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1 Introduction

The theory of hypersurfaces, defined as submanifolds of codimension one, is one of the fundamental
theories of submanifolds.

Let M be a submanifold of a semi-Riemannian manifold (M,g). If the induced metric g on M
is non-degenerate, then (M,g) becomes a Riemannian or a semi-Riemannian manifold. When g
is degenerate, (M,g) is called a lightlike submanifold, and many different situations appear. The
geometry of lightlike submanifolds is different and rather difficult since (contrary to Riemannian or
semi-Riemannian submanifolds) its normal vector bundle intersects the tangent bundle.
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Thus, one cannot use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen
([6])) to define the induced geometric objects (such as linear connection, second fundamental form,
Gauss and Weingarten equations) on the lightlike submanifolds.

In 1996, Duggal and Bejancu ([8]) published a book on general theory of lightlike submani-
folds of semi-Riemannian manifolds and their applications to general relativity. They introduced
a non-degenerate screen distribution (or equivalently a null transversal vector bundle) so as to get
three factors splitting the ambient tangent space. Then, they derived the main induced geometric
objects (depending on the screen distribution, and hence is not unique in general) such as second
fundamental forms, shape operators, induced connections, curvature, etc. Moreover, it is important
to notice that the second fundamental form is independent from the choice of the screen distribution.

We know that the shape operator plays an important role in the study geometry of submanifolds.
In the non-degenerate case, we have one shape operator which is diagonalizable and its eigenvalues
are called principal curvatures of the hypersurface. In [4] and [5], E. Cartan studied and classified
hypersurfaces in standard Riemannian space forms whose principal curvatures are all constant. The
shape operator of a non-degenerate submanifold is related to the second fundamental form of the
hypersurface. Contrary to this, we will see that in the case of lightlike hypersurfaces, there are

two shape operators (AN and
∗

Aξ) and there are interrelations between these geometric objects and
those of its screen distribution (see relations (2.19) and (2.20)). Moreover, the shape operator AN

of a lightlike hypersurface is not necessarily auto-adjoint, but the on
∗

Aξ of the screen distribution

is diagonalizable. Since the null characteristic vector field is an eigenvector of
∗

Aξ with zero as
eigenvalue, in the present paper, we consider the other eigenvalues.

The paper is organized as follow. Section 2 covers useful preliminaries for study the geometry
of lightlike hypersurfaces. In Section 3, we prove the so-called Cartan’s fundamental formula for
lightlike hypersurfaces (Theorem 3.5). We give a proof along the same lines as Cartan’s original
proof, although Cartan used differential forms rather than vector fields. We apply Theorem 3.5 in
Section 4 to show that a screen conformal lightlike hypersurface of a Lorentzian Euclidean space is
locally a lightlike triple product manifold (Theorem 4.2). Using this theorem we prove a classifica-
tion theorem for screen conformal lightlike hypersurfaces with constant screen principal curvatures
(Theorem 4.4).

2 Preliminaries on Lightlike hypersurfaces

Let (M,g) be a (m+2)-dimensional semi-Riemannian manifold of index ν, (0< ν <m+2). Consider
a hypersurface M of M and denote by g the tensor field induced by g on M. We say that M is a
lightlike (degenerate, null) hypersurface if rank(g) = m. Then the normal vector bundle T M⊥ inter-
sects the tangent bundle along a nonzero differentiable distribution called the radical distribution of
M and denoted by Rad(T M):

Rad(T M) : x 7→ Rad(TxM) = TxM∩TxM⊥. (2.1)

A screen distribution S (T M) on M is a non-degenerate vector bundle complementary to T M⊥. A
lightlike hypersurface endowed with a specific screen distribution is denoted by the triple (M,g,S (T M)).
As T M⊥ lies in the tangent bundle, the following result has an important role in the study of the
geometry of lightlike hypersurfaces.

Theorem 2.1. ([8]) Let (M,g,S (T M)) be a lightlike hypersurface of (M,g). Then there exists a
unique vector bundle tr(T M) of rank 1 over M, such that for any non zero section ξ of T M⊥ on a
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coordinate neighborhoodU ⊂ M, there exists a unique section N of tr(TM) onU satisfying

g(N, ξ) = 1 and g(N,N) = g(N,W) = 0, (2.2)

for all W ∈ Γ(S (T M)|U).

With this theorem we may write the following decomposition

T M|M = S (T M)⊥(T M⊥⊕ tr(T M)) = T M⊕ tr(T M), (2.3)

where ⊥ denotes an orthogonal direct sum and ⊕ a direct sum. Throughout the paper, we denoted by
Γ(E) the C∞(M)-module of smooth sections of a vector bundle E over M, while C∞(M) represents
the algebra of a smooth functions on M. Also, all manifolds are supposed to be smooth, paracompact
and connected.

