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1 Introduction

The notion of poly-harmonic maps was introduced in [6] as a natural generalization of the well-
known harmonic maps. Thus, while harmonic maps between Riemannian manifolds are critical
points of the energy functional, the biharmonic maps are critical points of the bienergy functional.

The study of biharmonic submanifolds in Euclidean spaces was initiated by B. Y. Chen in the
middle of 1980s. In particular, he proved that there exist no proper biharmonic surfaces in Euclidean
3-spaces [1]. There are many related to non-existence results in Euclidean spaces developed by L.
Dimitric [4, 5]. Also in [8], non-existence of proper biharmonic hypersurfaces in Euclidean 4-
spaces was proved. Recently, non-existence of proper biharmonic hypersurfaces with three distinct
principal curvatures [9, 10, 11] and also for 6(2)-ideal and §(3)-ideal hypersurfaces in Euclidean
space [3] were obtained. The global version of Chen’s conjecture for biharmonic submanifolds in
Euclidean space was studied in [7]. For more works in this field, please see [2].
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In view of the above mentioned development, it is natural to investigate existence/non-existence
of proper biharmonic hypersurfaces in Euclidean space E"(n > 5) with number of distinct principal
curvatures greater or equal than 4.

Consequently, in this paper, we study biharmonic hypersurfaces with up to four distinct principal
curvatures in Euclidean space E> using the technique developed in [8].

2 Preliminaries

Let (M, g) be a hypersurface isometrically immersed in a 5-dimensional Euclidean space (E>,g) and
8= §|M-

Let V and V denote linear connections on E and M, respectively. Then, the Gauss and Wein-
garten formulae are given by

VY =VxY+h(X,Y), ¥ X,Y e[(TM), 2.1)

Vxé = —AgX, (2.2)

where £ is the unit normal vector to M, h is the second fundamental form and A is the shape operator.
It is well known that the second fundamental form 4 and shape operator A are related by

8(M(X,Y),8) = g(AX.Y). (2.3)

The mean curvature vector is given by
1
H= ZtraceA. 2.4)
The Gauss and Codazzi equations are given by
R(X,Y)Z = g(AY,2)AX — g(AX,Z)AY, (2.95)

(VxA)Y = (VyA)X, (2.6)
respectively, where R is the curvature tensor and
(VxA)Y = VxAY - A(VxY), 2.7

forall X,Y,Z e (T M).
A biharmonic submanifold in a Euclidean space is called proper biharmonic if it is not minimal.
The necessary and sufficient conditions for M to be biharmonic in E° are

AH + HiraceA? = 0, (2.8)

AgradH +2HgradH =0, 2.9)

where H denotes the mean curvature. Also, the Laplace operator A of a scalar valued function f is
given by [1]

4
af ==Y (eieif ~Veeif), 2.10)
i=1

where {e},es,e3,e4} is an orthonormal local tangent frame on M.
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3 Biharmonic hypersurfaces of zero scalar curvature

(a) Four distinct principal curvatures

In this section we study biharmonic hypersurfaces M with shape operator diagonal. We also
assume that mean curvature is not constant. From (2.9), it is easy to see that gradH is an eigenvector
of the shape operator A with the corresponding principal curvature —2H. Without loss of generality,
we choose e; in the direction of gradH and therefore shape operator A of hypersurfaces will take
the following form with respect to a suitable frame {e;, e, e3,e4}

-2H
_ A
Ag = s (3.1)
Ay
The gradH can be expressed as
4
gradH = ) ei(H)e;. (3.2)
i=1
As we have taken e parallel to gradH, consequently
e1(H) #0,ex(H) = 0,e3(H) = 0,e4(H) = 0. (3.3)
We express
4
Veej= ) wher, i,j=1,2,3,4. (3.4)
k=1
Using (3.4) and the compatibility conditions (V. g)(e;,e;) = 0 and (V,,g)(e;,e;) = 0, we obtain
Wi, =0, w], +wj; =0, (3.5)
fori+ j,and i, jk=1,2,3,4.
Taking X = e;,Y = ¢; in (2.7) and using (3.1), (3.4), we get
(VeA)e) = ei(d)ej+ Ny whien(dj— ).
Putting the value of (V.,A)e; in (2.6), we find
ei(dj)ej+ X, w?jek(/lj — ) =ej(dei+ X, wlj‘-,-ek(/ii = Ap),
whereby for i # j =k and i # j # k, we obtain
ei(d)) = (hi = 'l = (A= e, (3.6)
(A= APw]; = (4= ADwp, (3.7)

