+tσ

→ 0 uniformly in Ω1 as t→∞.

Furthermore, we have∣∣∣∣ t1+q−α1

1+tσ |(T1y)(t)
∣∣∣∣ ≤ Mr
Γ(σn−q)

t1+q−α1

1+tσ

t∫
0

(t− s)σn−q−1sk1ds+
∑n−1

j=0 |x j|
Γ(α j+1)
Γ(σ j+1−q)

tσ j+1−α1

1+tσ

=
Mr

Γ(σn−q)
tσn+k1+1−α1

1+tσ

1∫
0

(1−w)σn−q−1wk1dw+
∑n−1

j=0 |x j|
Γ(α j+1)
Γ(σ j+1−q)

tσ j+1−α1

1+tσ

→ 0 uniformly in Ω1 as t→∞.

Hence T1(Ω1) is equi-convergent as t→∞.
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Similarly we can show that T2(Ω2) id equi-convergent as t→∞.

From above discussion (Steps 1-5), we see that T is completely continuous. The proof is com-
plete. �

3 Main results

We are in the position to prove the main results of the paper. We present the main assumptions:
(H1). f is a τ−Caratheodory function and g a σ−Caratheodory function and satisfy the follow-

ing assumptions: there exist non-zero functions Φ,Ψ : (0,+∞)→ R measurable on each subinterval
(0, t] of (0,+∞) and non-decreasing functions∣∣∣∣ f (t, u

ρ(t) ,
v

tpρ(t)

)
−Φ(t)

∣∣∣∣ ≤ F(u,v),∣∣∣∣g (
t, u
%(t) ,

v
tq%(t)

)
−Ψ(t)

∣∣∣∣ ≤G(u,v),

hold for all t ∈ (0,+∞),u,v ∈ R.

Denote

Φ0(t) = − 1
Γ(σn)

t∫
0

(t− s)σn−1φ(s)Φ(s)ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1) t

σ j+1−1,

Ψ0(t) = − 1
Γ(τm)

t∫
0

(t− s)τm−1ψ(s)Ψ(s)ds+
m−1∑
j=0

y j
Γ(β j+1)
Γ(τ j+1) tτ j+1−1.

(3.1)

It is easy to show that

Dq
0+Φ0(t) = − 1

Γ(σn−q)

t∫
0

(t− s)σn−q−1φ(s)Φ(s)ds+
n−1∑
j=0

x j
Γ(α j+1)
Γ(σ j+1−q) t

σ j+1−q−1,

Dp
0+Ψ0(t) = − 1

Γ(τm−p)

t∫
0

(t− s)τm−p−1ψ(s)Ψ(s)ds+
m−1∑
j=0

y j
Γ(β j+1)
Γ(τ j+1−p) t

τ j+1−p−1.

(3.2)

For A > B > 0, let MA,B =
A−B

A

(
B

A−B

) B
A be defined in Section 2. Denote

M0 =max
{B(σn−q,k1+1)
Γ(σn−q) Mσ,σn+k1+1−α1 ,

B(σn,k1+1)
Γ(σn) Mσ,σn+k1+1−α1

}
,

N0 =max
{B(τn−p,k2+1)
Γ(τn−p) Mτ,τn+k2+1−β1 ,

B(τn,k2+1)
Γ(τn) Mτ,τn+k2+1−β1

}
,

a = M0

[
s−1∑
j=1

[A j+B j]||Ψ0||
µ j−µs + [As+Bs]

]
,

b = N0

[
r−1∑
j=1

[C j+D j]||Φ0||]δ j−δr + [Cr +Dr]
]
.

Theorem 3.1. Suppose that (H1) holds. Then IVP(1.1) has at least one solution (x,y) ∈ Z if the
following inequality system

M0F(r2+ ||Ψ0||,r2+ ||Ψ0||) ≤ r1, N0G(r1+ ||Φ0||,r1+ ||Φ0||) ≤ r2
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has positive solution (r1,r2).