Let (M,g,S (T M)) be a lightlike hypersurface of a semi-Riemannian manifold (M,g), ∇ be the
Levi-Civita connexion of M, ∇ the induced connection on (M,g). Gauss and Weingarten formulas
provide the following relations (see details in [8])

∇XY = ∇XY +h(X,Y), (2.4)

∇XV = −AV X+∇t
XV, (2.5)

for all X,Y ∈ Γ(T M) and V ∈ tr(T M), where ∇XY and AV X belong to Γ(T M) while h is a Γ(tr(T M))-
valued symmetric C∞(M)-bilinear form on Γ(T M) and ∇t is a linear connection on tr(T M). It is
easy to see that ∇ is a torsion-free connection. Define a symmetric C∞(M)-bilinear form B and a
1-form τ on the coordinate neighborhoodU ⊂ M by

B(X,Y) = g(h(X,Y), ξ), (2.6)

τ(X) = g(∇t
XN, ξ) (2.7)

for all X,Y ∈ Γ(T M jU). Then, onU, equations (2.4) and (2.5) become,

∇XY = ∇XY +B(X,Y)N, (2.8)

∇XN = −AN X+τ(X)N, (2.9)

respectively. It is important to stress the fact that the local second fundamental form B in Eq.(2.8)
does not depend on the choice of the screen distribution and satisfies,

B(X, ξ) = 0, (2.10)

for all X ∈ Γ(T M|U). Let P be the projection morphism of T M to S (T M) with respect to the
decomposition (2.2). We obtain: for all X,Y ∈ Γ(T M) and U ∈ Γ(T M⊥),

∇XPY =
∗

∇X PY+
∗

h (X,PY), (2.11)

∇XU = −
∗

AU X+
∗

∇t
XU, (2.12)

where
∗

∇X PY and
∗

AU X belong to Γ(S (T M)),
∗

∇ and
∗

∇t are linear connections on Γ(S (T M)) and

Γ(T M⊥) respectively,
∗

h is a Γ(T M⊥)-valued C∞(M)-bilinear form on Γ(T M)×Γ(S (T M)),
∗

AU is a

Γ(S (T M))-valued C∞(M)-linear operator on Γ(S (T M)).
∗

h and
∗

AU are the second fundamental form
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and the shape operator of the screen distribution S (T M) respectively. Define on U the following
relations

C(X,PY) = g(
∗

h (X,PY),N), (2.13)

ε(X) = g(
∗

∇t
X ξ,N). (2.14)

One shows that ε(X) = −τ(X). Thus, locally (2.11) and (2.12) become

∇XPY =
∗

∇X PY +C(X,PY)ξ, (2.15)

∇Xξ = −
∗

Aξ X−τ(X)ξ, (2.16)

respectively. The linear connection
∗

∇ is a metric connection on Γ(S (T M)). But, in general, the
induced connection ∇ on M is not compatible with the induced metric g. Indeed, we have:

(∇Xg)(Y,Z) = B(X,Y)η(Z)+B(X,Z)η(Y), (2.17)

for all X,Y ∈ Γ(T M|U), where
η(X) = g(X,N), (2.18)

for all Y ∈ Γ(T M|U). Finally, it is straightforward to verify that

B(X,Y) = g(
∗

Aξ X,Y), g(ANY,N) = 0, (2.19)

C(X,PY) = g(AN X,Y),
∗

Aξ ξ = 0, (2.20)

for X,Y ∈ Γ(T M|U).
We denote the curvature tensor associated with ∇ and ∇ by R and R, respectively. Then we have

([8]): for all X,Y ∈ Γ(T M|U)

R(X,Y)Z = R(X,Y)Z+Ah(X,Z)Y −Ah(Y,Z)X+ (∇Xh)(Y,Z)− (∇Yh)(X,Z), (2.21)

g
(
R(X,Y)PZ,PW

)
= g

( ∗
R (X,Y)PZ,PW

)
+C(X,PZ)B(Y,PW)

−C(Y,PZ)B(X,PW), (2.22)

g
(
R(X,Y)ξ,N

)
=C(Y,

∗

Aξ X)−C(X,
∗

Aξ Y)−2dτ(X,Y). (2.23)

3 Cartan’s fundamental formula for lightlike hypersurfaces

In this section, we first consider a lightlike hypersurface M of a semi-Riemannian manifold (M(k),g)
of constant curvature k. We start with the following proposition.

Proposition 3.1. Let (M(k),g) be a semi-Riemannian manifold of constant curvature k and M be a
lightlike hypersurface of M(k). Denote by R the curvature tensor of the induced connection ∇ on M
by the Levi-civita connection ∇. For any X,Y,Z ∈ Γ(T M), we have:

(a) R(X,Y)Z = k{g(Y,Z)X−g(X,Z)Y}−B(X,Z)ANY +B(Y,Z)AN X;

(b) (∇X B)(Y,Z)− (∇Y B)(X,Z) = B(X,Z)τ(Y)−B(Y,Z)τ(X);
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(c) B(ANY,X)−B(AN X,Y) = 2dτ(X,Y);

(d) (∇Y AN)(X)− (∇XAN)(Y)+ k{η(X)Y −η(Y)X} = τ(Y)AN X−τ(X)ANY;

(e) (∇X
∗

Aξ)(Y)− (∇Y
∗

Aξ)(X) = τ(Y)
∗

Aξ X−τ(X)
∗

Aξ Y −2dτ(X,Y)ξ;

(f) ∇XPZ = ∇XZ−X ·η(Z)ξ+η(Z)
∗

Aξ X+η(Z)τ(X)ξ.