respectively, for distinct i, j,k = 1,2,3,4.
Since 41 = —2H, from (3.3), we get

e1(d1) # 0,e2(41) = 0,e3(41) = 0,e4(41) = 0. (3.8)
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Using (3.3), (3.4) and the fact that [e; e;1(H) = 0 = Ve ;(H) -~ V,,e,(H) = w}jel(H) - a)}.iel(H),
fori+# jandi,j=2,3,4, we find

ol =wl, (3.9)

Now, we show that A; # Ay, j = 2,3,4. In fact, if A; = 4y for j# 1, from (3.6), we find
er(4)) = (4 = el =0, (3.10)

which contradicts the first expression of (3.8).
Since M has four distinct principal curvatures, from (2.4), we obtain that

A+ A3+ A4 = 6H. (3.11)
Putting i # 1, j = 1 in (3.6) and using (3.8) and (3.5), we find
w; =0, i=1,2,3,4. (3.12)
Putting k=1, j#i,and i, j = 2,3,4 in (3.7), and using (3.9), we get
w); =l = w], =w], =0, j#iand i,j=2,3,4. (3.13)

Now, using (3.4), (3.12) and (3.13), we have:

Lemma 3.1. Let M be a biharmonic hypersurface of non-constant mean curvature with four distinct
principal curvatures in Euclidean space E, having the shape operator given by (3.1) with respect
to suitable orthonormal frame {e|,e;,e3,e4}. Then,

Vele1 = Ve]€2 = Ve1 €3 = Ve]€4 = 0, (3.14)

1 1 3 4 2 4 2 3
Ve,e1 = —w5,62,V,,00 = wyre1 + wyye3 + Wyye4,Ve,03 = Wrzer + wyses,Ve,e4 = Wy e + w5y e3

(3.15)
v _ _ 1 v _ 3 4 v _ 1 2 4 v _ 2 3
€3€]1 = —W33€3, V€2 = W3,€3 T W3y€4, V€3 = W33€] T W3382 + W33€4, Ve €4 = W3y€) +w3y€3
(3.16)
v _ 1 v _ 4 3 v _ 4 2 v 1 2 3
e4€1 = —Wy €4, Ve €2 = Wys€4 + Wyy€3, Ve, €3 = Wysze4 + Wy3€2, Ve, €4 = Wyy€] twy 2+ wye3,
(3.17)

where wfj satisfy (3.5) and (3.6) fori,j=1,2,3,4.

Evaluating g(R(X, Y)Z, W), using Lemma 3.1, and (2.5) and (3.1), we find the following (3.18)~(3.35):

og(R(er,er)er,e2),

e1(why) — (why)? = —2HA,. (3.18)

*g(R(e1,e3)e1,e3),
e1(wy) — (33)* = —2HA;. (3.19)

og(R(e1,eq)er,e4),
er(wyy) — (wy)* = —2H4. (3.20)

eg(R(e1,e2)ea,e3),
e1(w3y) — w3,wy, =0. (3.21)

og(R(e1,e2)ez,e4),
el(wgz) - wézwéz =0. (3.22)
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og(R(e1,e3)e3,e2),
el(“’_%) - ‘”%3‘“%3 =0.

og(R(ey,e3)e3,es),
e1(ws3) ~ wiw33 = 0.
og(R(ey,eq)es,e2),
e1(wiy) ~ wiwy = 0.
og(R(e1,e4)es,€3),
e1(@jy) ~wiywy, =0.
og(R(ea,e3)er,e3),

2 3 11 4 4 3.2 22, 4 4
e2(w33) + e3(Wyy) — Wy W33 = Wy w33 — (W)™ — (W33)" + W3pw);

*g(R(ea,e3)er,e1),

1 301 31
e3(wy)) + Wy W33 — Wy Wy, = 0.

og(R(ea,es)er,e4),

1 3 3

2
T Waw

2

2
43

2

3 3 _
—Wy,Wws, = A2 3.