Proof. Let the Banach spaces X, Y and Z with their norms be defined in Section 2. Let T : Z→ Z
be defined by (2.9).

By Lemma 2.5, we seek solutions of IVP(1.1) by getting the fixed point of T in Z, and T is well
defined and is completely continuous.

It is easy to show that Φ0 ∈ X, Ψ0 ∈ Y . Let r > 0 and define

Ωr1,r2 = {(x,y) ∈ Z : ‖x−Φ0‖ ≤ r1, ‖y−Ψ0‖ ≤ r2} .

For (x,y) ∈Ωr1,r2 , we have ‖x−Φ0‖ ≤ r1 and ‖y−Ψ0‖ ≤ r2. Then

||x|| ≤ ||x−Φ0||+ ||Φ0|| ≤ r1+ ||Φ0||,

||y|| ≤ ||y−Ψ0||+ ||ψ0|| ≤ r2+ ||Ψ0||.

Using (H1), using (3.1) and (3.2), we find

t1−α1

1+tσ |(T1y)(t)−Φ0(t)|

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)| f (s,y(s),Dp
0+y(s))−Φ(s)|ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)
∣∣∣∣ f (s, 1+sτ

t1−β1
t1−β1

1+sτ y(s), 1+sτ

t1+p−β1
t1+p−β1

1+sτ Dp
0+y(s)

)
−Φ(s)

∣∣∣∣ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)F
(∣∣∣∣ t1−β1

1+sτ y(s)
∣∣∣∣ , ∣∣∣∣ t1+p−β1

1+sτ Dp
0+y(s)

∣∣∣∣)ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1sk1 F (||y||, ||y||)ds

≤
B(σn,k1+1)
Γ(σn)

tσn+k1+1−α1

1+tσ F (||y||, ||y||)

≤
B(σn,k1+1)
Γ(σn) Mσ,σn+k1+1−α1 F (||y||, ||y||) .

Similarly, we have

t1+q−α1

1+tσ |D
q
0+(T1y)(t)−Dq

0+Φ0(t)|

≤ 1
Γ(σn−q)

t1+q−α1

1+tσ

t∫
0

(t− s)σn−q−1| f (s,y(s),Dp
0+y(s))−Φ(s)|ds

≤
B(σn−q,k1+1)
Γ(σn−q) Mσ,σn+k1+1−α1 F (||y||, ||y||) .

It follows that
||T1y−Φ0|| ≤ M0F (||y||, ||y||) ≤ M0F(r2+ ||Ψ0||,r2+ ||Ψ0||). (3.3)

Similarly we can show that

||T2x−Ψ0|| ≤ N0G (||x||, ||x||) ≤ N0G(r1+ ||Φ0||,r1+ ||Φ0||).



Solvability of IVPs for differential systems 45

From the assumption, we know that there exist r1 > 0,r2 > 0 such that M0F(r2+ ||Ψ0||,r2+ ||Ψ0||)≤ r1
and N0G(r1+ ||Φ0||,r1+ ||Φ0||) ≤ r2.

Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a
solution of IVP (1.1). The proof is completed. �

(H2). f is a τ−Caratheodory function and g a σ−Caratheodory function and satisfy the follow-
ing assumptions: there exist non-zero functions Φ,Ψ : (0,+∞)→ R measurable on each subinterval
(0, t] of (0,+∞) and numbers

Ai,Bi(i = 1,2, · · · , s),Ci,Di(i = 1,2, · · · ,r) ≥ 0,

µs > µs−1 > · · · > µ1 > 0, δr > δr−1 > · · · > δ1 > 0,

such that ∣∣∣∣ f (t, u
ρ(t) ,

v
tpρ(t)

)
−Φ(t)

∣∣∣∣ ≤ s∑
j=1

A j|u|µ j +
∑s

j=1 B j|v|µ j ,

∣∣∣∣g (
t, u
%(t) ,

v
tq%(t)

)
−Ψ(t)

∣∣∣∣ ≤ r∑
j=1

C j|u|δ j +
∑r

j=1 D j|v|δ j ,

hold for all t ∈ (0,+∞),u,v ∈ R.