Proof. For a semi-Riemannian manifold (M(k),g) of constant curvature k, the curvature tensor
R of M has the following form:

R(X,Y)Z = k{g(Y ,Z)X−g(X,Z)Y}, (3.1)

for X,Y ,Z ∈ Γ(T M). Using Equations (2.6), (2.7), (2.21) and (3.1), we have

R(X,Y)Z− k{g(Y,Z)X−g(X,Z)Y}+B(X,Z)ANY −B(Y,Z)AN X

+ [(∇X B)(Y,Z)− (∇Y B)(X,Z)−B(X,Z)τ(Y)+B(Y,Z)τ(X)] N = 0,

for any X,Y,Z ∈ Γ(T M). Then we obtain (a) and (b) by comparing the tangential and transversal
parts. From (3.1), we have:

R(X,Y)N = ∇X∇Y N −∇Y∇XN −∇[X,Y]N (3.2)

= k{η(Y)X−η(X)Y}

= k{η(Y)(PX+η(X)ξ)−η(X)(PY +η(Y)ξ}

= k{η(Y)PX−η(X)PY}. (3.3)

Now we compute (3.2). Using Equation (2.9), we have:

∇X∇Y N = ∇X
(
−ANY +τ(Y)N

)
= −∇XANY +X ·τ(Y)N +τ(Y)∇XN

= −∇XANY −B(X,ANY)N +X ·τ(Y)N

−τ(Y)AN X+τ(X)τ(Y)N

= −(∇XAN)(Y)−AN(∇XY)−τ(Y)AN X

+[−B(X,ANY)+X ·τ(Y)+τ(X)τ(Y)]N. (3.4)

Interchanging X and Y , we get

∇Y∇XN = −(∇Y AN)(X)−AN(∇Y X)−τ(X)ANY

+[−B(Y,AN X)+Y ·τ(X)+τ(Y)τ(X)]N. (3.5)

We have also the equation
∇[X,Y]N = −AN([X,Y])+τ([X,Y])N. (3.6)

Since ∇ is a torsion-free connection, by using (3.3), (3.4), (3.5) and (3.6), we get

−(∇XAN)(Y)+ (∇Y AN)(X)−τ(Y)AN X+τ(X)ANY

+ {−B(X,ANY)+B(Y,AN X)+X ·τ(Y)−Y ·τ(X)

−τ([X,Y])}N = k{η(Y)X−η(X)Y},
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Again we have (c) and (d) by comparing the tangential and transversal parts in view of

2dτ(X,Y) = X ·τ(X)−Y ·τ(Y)−τ([X,Y]).

From (a), we have R(X,Y)ξ = 0 = ∇X∇Yξ−∇Y∇Xξ−∇[X,Y]ξ, by the same computation as above, we
have (e). Since PX = X−η(X), assertion ( f ) follows by direct calculation.

Now, we recall the definition of a screen conformal lightlike hypersurface of a semi-Riemannian
manifold M.

Definition 3.2. ([1]). A lightlike hypersurface (M,g,S (T M)) of a semi-Riemannian manifold M
is said to be locally screen (resp. globally) conformal if on any coordinate neighborhood U (resp.

U = M), the shape operators AN and
∗

Aξ of M and its screen distribution S (T M) are related by

AN = ϕ
∗

Aξ, (3.7)

where ϕ is a non-vanishing smooth function onU (resp. U = M).

U will be connected and maximal in the sense that there is no larger domainU′ ⊃U on which
Eq. (3.7) holds. It is easy to see that (3.7) is equivalent to

C(Y,PZ) = ϕB(Y,Z), (3.8)

for all X,Y ∈ Γ(T M|U).
In the sequel, we consider a lightlike hypersurface M of an (m+ 2)-dimensional Lorentzian

manifold (M(k),g) of constant curvature k. For this class of screen conformal lightlike hypersurface
M, the screen distribution S (T M) is Riemannian, integrable and the induced Ricci tensor on M is
symmetric ([1]). Then, according to Proposition 3.4 in [8], there exists a canonical null pair {ξ,N}
satisfying (2.2) such that the corresponding 1-form τ from (2.9) vanishes. Since ξ is an eigenvector

field of
∗

Aξ corresponding to the eigenvalue 0 and
∗

Aξ is Γ(S (T M))-valued real symmetric,
∗

Aξ has
m orthonormal eigenvector fields in S (T M) and is diagonalizable. Consider a frame field of eigen-

vectors {ξ,E1, . . . ,Em} of
∗

Aξ such that {E1, . . . ,Em} is an orthonormal frame field of S (T M). Then,
∗

Aξ Ei = λiEi, 1 ≤ i ≤ m.We call the eigenvalues λi the screen principal curvatures for all i.
In the following, we assume that all screen principal curvatures are constant along S (T M) and

τ = 0. Consider the following distribution on M:

Tλ = {X ∈ Γ(S (T M)) :
∗

Aξ X = λX}.