4

2 4 1 3 432 22, 3 4
e2(wyy) +es(Wy) — Wy Wy — Wiy — (Wy)" — (W)™ + Wiy — Wy Wi — Wi Wy = L s,

*g(R(e2,e4)e2,€1),
I 4 1 _ 4]
e4(Wy) + Wy ~ Wywy =0
*g(R(e3,e4)e3,€4),

1 2

3 4 1 2 2 432 32, 2
e3(wyy) + es(ws3) — W3y — W3Wyy — (W33)" — (Wiy)” + W3W) ;3 — Wy W)

*3(R(e3,e4)e3,€1),
1 4ol ot ol =0
e4(W33) + W33y — W33w33 = 0.

*g(R(ez,e3)e3,¢e1),
1 3N e SO B
e2(w33) + Wi3W;, — Wizws3 = 0.

o2(R(ez,e4)es, 1),

1 2 1 2 1 _
e2(Wyy) + Wiy Wy — Wiy Wy = 0.

og(R(e3,e4)e4,e1),

1 301 301 _
e3(Wyy) + Wiy W33 — Wiy = 0.

3

3

4 4 _
— Wyzw3y = A34.

Now, evaluating scalar curvature of the hypersurface, using (2.5) and (3.1), we get

B+ 5+ = 1207,

assuming that the scalar curvature of the hypersurface is zero.
Using (3.1) and (3.36), we find

traceA?= 4H? + 23+ 5 + 4] = 16H*

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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Using Lemma 3.1, equations (2.10) and (3.3) and putting the value of traceA? in (2.8), we obtain
—ere1(H) + (why + s + wy,)e1 (H) + 16H* = 0. (3.37)

Using (3.3), Lemma 3.1, and the fact that [¢; e1](H) =0=V,,e;(H) -V, e;(H), fori=2,3,4, we
find
eiel(H) =0. (338)

Also, using (3.38) and the fact that [e; e;](e1(H)) =0=V,ei(e;(H)) - V., ei(e1(H)), we obtain
eiere1(H)=0, i=2,3,4. (3.39)
Differentiating (3.37) with e;, and using (3.3) and (3.39), we get
ei(why +wis +wyy) =0, i=2,3,4. (3.40)
Now, we have:

Lemma 3.2. Let M be a biharmonic hypersurface of zero scalar curvature with four distinct princi-
pal curvatures in Euclidean space E>, having the shape operator given by (3.1) with respect to suit-
able orthonormal frame {e|,es,e3,e4}. Then, ex(13) =0=er(1y), e3(1r)=0=e3(14), es(d3)=

_ 2 2 3 _n—,3 4 __ 4
0=es(2) and wy, = 0= w3, w3, =0=wy,, w;=0=ws;.

Proof. The proof can be divided in three parts:
(i) Proof of ex(14) = 0 = ey(13) and cuf14 =0= w§3.

Differentiating (3.36) and (3.11) with e, and using (3.3), we get
Arez(A2) + Aze2(A3) + Ager(A4) = 0, (3.41)

and
e2(A2) +ex(A3) +ea(A4) =0, (3.42)

respectively.
Eliminating e;(A1,) from (3.41) and (3.42), we find

(A3 = A2)e2(A3) + (A4 — A2)ex(A4) = 0. (3.43)
Putting the value of e;(43) and e;(A4) from (3.6) in (3.43), we obtain
(A2 = A4)*wl, + (12 — 3)°w3; = 0. (3.44)
Differentiating (3.44) along e; and using (3.6), (3.23), (3.25) and (3.44), we have