Theorem 3.2. Suppose that (H2) holds. Then IVP(1.1) has at least one solution (x,y) ∈ Z if
(i) µsδr > 1 with

(δrµs)δrµs

(δrµs−1)δrµs−1

[
||Φ0||+

(
||Ψ0 ||

b

) 1
δr

]δrµs−1

≤ 1
abµs for δr > 1,

(δrµs)δrµs

(δrµs−1)δrµs−1

[
||Ψ0||+

(
||Φ0 ||

a

) 1
µs

]δrµs−1

≤ 1
baδr for µs > 1

(3.4)

or
(ii) µsδr = 1 with

either a <
(
1
b

) 1
δr

or b <
(
1
a

) 1
µs

(3.5)

or
(iii) µsδr < 1.

Proof. Let the Banach spaces X, Y and Z with their norms be defined in Section 2. Let T : Z→ Z
be defined by (2.9).

By Lemma 2.5, we seek solutions of IVP(1.1) by getting the fixed point of T in Z, and T is well
defined and is completely continuous.

Let Φ0 and Ψ0 be defined by (3.1). Then we get (3.2). It is easy to show that Φ0 ∈ X, Ψ0 ∈ Y .
Let r > 0 and define

Ωr1,r2 = {(x,y) ∈ Z : ‖x−Φ0‖ ≤ r1, ‖y−Ψ0‖ ≤ r2} .

For (x,y) ∈Ωr1,r2 , we have ‖x−Φ0‖ ≤ r1 and ‖y−Ψ0‖ ≤ r2. Then

||x|| ≤ ||x−Φ0||+ ||Φ0|| ≤ r1+ ||Φ0||,

||y|| ≤ ||y−Ψ0||+ ||ψ0|| ≤ r2+ ||Ψ0||.
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Using (H2), using (3.1) and (3.2), we find

t1−α1

1+tσ |(T1y)(t)−Φ0(t)|

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)| f (s,y(s),Dp
0+y(s))−Φ(s)|ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)
∣∣∣∣ f (s, 1+sτ

t1−β1
t1−β1

1+sτ y(s), 1+sτ

t1+p−β1
t1+p−β1

1+sτ Dp
0+y(s)

)
−Φ(s)

∣∣∣∣ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1φ(s)
[

s∑
j=1

A j

∣∣∣∣ t1−β1

1+sτ y(s)
∣∣∣∣µ j
+

s∑
j=1

B j

∣∣∣∣ t1+p−β1

1+sτ Dp
0+y(s)

∣∣∣∣µ j
]
ds

≤ 1
Γ(σn)

t1−α1

1+tσ

t∫
0

(t− s)σn−1sk1

[
s∑

j=1
[A j+B j]||y||µ j

]
ds

≤
B(σn,k1+1)
Γ(σn)

tσn+k1+1−α1

1+tσ

[
s∑

j=1
[A j+B j]||y||µ j

]

≤
B(σn,k1+1)
Γ(σn) Mσ,σn+k1+1−α1

[
s∑

j=1
[A j+B j]||y||µ j

]
.

Similarly, we have

t1+q−α1

1+tσ |D
q
0+(T1y)(t)−Dq

0+Φ0(t)|

≤ 1
Γ(σn−q)

t1+q−α1

1+tσ

t∫
0

(t− s)σn−q−1| f (s,y(s),Dp
0+y(s))−Φ(s)|ds

≤
B(σn−q,k1+1)
Γ(σn−q) Mσ,σn+k1+1−α1

[
s∑

j=1
[A j+B j]||y||µ j

]
.