Lemma 3.3. For any X ∈ Γ(T M), it follows that

(i) (∇X
∗

Aξ)Y = (∇Y
∗

Aξ)X, for all Y ∈ Γ(T M);

(ii) (
∗

∇X
∗

Aξ)Y = (
∗

∇Y
∗

Aξ)X, for all Y ∈ Γ(T M);

(iii) ∇X
∗

Aξ is symmetric with respect to g i.e. for all Y,Z ∈ Γ(S (T M))

g
(
(∇X

∗

Aξ)Y,Z) = g(Y, (∇X
∗

Aξ)Z
)
;

(iv) for any Y,Z in Γ(S (T M)),

g
(
(∇X

∗

Aξ)Y,Z
)
= g

(
Y, (∇Z

∗

Aξ)X
)
= g

(
(∇Z

∗

Aξ)Y,X
)
;
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(v) for Y ∈ Γ(Tλ), Z ∈ Γ(Tµ), we have

g
(
(∇X

∗

Aξ)Y,Z
)
= g

(
(∇Z

∗

Aξ)Y,X
)
= (λ−µ)g(∇XY,Z).

Proof. Let X,Y ∈ Γ(T M). Then (i) is a consequence of (e) in Proposition 3.1 by using τ = 0.

(
∗

∇X
∗

Aξ)Y =
∗

∇X
∗

Aξ Y−
∗

Aξ
∗

∇X Y
(2.15)
= ∇X

∗

Aξ Y −C(X,
∗

Aξ Y)ξ−
∗

Aξ ∇XY

= (∇X
∗

Aξ)Y −C(X,
∗

Aξ Y)

= (∇Y
∗

Aξ)X−C(X,
∗

Aξ Y)

= (
∗

∇Y
∗

Aξ)X+C(Y,
∗

Aξ X)−C(X,
∗

Aξ Y).

Since R(X,Y)ξ = 0 (Eq. (3.1), by (2.23), we have C(Y,
∗

Aξ X)−C(X,
∗

Aξ Y) = 0. Then we infer (ii). For

(iii), let X ∈ Γ(T M) and Y,Z ∈ Γ(S (T M)). We use the symmetry of
∗

Aξ with respect to g and equation
(2.17),

g
(
(∇X

∗

Aξ)Y,Z
)
= g

(
∇X

∗

Aξ Y,Z
)
−g

( ∗
Aξ (∇XY),Z

)
= g

(
∇X

∗

Aξ Y,Z
)
−g

(
(∇XY),

∗

Aξ Z
)

= g
(
∇X

∗

Aξ Y,Z
)
−g

(
∇XY,

∗

Aξ Z
)

= −(∇Xg)(
∗

Aξ Y,Z)+X ·g(
∗

Aξ Y,Z)−g(
∗

Aξ Y,∇XZ)

+(∇Xg)(Y,
∗

Aξ Z)−X ·g(Y,
∗

Aξ Z)+g(Y,∇X
∗

Aξ Z)

= −g(Y,
∗

Aξ ∇XZ)+g(Y,∇X
∗

Aξ Z)

= g(Y, (∇X
∗

Aξ)Z).

Now (iv) comes from (i) and (iii). To prove (v), let X ∈ Γ(T M), Y ∈ Γ(Tλ) and Z ∈ Γ(Tµ). By the

symmetry of
∗

Aξ with respect to g, we have

g((∇X
∗

Aξ)Y,Z) = g(∇X
∗

Aξ Y,Z)−g(
∗

Aξ (∇XY),Z)

= λg(∇XY,Z)−g(∇XY,
∗

Aξ Z)

= (λ−µ)g(∇XY,Z).

Thus we have (v) by using (iv)

Lemma 3.4. Let λ and µ be screen principal curvatures of M. Then we have

(1)
∗

∇X Y ∈ Γ(Tλ) if X,Y ∈ Γ(Tλ),

(2) ∇XY ⊥ Tλ; ∇Y X ⊥ Tµ if X ∈ Γ(Tλ), Y ∈ Γ(Tµ), λ , µ.
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Proof. Let Z ∈ Γ(T M) and X,Y ∈ Γ(Tλ). By (ii) and (iv) in Lemma 3.3, it follows that

g(
∗

Aξ
∗

∇X Y,Z) = g(
∗

∇X
∗

Aξ Y,Z)−g((
∗

∇X
∗

Aξ)Y,Z)