[2(21 = 22)(A3 = A)why + (21 + A2 = 3A4)(Ar — 3w},

3.45
—(2A1 + A2 = 343)(A2 — A)wls]wi, = 0. 043)
Similarly, differentiating (3.11) with e; and e, successively and using (3.38), we find
ereq (/12) + 6261(/13) + 6261(/14) =0. (3.46)

Using (3.6) in (3.46), we get

ex((A2 = A)wihy) +ex((A3 — A)wyy) + ea((dg — A)wyy) = 0. (3.47)
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Now, putting the value of e>(4>) and ez(wéz) from (3.42) and (3.40) in (3.47), and thereafter using
(3.6), (3.33), (3.34) and (3.44), we obtain

[(A4 = 3wy + (A3 = A)wy, + (A2 — Awi;lw], = 0. (3.48)

In equations (3.45) and (3.48) we get that at least one of the factors wfw or the expressions
between square brackets, has to vanish. We claim that wi 4=0. In fact, if a)ﬁ4 # 0, then

2(A1 = 2)(A3 = Aw), + (21 + A2 = 344) (12 — WB)w),

—Q2A1 + A =33)(A2 — 4w}, = 0. 349)
(A4 = B3)w), + (13— D)w), + (A — Awl, = 0. (3.50)
Eliminating w3, from (3.49) and (3.50), we get
(A2 = A3)(Aa = B3)(wpy ~ wyy) = 0, (3.51)
which shows that
Wy = Wiy, (3.52)

which is not possible as from (3.18) and (3.20), it gives A, = A4, a contradiction. Therefore, wfm =0,
which gives w§3 = 0 in view of (3.44). Consequently, from (3.6), we find e>(13) = e2(A4) = 0.

(i))Proof of e3(12) = 0 = e3(A4) and w3, = 0 = w},.
Differentiating (3.36) and (3.11) with e3 and using (3.3), we get
A2e3(A2) + Aze3(A3) + A4e3(A4) = 0, (3.53)

and
e3(Ap) +e3(A3) +e3(A4) =0, (3.54)

respectively.
Eliminating e3(A3) from (3.53) and (3.54), we find

(A2 — A3)e3(A2) + (A4 — A3)e3(A4) = 0. (3.55)
Putting the value of e3(1,) and e3(A4) from (3.6) in (3.55), we obtain
(43— ) ’wl, + (A3 — ) w3, = 0. (3.56)
Differentiating (3.56) along e; and using (3.6), (3.21), (3.26) and (3.56), we have

[2(A1 = 23)(A2 = A)wis + (241 + A3 = 3A4)(A3 — D)w),

3.57
—(2A1 + A3 = 3)(A3 — Aw),lw;, = 0. (3.57)
Similarly, differentiating (3.11) with e; and e3 successively and using (3.38), we find
eze1(Az) +ezer(A3) +eze(dq) = 0. (3.58)

Using (3.6) in (3.58), we get

e3((2 = A)wiy) +e3((A3 — A)wyy) +e3((dg — A)wyy) = 0. (3.59)
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Now, putting the value of e3(13) and e3 (a);3) from (3.54) and (3.40) in (3.59), and thereafter using
(3.6), (3.28), (3.35) and (3.56), we obtain

[(A4 — D)wls + (A2 — 3wy, + (A3 — Aw),lw;, = 0. (3.60)

Equations (3.57) and (3.60) show that at least one of the factors a)i 4> Or the expressions between

square brackets, has to vanish. We claim that wi 4=0. In fact, if a)i4 # 0, then

2(A1 = 3) (A = Aw); + 21 + A3 = 304)(43 — D)w),

—(2A1 + A3 = 342)(A3 — Ag)w), = 0. (3-61)
(A4 — )w; + (1 — B)w), + (23— Aw), = 0. (3.62)
Eliminating “’%2 from (3.61) and (3.62), we get
(A3 = )4 — ) (wiz —w)y) =0, (3.63)
which shows that
Wl = Wiy, (3.64)

which is not possible as from (3.19) and (3.20), it gives A3 = A4, a contradiction. Therefore, wi 4+=0,
which gives wgz = 0 in view of (3.56). Consequently, from (3.6), we find e3(1>) = e3(A4) = 0.