It follows that

||T1y−Φ0|| ≤ M0

[
s∑

j=1
[A j+B j]||y||µ j

]
≤ M0

[
s∑

j=1
[A j+B j][r+ ||Ψ0||]µ j

]

≤ M0[r2+ ||Ψ0||]µs

[
s−1∑
j=1

[A j+B j][r2+ ||Ψ0||]µ j−µs + [As+Bs]
]

≤ M0[r2+ ||Ψ0||]µs

[
s−1∑
j=1

[A j+B j]||Ψ0||
µ j−µs + [As+Bs]

]
.

Hence

||T1y−Φ0|| ≤ M0

 s−1∑
j=1

[A j+B j]||Ψ0||
µ j−µs + [As+Bs]

 [r2+ ||Ψ0||]µs = a[r2+ ||Ψ0||]µs . (3.6)
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Similarly we can show that

||T2x−Ψ0|| ≤ N0

 r−1∑
j=1

[C j+D j]||Φ0||]δ j−δr + [Cr +Dr]

 [r1+ ||Φ0||]δr = b[r1+ ||Φ0||]δr . (3.7)

Consider the following inequality system
a[r2+ ||Ψ0||]µs ≤ r1,

b[r1+ ||Φ0||]δr ≤ r2.

We will prove that it has a positive solution (r1,r2). This inequality system is changed to

b[r1+ ||Φ0||]δr ≤ r2 ≤

(r1

a

) 1
µs
− ||Ψ0||, (3.8)

or

a[r2+ ||Ψ0||]µs ≤ r1 ≤

(r2

b

) 1
δr
− ||Φ0||. (3.9)

Case (i). µsδr > 1.
It is easy to show that el+ f l ≤ (e+ f )l for all e, f > 0 and l > 1.
If δr > 1, choose

r1 =
1

δrµs−1

||Φ0||+

(
||Ψ0||

b

) 1
δr

 .
Then we get from

(δrµs)δrµs

(δrµs−1)δrµs−1

||Φ0||+

(
||Ψ0||

b

) 1
δr


δrµs−1

≤
1

abµs

that [
r1+ ||Φ0||+

(
||Ψ0 ||

b

) 1
δr

]δrµs

r1
≤

1
abµs

.

Since

b[r1+ ||Φ0||]δr + ||Ψ0|| ≤ b

r1+ ||Φ0||+

(
||Ψ0||

b

) 1
δr


δr

,

we get

b[r1+ ||Φ0||]δr ≤

(r1

a

) 1
µs
− ||Ψ0||.

Choose r2 such that

b[r1+ ||Φ0||]δr ≤ r2 ≤

(r1

a

) 1
µs
− ||Ψ0||. (3.10)

Then, for (x,y) ∈Ωr1,r2 , using (3.10), we have

||T1y−Φ0|| ≤ a[r2+ ||Ψ0||]µs ≤ r1, ||T2x−Ψ0|| ≤ b[r1+ ||Φ0||]δr ≤ r2.

Then T (x,y) = (T1y,T2x) ∈Ωr1,r2 .
Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a

solution of IVP (1.1).
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If µs > 1, choose

r2 =
1

δrµs−1

||Ψ0||+

(
||Φ0||

a

) 1
µs

 .
Then we get from

(δrµs)δrµs

(δrµs−1)δrµs−1

||Ψ0||+

(
||Φ0||

a

) 1
µs


δrµs−1

≤
1

baδr

that [
r2+ ||Ψ0||+

(
||Φ0 ||

a

) 1
µs

]δrµs

r2
≤

1
baδr

.

Since

a[r2+ ||Ψ0||]µs + ||Φ0|| ≤ a

r2+ ||Ψ0||+

(
||Φ0||

a

) 1
µs


µs

,

we get

a[r2+ ||Ψ0||]µs ≤

(r2

b

) 1
δr
− ||Φ0||.