= λg(
∗

∇X Y,Z)−g(Y, (
∗

∇Z
∗

Aξ)X)

= λg(
∗

∇X Y,Z)−g(Y,
∗

∇Z
∗

Aξ X)+g(
∗

∇Z X,
∗

Aξ Y)

= λg(
∗

∇X Y,Z)−λg(Y,
∗

∇Z X)+λg(
∗

∇Z X,Y)

= λg(
∗

∇X Y,Z),

and we conclude that
∗

Aξ
∗

∇X Y −λ
∗

∇X Y = αξ, where α is a smooth function. Since η(
∗

Aξ
∗

∇X Y −λ
∗

∇X

Y) = 0 = α, then
∗

Aξ
∗

∇X Y −λ
∗

∇X Y = 0. That is
∗

Aξ
∗

∇X Y = λ
∗

∇X Y This proves (1). For Z ∈ Γ(Tλ) and
X ∈ Γ(Tλ),Y ∈ Γ(Tµ), using (v) of Lemma 3.3, it follows that

g
(
(∇X

∗

Aξ)Y,Z
)
= (µ−λ)g(∇XY,Z). (3.9)

On the other hand, by (iv) in Lemma 3.3, we compute

g
(
(∇X

∗

Aξ)Y,Z
)
= g

(
(∇Z

∗

Aξ)X,Y
)
= −(µ−λ)g(

∗

∇Z X,Y). (3.10)

By (1), it comes that
∗

∇Z X ∈ Γ(Tλ) for X,Z ∈ Γ(Tλ) and therefore g(∇ZX,Y)= 0. Combining relations
(3.9) and (3.10), we obtain

−(µ−λ)g(
∗

∇Z X,Y) = (µ−λ)g(∇XY,Z) = 0.

Hence, if λ , µ, then ∇XY ⊥ Tλ. Similarly, we have ∇Y X ⊥ Tµ if λ , µ.
Now we prove the following theorem which extends Cartan’s fundamental formula on lightlike

hypersurfaces of Lorentzian manifolds with constant curvature.

Theorem 3.5. Let (M,g,S (T M)) be a lightlike hypersurface of an (m+2)-dimensional Lorentzian

manifold (M(k),g) of constant curvature k. Assume that E0 = ξ, E1, . . . ,Em are eigenvectors of
∗

Aξ
satisfying

∗

Aξ E0 = 0 and
∗

Aξ Ei = λiEi, such that λi is constant along S (T M) for all i and τ = 0
({Ei}i=1,...,m represents an orthonormal basis of S (T M)). Then for every i ∈ {1, . . . ,m}, we have

m∑
j=1
λ j,λi

k+λ jg(AN Ei,Ei)+λig(AN E j,E j)
λi−λ j

= 0. (3.11)

Moreover, if the screen is conformal with conformal factor ϕ, then for all i ∈ {1, . . . ,m}

m∑
j=1
λ j,λi

k+2ϕλiλ j

λi−λ j
= 0. (3.12)

Proof. From (a) in Proposition 3.1 and (2.19), we have

R(Ei,E j)E j = kEi+λ jAN Ei. (3.13)
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On the other hand, using the definition of a curvature tensor R, for λi , λ j, Lemma 3.4, (2.17) and
(2.20), we compute

g
(
R(Ei,E j)E j,Ei

)
= g(∇Ei∇E j E j,Ei)−g(∇E j∇Ei E j,Ei)−g(∇[Ei,E j]E j,Ei)

= g(∇Ei E j,∇E j Ei)−g(∇[Ei,E j]E j,Ei)−λi.g(AN E j,E j). (3.14)

From relation (3.13), we get

g
(
R(Ei,E j)E j,Ei

)
= k+λ jg(AN Ei,Ei). (3.15)

Now the equality between (3.14) and (3.15) gives

k+λ jg(AN Ei,Ei)+λig(AN E j,E j) = g(∇Ei E j,∇E j Ei)−g(∇[Ei,E j]E j,Ei). (3.16)

By (v) of Lemma 3.3, we get

g
(
(∇[Ei,E j]

∗

Aξ)Ei,E j
)
= (λi−λ j)g(∇[Ei,E j]Ei,E j)

(2.17)
= (λ j−λi)g(∇[Ei,E j]E j,Ei),

from which it follows that

g(∇[Ei,E j]E j,Ei) =
g
(
(∇[Ei,E j]

∗

Aξ)Ei,E j
)

λ j−λi
. (3.17)

Using (i), (iv) and (v) of Lemma 3.3, we compute

g
(
(∇[Ei,E j]

∗

Aξ)Ei,E j
)
= g

(
(∇Ei

∗

Aξ)E j, [Ei,E j]
)

= g
(
(∇Ei

∗

Aξ)E j,∇Ei E j
)
−g

(
(∇Ei

∗

Aξ)E j,∇E j Ei
)

= g
(
(∇E j

∗

Aξ)Ei,∇Ei E j
)
−g

(
(∇Ei

∗

Aξ)E j,∇E j Ei
)