(iii) Proof of e4(13) = 0 = e4(1) and w3, = 0 = w3,
Differentiating (3.36) and (3.11) with e4 and using (3.3), we get
Areq(A2) + Azeq(A3) + Ageq(Ag) = 0, (3.65)

and
e4(Ap) +e4(A3) +es(A4) =0, (3.66)

respectively.
Eliminating e4(A4) from (3.65) and (3.66), we find

(A3 — Ag)eq(A3) + (A2 — Ag)eq(A2) = 0. (3.67)
Putting the value of e4(A3) and e4(A») from (3.6) in (3.67), we obtain
(A= 2)*wsy + (A — 3) w3, = 0. (3.68)
Differentiating (3.68) along e; and using (3.6), (3.22), (3.24) and (3.68), we have

[2(A1 = 44)(A3 = )wy, + (A1 + A4 = 32)(As — A3)w),

3.69
—(2A1 + A4 = 323)(A4 — D)w};lw), = 0. (5.69)
Similarly, differentiating (3.11) with e; and e4 successively and using (3.38), we find
eqe1(A2) +ege1(A3) +eqe(Ag) = 0. (3.70)

Using (3.6) in (3.70), we get

ea((A2 = A)wyy) +ea(A3 = A)wls) +ea(Aa = AD)wyy) = 0. (3.71)
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Now, putting the value of e4(44) and e4(a)jr4) from (3.66) and (3.40) in (3.71), and thereafter using
(3.6), (3.30), (3.32) and (3.68), we obtain

[(A2 — B3)wy, + (A3 = A)w), + (As — )wislws, = 0. (3.72)

Equations (3.69) and (3.72) show that at least one of the factors “"212’ or the expressions between
square brackets, has to vanish. We claim that w‘z‘zzo. In fact, if w‘z‘z # 0, then

2( = A3 = )wl, + 2 + A4 = 32) (A4 — A3)w),

—(2A1 + A4 = 343)(A4 — A)w}, = 0. (73)
(A2 = 3wy, + (A3 — A)wy, + (s — D)wy, = 0. (3.74)
Eliminating w},, from (3.73) and (3.74), we get
(A4 = 23)(A2 = A3)(wyy ~ wyy) = 0, (3.75)
which shows that
W)y = Wy, (3.76)

which is not possible as from (3.18) and (3.20), it gives A, = A4, a contradiction. Therefore, w‘z‘z =0,
which gives a)‘3‘3 = 0 in view of (3.68). Consequently, from (3.6), we find e4(13) = e4(Ay) = 0.

Combining (i), (ii) and (iii), the proof of Lemma 3.2, is complete.
Now, we have:

Lemma 3.3. Let M be a biharmonic hypersurface of zero scalar curvature with four distinct prin-

cipal curvatures in Euclidean space E°, having the shape operator given by (3.1) with respect to

. 4 _ 4 _ 3 _ 3 _ 2 _ 2 _
suitable orthonormal frame {e1,e;,e3,e4}). Then, Wy = W3y = Wy, =Wy, = W5, = wy; =0.

Proof. In view of a);‘;4 =0= a)§3, wgz =0= wfw w‘z‘z =0= w§3, from (3.15) and (3.16), we
have
Ve,e3 = wyes, Veer = wie. (3.77)

Now, evaluating g(R(e1,e3)es,eq) and g(R(ey, e2)es,e4), and using (2.5), (3.1), (3.14) and (3.77),
we find
e1(w3,) — wiwls = 0. (3.78)

e1(wsy) — W33wy, = 0. (3.79)

Putting j=4,k=2,i=31in (3.7), we get
(A2 = w3, = (A3 — A)ws;. (3.80)
Differentiating (3.80) with e, and using (3.78) and (3.79), we find
(e1(A2) — e1(A))w3, + (A2 — W)wHwyz = (e1(A3) — €1(Aa))wys + (A3 — Ag)wswh,. (3.81)
Putting the values of e;(42),e1(43) and e1(A4) from (3.6) in (3.81), we obtain
Wi (wy ~wyy) = Wyy(W33 ~ W), (3.82)
Substituting the value of w§3 from (3.80) in (3.82), we find
W3 [(A2 = B)wly + (A — A)whs + (A3 — A)w,] = 0. (3.83)