Choose r1 such that

a[r2+ ||Ψ0||]µs ≤ r1 ≤

(r2

b

) 1
δr
− ||Φ0||. (3.11)

Then, for (x,y) ∈Ωr1,r2 , using (3.11), we have

||T1y−Φ0|| ≤ a[r2+ ||Ψ0||]µs ≤ r1, ||T2x−Ψ0|| ≤ b[r1+ ||Φ0||]δr ≤ r2.

Then T (x,y) = (T1y,T2x) ∈Ωr1,r2 .
Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a

solution of IVP (1.1).
Case (ii). µsδr = 1.

For a <
(

1
b

) 1
δr , since

lim
r1→+∞

a[r2+ ||Ψ0||]µs(
r2
b

) 1
δr − ||Φ0||

=
a(

1
b

) 1
δr

< 1,

we can choose r2 > 0 sufficiently large such that

a[r2+ ||Ψ0||]µs ≤

(r2

b

) 1
δr
− ||Φ0||.

Then we can choose r1 such that

a[r2+ ||Ψ0||]µs ≤ r1 ≤

(r2

b

) 1
δr
− ||Φ0||. (3.12)

Then, for (x,y) ∈Ωr1,r2 , using (3.12), we have

||T1y−Φ0|| ≤ Ma[r2+ ||Ψ0||]µs ≤ r1,

||T2x−Ψ0|| ≤ b[r1+ ||Φ0||]δr ≤ r2.
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Then T (x,y) = (T1y,T2x) ∈Ωr1,r2 .
Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a

solution of IVP (1.1).

For b <
(

1
a

) 1
µs , since

lim
r1→+∞

b[r1+ ||Φ0||]δr(
r1
a

) 1
µs − ||Ψ0||

=
b(

1
a

) 1
µs

< 1,

we can choose r1 > 0 sufficiently large such that

b[r1+ ||Φ0||]δr ≤

(r1

a

) 1
µs
− ||Ψ0||.

Then we can choose r2 such that

b[r1+ ||Φ0||]δr ≤ r2 ≤

(r1

a

) 1
µs
− ||Ψ0||. (3.13)

Then, for (x,y) ∈Ωr1,r2 , using (3.13), we have

||T1y−Φ0|| ≤ Ma[r2+ ||Ψ0||]µs ≤ r1,

||T2x−Ψ0|| ≤ b[r1+ ||Φ0||]δr ≤ r2.

Then T (x,y) = (T1y,T2x) ∈Ωr1,r2 .
Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a

solution of IVP (1.1).
Case (iii). µsδr < 1.
It is easy to see that there exists r1 > 0 sufficiently large such that

b[r1+ ||Φ0||]δr ≤

(r1

a

) 1
µs
− ||Ψ0||.

This allows us to choose r2 such that

b[r1+ ||Φ0||]δr ≤ r2 ≤

(r1

a

) 1
µs
− ||Ψ0||. (3.14)

Then, for (x,y) ∈Ωr1,r2 using (3.14), we have

||T1y−Φ0|| ≤ a[r2+ ||Ψ0||]µs ≤ r1, ||T2x−Ψ0|| ≤ b[r1+ ||Φ0||]δr ≤ r2.

Then T (x,y) = (T1y,T2x) ∈Ωr1,r2 .
Then, Schauder fixed point theorem implies that T has a fixed point (x,y) ∈ Ωr1,r2 , which is a

solution of IVP (1.1).
The proof is complete. �

4 An example

In this section, we given an example to illustrate Theorem 3.1.
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Example 4.1. consider the following problem