= 2(λi−λ j)g(∇Ei E j,∇E j Ei),

that is,
g
(
(∇[Ei,E j]

∗

Aξ)Ei,E j
)
= 2(λi−λ j)g(∇Ei E j,∇E j Ei). (3.18)

Combining (3.16), (3.17) and (3.18), we have

k+λ jg(AN Ei,Ei)+λig(AN E j,E jEi) = 2g(∇Ei E j,∇E j Ei). (3.19)

Since ∇Ei E j =
∑m

s=1 g(∇Ei E j,Es)Es+η(∇Ei E j)ξ, relation (3.19) becomes

k+λ jg(AN Ei,Ei)+λig(AN E j,E j) = 2
m∑

s=1

g(∇Ei E j,Es)g(∇E j Ei,Es). (3.20)

Again, by using (i) and (v) of Lemma 3.3, we get

k+λ jg(AN Ei,Ei)+λig(AN E j,E j) = 2
m∑

s=1
s,i, j

g((∇Ei

∗

Aξ)E j,Es)2

(λi−λs)(λ j−λs)
, (3.21)
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and therefore we have

m∑
j=1
λ j,λi

k+λ jg(AN Ei,Ei)+λig(AN E j,E j)
λi−λ j

=

m∑
j=1

λ j,λi,λs

2
m∑

s=1
λ j,λi,λs

g((∇Ei

∗

Aξ)E j,Es)2

(λi−λs)(λ j−λs)(λi−λ j)

=

m∑
s=1

λ j,λi,λs

−
1

λi−λs
2

m∑
j=1

λ j,λi,λs

g((∇Ei

∗

Aξ)E j,Es)2

(λs−λ j)(λi−λ j)

(3.21)
= −

m∑
s=1
λs,λi

k+λ jg(AN Ei,Ei)+λig(AN E j,E j)
λi−λs

,

thus (3.11) follows. Using (3.7), we get (3.12).

4 Application

In this section, we consider a lightlike hypersurface M of Rm+2
1 whose screen principal curvatures

are constant along S (T M). We assume that M has at most two distinct screen principal curvatures.
We prove the following

Theorem 4.1. Let (M,g,S (T M)) be a screen conformal lightlike hypersurface ofRm+2
1 whose screen

principal curvatures are constant along the screen distribution S (T M) and at most two are distinct.
If M has two distinct screen principal curvatures, then one of them must be zero.

Proof Since we assume that M has at most two distinct screen principal curvatures, then there
exists p ∈ {1, . . . ,m} such that

λ1 = λ2 = · · · = λp = α and λp+1 = λp+2 = · · · = λm = β.

By using this together with equation (3.7) and k = 0, the equation (3.19) becomes

ϕαβ = g(∇EαEβ,∇EβEα),

where ϕ is the conformal factor. Using (2) in Lemma 3.4, we have g(∇EαEβ,∇EβEα) = 0. Thus
ϕαβ = 0. Since ϕ is a nowhere-vanishing and smooth function defined on a connected and maximal
neighborhood, α , β, then α = 0 and β , 0 or α , 0 and β = 0.

Now, suppose that M has exactly two distinct screen principal curvatures. Then, by Theorem
4.1 one of them must be 0. We denote by λ the non-zero screen principal curvatures and r the
multiplicity of λ. The sets,

Tλ = {X ∈ Γ(S (T M))|
∗

Aξ X = λX}

T0 = {X ∈ Γ(S (T M))|
∗

Aξ X = 0}

define the distributions of dimension r and dimension m− r, respectively. By Lemma 3.4, Tλ and
T0 are both involutive and if X ∈ Γ(Tλ), Y ∈ Γ( T0), then ∇XY ∈ Γ(T0), ∇Y X ∈ Γ(Tλ), which shows
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that Tλ and T0 are parallel along their normals in S (T M). Moreover, it is known that (see [1]) if
M is a screen conformal lightlike hypersurface of a Lorentzian manifold, the screen distribution
S (T M) is Riemannian, integrable and the induced Ricci tensor on M is symmetric. More precisely,
a screen conformal lightlike hypersurface is locally a product C×M′ where C is a null curve, M′ is
an integral manifold of S (T M) ([1]). We have the following local decomposition.

Theorem 4.2. Let (M,g,S (T M)) be a screen conformal lightlike hypersurface of a Lorentzian Eu-
clidean space Rm+2

1 with exactly two distinct screen curvatures which are constant along S (T M).
Then, M is locally a lightlike triple product manifold C× (M′ = Mλ×M0), where C is a null curve,
M′ is an integral manifold of S (T M), Mλ and M0 are leaves of some distributions M such that
Mλ is a totally geodesic Riemannian manifold of constant curvature 2ϕλ2 and M0 is an (m− r)-
dimensional totally geodesic Euclidean space.