As from (3.74), we have seen that assuming



Biharmonic hypersurfaces in E> with zero scalar curvature 21

(A — /13)(4)41‘4 + (A4 — /12)(1);3 + (A3 - /14)(‘);2 =0,

leads to contradiction, therefore from 3. 83) we obtain w32 = 0, which together with (3.80) gives
w23 = O Also, from (3.5), we get a)3 4= w32 and w23 4. Consequently, we obtain a)§4 =0,
and w2 4 = 0, which together with (3.7) gives w2 13 =0, and Wl 1, = 0, whereby the proof of Lemma 3.3
is complete.

In view of Lemma 3.2 and Lemma 3.3, the equations (3.27), (3.29) and (3.31) reduce to
e1(A2)e(A3)

1 1
- = A3, =—Ar A3, 3.84
YW =R O T (s - ) 3 (3.84)
11 e1(2)e1(Aq)
- = A Ay, = —ArAy4, 3.85
Wnu =AM O T (= ) 4 (9-83)
A A
P U O PR L L YR Y (3.86)

(A=) (A3 = 41)

respectively.
Differentiating (3.11) along e; and putting the values of e;(12),e1(43),e1(44), and using (3.6),
we find
(A2 = A)wdy + (A3 = A)wis + (A — 2wy, = 6ei (H). (3.87)

Again, differentiating (3.87) with e; and putting the values of el(wéz),el(w§3),e1(wi4), and
using (3.18)~(3.20) and (3.6), we obtain

2 = A1) (Why)* +2(A3 = A )(wh)* + 2(As — AD(W) ) — e1 (A1) (W), + whs + w),)

—2H(5 + 5+ A5 — A1 — A341 — A3dy) = 6eye1 (H). (3.88)
Using (3.36), (3.11) and the fact that 4; = —2H in (3.88), we find
20 = AL + 2003 = (@] + 20k = D)@l (3.89)
+2e1(H)(wy, + w35+ w,,) —48H” = 6eje1 (H).
Putting the values of wéz, wé3, w}m and using (3.6) in (3.89), we obtain
3ere(H) 2(_13)1 " ;j(_ﬂi)l ¥ f(ﬁ) )—ei(H)(S el(h) 2(—&2 ¥ 4641(—&3)1 )= —24H%. (3.90)
Eliminating e; e (H) from (3.37) and (3.90), we find
CRER + 550+ 250D -2 D + S+ S = o 691
Now, squaring (3.11) and using (3.36), we get
225+ A dy + 344 = 12H7. (3.92)

Also, using (3.11), we can express e%(/lz) as follows:
e2() = e1()(6e1(H) — e1(A3) — e1(As)) = 6e1(H)e1(d2) —e1(2)er (A3) — ey (e (A4),

or,

ei() _ Gei(Hei(dy) _ e1(alei(a) _ er(dper(d)

A=A A=A -1 A=A ’
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which by using (3.84) and (3.85), can be written as

e2() _ 6ei(H)ei ()

= + bHA3(A3 — A1) + L Ag(Ag — A1).
L pRyy 2A3(A3 = A1) + A2 As(A4 — A1)

Similarly, we can show that

e%(/13) _ 6e1(H)e(13)
A3 — A4 a A3 =4y

+ A3 A2(Ay — A1) + A3A4(A4 — A1),

1) 6ei(H)ei(A4)
- A=A
On addition of (3.93)~(3.95), we find

+ A4 A3(A3 — A1) + A4 A2 (A2 — Ay).

A | €3 | ) _

on Py t ey = 0e (H)(SR) 4 al) g a1y 4 (3 4+ A d3)(A3 = Ay)

= 43-4 /14 41
+(Ao A4 + A3 A3)(Ag — A1) + (A2 A3 + A3 A2) (A2 — Ay).