D
1
2
0 D

1
3
0 x(t)+ t−

1
2 f (t,y(t),D

1
5
0+y(t)) = 0, t ∈ (0,+∞),

D
1
4
0 D

1
8
0 y(t)+ t−

1
2 g(t, x(t),D

1
6
0+ x(t)) = 0, t ∈ (0,+∞),

limt→0 t
2
3 x(t) = x0, limt→0 t

7
8 y(t) = x0,

limt→0 t
1
2 D

1
3 x(t) = x1, limt→0 t

3
4 D

1
8 x(t) = y1,

(4.1)

where x0, x1,y0,y1 ∈ R, φ(t) = ψ(t) = t−
1
2 and

f (t,u,v) = 1+A

 t
7
8

1+ t
u

µ+B

 t
43
40

1+ t
v

µ ,
g(t,u,v) = 1+C

 t
2
5

1+ t
3
2

u

δ+D

 t
5
6

1+ t
3
2

v

δ
with A,B,C,D ≥ 0, δ,µ > 0. Then IVP(4.1) has at least one solution for all sufficiently small
A,B,C,D, |x0|, |y0|.

Proof. Corresponding to (1.1), we have m = n = 2, α1 =
1
3 ,α2 =

1
2 and β1 =

1
8 and β2 =

1
4 , p = 1

5 and
q = 1

6 .
It is easy to see that
• xi ∈ R(i = 0,1), yi ∈ R(i = 0,1), p,q ∈ (0,1) with q < σ2 = α1+α2 =

5
6 and p < τ2 = β1+β2 =

3
8 ,

• αi ∈ (0,1)(i = 1,2), βi ∈ (0,1)(i = 1,2),
• φ,ψ : (0,∞)→ [0,∞) satisfy that

φ(t) ≤ tk1 , ψ(t) ≤ tk2 , t ∈ (0,∞),

with k1 = k2 = −
1
2 ,.

Choose τ = 1,σ = 3
2 . Then τ > τ2+ k2+1 and σ > σ2+ k1+1. By computation, one sees that

f
(
t,

1+ tτ

t1−β1
u,

1+ tτ

t1+p−β1
v
)
= 1+Auµ+Bvµ,

g
(
t,

1+ tσ

t1−α1
u,

1+ tσ

t1+q−α1
v
)
= 1+Cuδ+Dvδ.

So
• f ,g : (0,∞)×R2→ R and f is a τ−Caratheodory function and g a σ−Caratheodory function.
It is easy to see that
(H2). f is a a τ−Caratheodory function and g a σ−Caratheodory function satisfying the follow-

ing assumptions: there exist non-zero functions Φ(t) = Ψ(t) = 1 and numbers

A,B ≥ 0, C,D ≥ 0, µ > 0, δ > 0,
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such that ∣∣∣∣∣∣ f
(
t,

1+ tτ

t1−β1
u,

1+ tτ

t1+p−β1
v
)
−Φ(t)

∣∣∣∣∣∣ ≤ A|u|µ+B|v|µ,∣∣∣∣∣∣g
(
t,

1+ tσ

t1−α1
u,

1+ tσ

t1+q−α1
v
)
−Ψ(t)

∣∣∣∣∣∣ ≤C|u|δ+D|v|δ,

hold for all t ∈ (0,+∞),u,v ∈ R with r = s = 1 and µ = µ1, δ = δ1.

We have

Φ0(t) = − 1
Γ(σn)

∫ t
0 (t− s)σn−1φ(s)Φ(s)ds+

∑n−1
j=0 x j

Γ(α j+1)
Γ(σ j+1) t

σ j+1−1

= − 1
Γ(5/6)

∫ t
0 (t− s)−

1
6 s−

1
2 ds+ x0t−

2
3 = −

B(5/6,1/2)
Γ(5/6) t

1
3 + x0t−

2
3

Ψ0(t) = − 1
Γ(τm)

∫ t
0 (t− s)τm−1ψ(s)Ψ(s)ds+

∑m−1
j=0 y j

Γ(β j+1)
Γ(τ j+1) tτ j+1−1

= − 1
Γ(3/8)