Proof Since M has exactly two distinct screen curvatures, by Theorem 4.1 one must be zero and
we denote by λ the non-zero one. Then we take Tλ and T0 as above. On the other hand, the leaf
M′ of S (T M) is Riemannian and S (T M) = Tλ ⊥ T0, where Tλ and T0 are parallel distributions with
respect to the induced connection on M′. By the decomposition theorem of de Rham ([7]), we have
M′ = Mλ ×M0, where Mλ and M0 are some leaves of Tλ and T0 respectively. Thus M is locally a
product C ×M′ = C ×Mλ ×M0. Now, let X ∈ Γ(Tλ) and Y ∈ Γ(T0), we have g(X,Y) = 0, and then

g(
∗

∇Z X,Y)+ g(X,
∗

∇Z Y) = 0. If Z ∈ Γ(Tλ), by Lemma 3.4,
∗

∇Z X ∈ Γ(Tλ) and g(
∗

∇Z X,Y) = 0. This
shows that Mλ is totally geodesic in S (T M). In entirely the same way, we can see that M0 is totally

geodesic in S (T M). Consider the frame field of eigenvectors {E1, . . . ,Er} of
∗

Aξ such that {Ei}i=1,...,r

is an orthonormal frame field of Tλ, then using (3.13) and (2.22) we have: g
(
R(Ei,E j)E j,Ei

)
= ϕλ2 =

g
( ∗

R (Ei,E j)E j,Ei
)
−λ2ϕ. Then g

( ∗
R (Ei,E j)E j,Ei

)
= 2λ2ϕ. Thus the sectional curvature K of the

leaf Mλ of Tλ is given by

K(Ei,E j) =
g
( ∗

R (Ei,E j)E j,Ei
)

g(Ei,Ei)g(E j,E j)−g2(Ei,E j)
= 2ϕλ2.

By the same way, we can see that the sectional curvature K′ of the leaf M0 of T0 is 0. This completes
the proof.

Next, we say that M is totally umbilical if for any coordinate neighborhoodU ⊂ M, there exists
a smooth function ρ such that

B(X,Y) = ρg(X,Y), (4.1)

for all X,Y ∈ Γ(T M|U), or equivalently,

∗

Aξ X = ρPX, (4.2)

for all X ∈ Γ(T M|U). It is easy to see that if the screen principal curvatures are all identical and
non-zero then M is totally umbilical.

M is said to be a totally geodesic lightlike hypersurface if the second fundamental form B = 0

or equivalently
∗

Aξ= 0. It is easy to see that if the screen principal curvatures are all zero then M is
totally geodesic.

Remark 4.3. Since we assume that M has at most two distinct screen principal curvatures, thus, if
the screen principal curvatures are all identical, M is either totally geodesic or totally umbilical and
if the two screen principal curvatures are distinct, then M =C×Mλ×M0.

Thus we have the following classifcation theorem.
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Theorem 4.4. Let (M,g,S (T M)) be a screen conformal lightlike hypersurface of a Lorentzian Eu-
clidean space Rm+2

1 whose screen principal curvatures are all contant along the screen distribution
S (T M) such that at most two of them are distinct. Then we have one of the following:

(1) M is either totally geodesic or totally umbilical;

(2) M is locally a lightlike triple product manifold C×Mλ×M0, where C is a null curve, Mλ and
M0 are leaves of some distributions of M such that Mλis a totally geodesic Riemannian man-
ifold of constant curvature 2ϕλ2 and M0 is an (m− r)-dimensional totally geodesic Euclidean
space.

Theorem 4.5. Let Mλ and M0 be as in theorem 4.2. Then Mλ is a totally umbilical submanifold of
Rm+2

1 and M0 is a totally geodesic submanifold of Rm+2
1 .

Proof As M′ is a Riemannian submanifold of codimension 2 of Rm+2
1 , consider in the normal

bundle T M′⊥, the vector fields

ζ1 =
ϕ√
2|ϕ|
ξ+

1√
2|ϕ|

N and ζ2 =
ϕ√
2|ϕ|
ξ−

1√
2|ϕ|

N.

Clearly, {ζ1, ζ2} is an orthonormal basis , where ζ1 and ζ2 are spacelike and timelike respectively.
Then for any X, Y ∈ Γ(T Mλ), we have

∇XY = ∇λXY +
m+2∑

a=r+1

gλ(Aξλa X,Y)ξλa , (4.3)

where gλ, ∇λ are the induced metric and the induced connection on Mλ respectively, ξλa are or-
thonormal normals to T Mλ in Rm+2

1 such that ξλm+1 = ζ1 and ξλm+2 = ζ2, Aξλa are corresponding shape
operators of ξλa . In addition,

∇XY = ∇XY +B(X,Y)N

= ∇XY +g(
∗

Aξ X,Y)N

=
∗

∇X Y +C(X,Y)ξ+g(
∗

Aξ X,Y)N

=
∗

∇X Y +g(AN X,Y)ξ+g(
∗

Aξ X,Y)N

=
∗

∇X Y +ϕg(
∗

Aξ X,Y)ξ+g(
∗

Aξ X,Y)N

= ∇λXY +
m∑

a=r+1

gλ(A′ξλa X,Y)ξλa +g(
∗

Aξ X,Y)(ϕξ+N)