Using (3.92) in (3.96), we get

el() | a3 | )

Tr it = = 6e (H)(el(/lz) e1(A3) 61(14)) + (12H2 /12/14)(/13 _ /11)

- A3 /14 A1
+(12H? = 1243)(A4 — A1) + (12H? = 24 3)(A2 — A1)
= 6y (H)(LU2 4+ L) 1 Sy 4 1024 + A3 + A4 — 341)
—3/12/13/14 + /11(/12/13 + 344+ /12/14).

Using (3.92), (3.11) and the fact that 4; = —2H in (3.97), we find

i) | G | G
A=A A3—-1 Ag—=A1

From (3.91) and (3.98), we obtain

A A A
eV (H)( eild)  eilds) e 4))=_12H3+
A=A /13—/11 Ag— A

= 6y (H)(SU2 + L) 4 S0 1 120H3 ~ 30,4344,

34344

Using (3.37) and (3.99), we have

3434

ere(H) =4H> + T

On the other hand, using (3.6), we can write

e1(A2A344) = e1(A2)A3A4 + €1(A3) A2 A4 + €1 (A4)A342
= W), (A = A1) A3 A4 + W35 (A3 = 1) A2 As + wly (As — A1) A3,

= LAz Ad(wh, + Wy +wy,) — A (B3AW), + A Awl; + A3 bw),),

which on using (3.6) and (3.84)~(3.86), gives

A A A A A A
e1(2A3 ) = A A da(S530 + G 1 Q) — G (S1LR)) (L)) (),

Now, using (3.18)~(3.20), we compute
1wy w330y,) = €1(Wy)W3wy, + €1(W3)wywy,) + e1(Wy w3 W),
= [(w},)* —2H b ]wlw), + [(wi)? —2HA3lw),w), + [(w),)? = 2HA4]w),w),,

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
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which on using (3.84)~(3.86) gives
er(wh,whwh)) = B34 + B0 ds+ 5130+ 6H L34 = LAz (A + 3+ A4 +6H)  (3.104)
Using (3.11) and (3.6) in (3.104), we find
A A A
2HL A = e (A1) 1) o) ) (3.105)
A=A A3—A 44—
Also, multiplying (3.84), (3.85) and (3.86), we get
e1(d) ei(d3) ei(ds) »
L3 Ag)? = - : 3.106
(A24314) (/12_/11/13_/11/14_/11 ( )
Differentiating (3.106) along e, and using (3.105), we obtain
61(/12) e1(43) ei(dq)
34 —12H 3.107
e1(A3dy) = < YRR p R ( )
Using (3.102) in (3.107), we have
ei(lr)  ei(d3)  ei(dq)
A A344) = 242434 + + . 3.108
e1(A2A344) 234(/12—/11 FRyy /14_/11) ( )
Differentiating (3.99) with e, we find
ere(H)(LH) 4 S0 4 Ay 4 o (o) (L2 + €1 (S42) + €1 (542)) 3109
= —36H%e(H) + 3—“@“3‘” G109
Putting the values of eje(H) and e (d24344) from (3.100) and (3.108) in (3.109), we get
(4H = 2Bt + S50+ ZED e (DG ra @D +a @3 5,
= —36H?e (H).
Using (3.18)~(3.20) in (3.110) and using (3.11), we have
(4R = ZEp) (g4 Q08+ G + el DS’ + (GERP + (TP 1260 o
= —36H2e1(H) '
Also, from (3.84) ~ (3.86), we find
e1(d2) 2 2 e1(43) 2 2 e1(ds) 2 2
—2 2 =22 =-13, =-1;. 3.112
(oo V=8 (=8 (=4 (3.112)
Using (3.112) and (3.36) in (3.111), we obtain
3 3,131 () (A)  er(da) 2
H? = =p2) (G50 + ooy + ) = — 120 e (H). (3.113)
Eliminating e; (H) from (3.99) and (3.113), we find
34,434 () @) (/1) 34,434
(4H - 222 (T3 + T30 + 500 = —12HP (- 12H° + =224, (3.114)
Also, from (3.112), (3.92) and (3.84) ~ (3.86), we obtain
(el(/lz) e1(d3) 61(34))2 36H2 (3115)