∫ t
0 (t− s)−

5
8 s−

1
2 ds+ y0t−

7
8 = −

B(3/8,1/2)
Γ(3/8) t−

1
8 + y0t−

7
8 ,

Dq
0+Φ0(t) = D

1
6
0+

(
−

B(5/6,1/2)
Γ(5/6) t

1
3 + x0t−

2
3
)
= −

B(5/6,1/2)
Γ(5/6)

Γ(4/3)
Γ(7/6) t

1
6 + x0

Γ(1/3)
Γ(1/6) t

− 5
6

Dp
0+Ψ0(t) = D

1
5
0+

(
−

B(3/8,1/2)
Γ(3/8) t−

1
8 + y0t−

7
8
)
= −

B(3/8,1/2)
Γ(3/8)

Γ(7/8)
Γ(27/40) t

− 13
40 + y0

Γ(1/8)
Γ(3/40) t

− 43
40 .

Then

||Φ0|| =max
 sup

t∈(0,∞)

t
2
3

1+t |Φ0(t)|, sup
t∈(0,∞)

t
5
6

1+t |D
1
6
0+Φ0(t)|


≤max

 sup
t∈(0,∞)

B(5/6,1/2)
Γ(5/6) t+|x0 |

1+t , sup
t∈(0,∞)

B(5/6,1/2)
Γ(5/6)

Γ(4/3)
Γ(7/6) t+|x0 |

Γ(1/3)
Γ(1/6)

1+t


≤max

{B(5/6,1/2)
Γ(5/6) M1,1+ |x0|,

B(5/6,1/2)
Γ(5/6)

Γ(4/3)
Γ(7/6) M1,1+ |x0|

Γ(1/3)
Γ(1/6)

}
and

||Ψ0|| =max
 sup

t∈(0,∞)

t
7
8

1+t
3
2
|Φ0(t)|, sup

t∈(0,∞)

t
43
40

1+
3
2
|D

1
5
0+Ψ0(t)|


≤max

{B(3/8,1/2)
Γ(3/8) M3/2,3/4+ |y0|,

B(3/8,1/2)
Γ(3/8)

Γ(7/8)
Γ(27/40) M3/2,3/4+ |y0|

Γ(1/8)
Γ(3/40)

}
.

By direct computation, we get

M0 =max
{B(2/3,1/2)
Γ(2/3) M3/2,1,

B(5/6,1/2)
Γ(5/6) M3/2,1

}
,

N0 =max
{B(7/40,1/2)
Γ(7/40) M1,3/4,

B(3/8,1/2)
Γ(3/8) M1,3/4

}
,

a = M0
[∑s−1

j=1[A j+B j]||Ψ0||
µ j−µs + [As+Bs]

]
= M0(A+B),

b = N0
[∑r−1

j=1[C j+D j]||Φ0||]δ j−δr + [Cr +Dr]
]
= N0(C+D).
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From Theorem 3.2, we have that IVP(4.1) has at least one solution (x,y) ∈ Z if
(i) µδ > 1 with

abµ (δµ)δµ

(δµ−1)δµ−1

[
||Φ0||+

(
||Ψ0 ||

b

) 1
δ

]δµ−1

≤ 1 for δ > 1,

baδ (δµ)δµ

(δµ−1)δµ−1

[
||Ψ0||+

(
||Φ0 ||

a

) 1
µ

]δµ−1

≤ 1 for µ > 1

(4.2)

or
(ii) µδ = 1 with

either ab
1
δ < 1 or ba

1
µ < 1 (4.3)

or
(iii) µδ < 1.

One sees that for sufficiently small A,B,C,D, we have ab
1
δ < 1 and ba

1
µ < 1, then IVP(4.1) has

at least one solution when δµ = 1 and sufficiently small A,B,C,D.
One sees that for sufficiently small A,B,C,D, |x0|, |y0| that (4.2) holds. Then IVP(4.1) has at least

one solution when δµ > 1 and sufficiently small A,B,C,D, |x0|, |y0|.
IVP(4.1) has at least one solution when δµ < 1. The proof is complete.

�
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