= ∇λXY +
m∑

a=r+1

gλ(A′ξλa X,Y)ξλa +λg(X,Y)(ϕξ+N), (4.4)

where A′
ξλa

denotes the shape operator of Mλ with respect to ξλa in S (T M). By Theorem 4.2, Mλ is
totally geodesic in S (T M), and consequently the equation (4.4) can be written as follows:

∇XY = ∇λXY +λgλ(X,Y)(ϕξ+N) = ∇λXY +
√

2|ϕ|λgλ(X,Y)ζ1. (4.5)

Comparing (4.3) and (4.5), we have Aξλa X = 0, for all a ,m+1 and Aξλm+1
X = Aζ1 X =

√
2|ϕ|λX. Thus,

Mλ is a totally umbilical submanifold of Rm+2
1 . Similarly, we can prove that M0 is a totally geodesic

submanifold in Rm+2
1 .
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5 Examples

Example 5.1. Let (R4
1, ḡ) be a 4-dimensional semi-Euclidean space with Lorentzian signature. Con-

sider a Monge hypersurface M of R4
1 given by

t =
1
√

2

(
x+

√
y2+ z2

)
.

It is easy to check that M is a lightlike hypersurface whose radical distribution RadT M is spanned
by

ξ = ∂t +
y

√
2
√

y2+ z2
∂y+

z
√

2
√

y2+ z2
∂z+

1
√

2
∂x.

It is readily checked that, one gets an orthonormal basis {E1,E2} of S (T M) given by

E1 =
1√

y2+ z2

(
−z∂y+ y∂z

)
;

E2 = ε
1

√
2
√

y2+ z2

(√
y2+ z2∂x− y∂y− z∂z

)
ε = ±.

Then the lightlike transversal vector bundle is given by

tr(T M) = Span

N = −
1
2
∂t +

y
√

8
√

y2+ z2
∂y+

z
√

8
√

y2+ z2
∂z+

1
√

8
∂x

 .
By direct computation, we obtain

∇E1ξ = ∇E1ξ =
1

√
2
√

y2+ z2
E1 and ∇E2ξ = ∇E2ξ = 0. (5.1)

Thus, from the Weingarten formula (2.16), we have

∗

Aξ E1 = −
1

√
2
√

y2+ z2
E1,

∗

Aξ E2 = 0 and τ = 0.

Then, M has two distinct screen principal curvatures λ1 = −
1

√
2
√

y2+z2
and λ2 = 0. On the other hand,

we have

∇E1 N =
1

√
8
√

y2+ z2
E1, ∇E2 N = 0 and ∇ξN = 0. (5.2)

Then, from the Weingarten formula (2.9), we have

AN E1 = −
1

√
8
√

y2+ z2
E1 =

1
2
∗

Aξ E1, AN E2 = 0 and ANξ = 0.

Next, any X ∈ Γ(T M), is expressed by X = αE1+βE2+γξ, where α,β,γ are smooth functions, and

then AN X = αAN E1+βAN E2+γANξ =
1
2

∗

Aξ X, that is M is a screen conformal lightlike hypersurface
of R4

1 with conformal factor ϕ = 1
2 . Thus, M is a screen conformal lightlike hypersurface of R4

1 with
two distinct screen principal curvatures.
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Example 5.2. (The lightlike cone Λ3
0 of R4

1)
Let R4

1 be the space R4 endowed with the semi-Euclidean metric

g(u,v) = −xx′+ yy′+ zz′+ tt′,

where u= (x,y,z, t) and v= (x′,y′,z′, t′). The light coneΛ3
0 is given by the equation−x2+y2+z2+ t2 =

0 with (x,y,z, t) , (0,0,0,0). It is known that Λ3
0 is a lightlike hypersurface of R4

1 and the radical
distribution is spanned by a global vector field

ξ = x∂x+ y∂y+ z∂z+ t∂t (5.3)

on Λ3
0. It is easy to see that, one gets an orthonormal basis {E1,E2} of S (TΛ3

0) given by

E1 =

(
t2+ y2

t2

) 1
2 (
∂y−

y
t
∂t

)
,

E2 =

(
t2+ y2

x2

) 1
2
(
−

yz
t2+ y2 ∂y+∂z+−

zt
t2+ y2 ∂t

)
.

As ξ is a position vector field, we get for all i = 1,2

∇Eiξ = ∇Eiξ = Ei.

Using (2.16), we have
∗

Aξ Ei+τ(Ei)ξ+Ei = 0. As
∗

Aξ is Γ(S (T M))-valued we obtain

∗

Aξ Ei = −Ei, (5.4)

for all i = 1,2 This proves that λ1 = λ2 = −1 and τ = 0.
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