/12 /1| /13—/1| /14 /11
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From (3.115) and (3.114), we get

3,451 3,451
3AH? - 22050 - ot ¢ 22050
4 4
or,
A3, = 8HA. (3.116)

Differentiating (3.113) along e, we find

(4H3 3/12::3/14)8 e1(4d2) + e1(43) 61(44))+(12H2€1(H)

B T Al 3.117
— byl | o) @'&4)) —12H%e1e1(H) - 24HeX(H). G417
Using (3.18)~(3.20), (3.112) and (3.11), we can show that
ey (P 4 QU 4 )y — 45?2, (3.118)
Using (3.99), (3.100), (3.108), (3.115) and (3.118) in (3.117), we find
(4H? - 22404 H2) + [12H (- 1213 + 2pdty _ 3bls (_3612)) (3.119)
= —12H>(4H> + 2254y _24H3(H), '
which on simplifying, gives
90H> 4344 — 192H° = —24He2 (H). (3.120)
On the other hand from (3.99) and (3.113), we get
3,131 32,131
~12H%¢3(H) = (-12H> + 243 y@H? 243 L. (3.121)
Now, eliminating e3(H) from (3.120) and (3.121), we obtain
2 3 6 _
x> +44xH?> —48H% = 0, (3.122)
30,434
where x = =277,
On solving (3.122), we get
3,134
- % = (=22 +2V133)H>. (3.123)

Hence, from (3.116) and (3.123), we get that H must be zero.

(b) Three distinct principal curvatures

Suppose that M is a biharmonic hypersurface with three distinct principal curvatures and zero
scalar curvature with shape operator diagonal. We also assume that mean curvature is not constant.
From (2.9), it is easy to see that gradH is an eigenvector of the shape operator A with the corre-
sponding principal curvature —2H. Without loss of generality, we choose e; in the direction of
gradH and therefore shape operator A of hypersurface will take the following form with respect to

a suitable frame {eq, e, €3, €4}
-2H
Ap = (3.124)

A
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From (3.11), (3.36) and (3.124), we get

21+ A4 =6H (3.125)
202+ 25 = 12H? (3.126)

From (3.125) and (3.126), we find
A=A4=2H, (3.127)

which contradicts the assumption of three distinct principal curvatures. Hence, there exist no bihar-
monic hypersurface with three distinct principal curvatures of zero scalar curvature in E°.

(c) Two distinct principal curvatures

Suppose that M is a nonminimal biharmonic hypersurface with two distinct principal curvatures
and zero scalar curvature with shape operator diagonal. From (2.9), it is easy to see that gradH is an
eigenvector of the shape operator A with the corresponding principal curvature —2H. Without loss
of generality, we choose ¢; in the direction of gradH and therefore shape operator A of hypersurface
will take the following form with respect to a suitable frame {ej,e2,e3,¢e4}

—-2H
Ag = A (3.128)
A
A
From (3.11), (3.36) and (3.128), we get
A=2H (3.129)
Also, from (3.6) and (3.128), we obtain
1 1 1 _el(H)
= = = 3.130
Wy =W =Wnu ="y ( )
Also, from (2.5), R(e1,e3,e1,e3) shows that
er(wly) = (wh,)* —4H>. (3.131)
Using (3.130) and (3.131), we find
i< 24D e 3.132
ere1(H) = g SH (3.132)
On the other hand, from (2.8), (2.10), (3.128), and (3.130), we have
= 299D e 3.133
ere(H) = gt . (3.133)

From (3.132) and (3.133), we get that H must be zero, which is a contradiction.

Therefore, we conclude that:

Theorem 3.4. There exists no proper biharmonic hypersurface M in the Euclidean space E> of zero
scalar curvature.

Acknowledgement: The authors are grateful to the referee for early report and helpful remarks on the
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