
African Diaspora Journal of Mathematics
Volume 16, Number 2, pp. 23–30 (2014)

ISSN 1539-854X
www.math-res-pub.org/adjm

O S C   S 
E  G A

M S

T. D. N∗
Department of Mathematics, Guru Nanak Dev University

Amritsar -143005, India

Abstract

If W is a subset of a metric space (X,d) then for a given ε > 0, an element y0 ∈W is
called a good approximation or ε−approximation for x ∈ X if d(x,y0) ≤ d(x,W)+ε.We
denote by PW,ε(x) the set of all such y0 ∈W i.e. PW, ε(x)= {y ∈W : d(x,y)≤ d(x,W)+ε}.
In particular, for ε = 0 we get the set of all best approximations to x in W. Given a
subset M of W, what are the necessary and sufficient conditions in order that every
element y0 ∈ M is an element of good approximation to x by the elements of W? The
paper mainly deals with this problem of simultaneous characterization of elements of
good approximation in metric spaces. The proved results extend and generalize several
known results on the subject.

AMS Subject Classification: [2010]41A50, 41A65.

Keywords: Good approximation; convex metric space; convex set; approximatively com-
pact set; quasi Chebyshev set.

1 Introduction

For a subset G of a metric space (X,d) and x ∈ X, one of the main problems of approximation
theory is to find elements g0 ∈ G such that d(x, g0) = in f {d(x,g) : g ∈ G} ≡ d(x,G). Each
such element g0 ∈G, called a best approximation to x in G, is an exact solution (or optimal
approximation) to the problem. A somewhat varied problem is to seek an element g0 ∈G to
be an approximate solution to the above problem in the following sense: Given ε > 0, find
an element g0 ∈G such that d(x,g0)≤ d(x,G)+ε. Such a g0, called a good approximation (or
ε-approximation) to x in G, is an approximate solution (or almost optimal approximation)
to the problem. Since for ε > 0, good approximation always exist, it is sufficient to find
good approximation if one cannot find best approximation because in numerical analysis
such elements sometimes serve the purpose.

The duality theory in normed linear spaces has helped a lot in developing a fairly large
theory of approximation in normed linear spaces (see e.g. Singer [13]). Hahn-Banach
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Theorem has been an important tool in proving many results on approximation in normed
linear spaces. Because of lack of duality theory, the theory of approximation has been
comparatively very less developed in linear metric spaces and metric spaces. C.Mustǎta
[5], [6], Narang [7],[8], Narang and Chandok [9], Narang and Khanna [10] , G. Pantelidis
[11] and few others have discussed some results on best approximation in linear metric
spaces and metric spaces by considering a space of functions similar to the conjugate space
X∗ of a normed linear space X. Motivated by the results on the characterization of elements
of best approximation proved by Mustǎta [5],[6], Pantelidis [11], Singer [13],and the notion
of good approximation introduced by R.C. Buck [1], some results on the characterization
of elements of best approximation and good approximation (ε-approximation) have been
proved in linear metric spaces and metric spaces in [7], [8], [10] and [11]. Continuing
the study, this paper mainly deals with simultaneous characterization of a set of elements
of good approximation in metric spaces i.e. the following problem: Given a subset W of
a metric space (X,d), x ∈ X and M ⊂ W, what are the necessary and sufficient conditions
in order that every element g ∈ M is an element of good approximation of x by means of
elements of W? The results proved in this paper generalize some of the results proved in
[6], [10], [12], [13] and of others.

2 PRELIMINARIES

In this section we discuss some elementary properties and related concepts concerning
elements of ε-approximation.

Let W be a nonempty subset of a metric space (X,d) and ε be a positive real number.
A point y0 ∈W is said to be an ε-approximation or good approximation(respectively, best
approximation) for x ∈ X if

d(x,y0) ≤ d(x,W)+ε (respectively, d(x,y0) = d(x,W)).
For x ∈ X, let

PW, ε(x) = {y ∈W : d(x,y) ≤ d(x,W)+ε}
and

PW(x) = {y ∈W : d(x,y) = d(x,W)}.

It is clear that PW(x)=∩ε>0PW, ε(x) for all ε > 0. Concerning the set PW, ε(x), we have:

(1) PW, ε(x) is a non-empty and bounded subset of X.

Proof. By the definition of d(x,W), there exists y0 ∈ W such that d(x,y0) ≤ d(x,W) +ε for
any given ε > 0 and so PW, ε(x) is a non-empty. Now we show that PW, ε(x) is bounded.

Let y1,y2 ∈ PW, ε(x). Consider

d(y1,y2) ≤ d(y1, x)+d(x,y2)

≤ d(x,W)+ε+d(x,W)+ε = 2d(x,W)+2ε.

This gives d(y1,y2)≤ 2[d(x,W)+ε]<∞ for all y1,y2 ∈ PW, ε(x) and hence PW, ε(x) is bounded.
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(2) If W is a closed subset of X then so is PW, ε(x).

Proof. Let y be a limit point of PW, ε(x). Then there exist a sequence < yn > in PW, ε(x) such
that < yn >→ y. Consider

d(x,y) = d(x, limyn)

= limd(x,yn)

≤ lim[d(x,W)+ε]

= d(x,W)+ε.
This gives y ∈ PW, ε(x).

A subset W of a metric space (X,d) is called ε−quasi Chebyshev in X if PW, ε(x) is
compact in X for each x ∈ X.

(3) Every ε−quasi Chebyshev subset is closed.

Proof: Let W be an ε−quasi Chebyshev subset of a metric space (X,d) and y ∈ W. Then
y ∈ X and there exists a sequence < yn > in W such that < yn >→ y. Therefore there exists a
positive integer m0 such that

d(yn,y) < ε for all n ≥ m0.
i.e. d(yn,y) < d(y,W)+ ε for all n ≥ m0 as y ∈ W implies d(y,W) = 0. This implies that
< yn >

+∞
n=m0

is a sequence in the compact set PW, ε(y) and so there exists a subsequence
< yni > such that < yni >→ y0 ∈ PW, ε(y) ⊆ W. Consequently, y = y0 ∈ W and hence W is
closed.

A sequence < yn > in W is called ε− minimizing (respectively, minimizing) if
limd(x,yn)≤ d(x,W)+ε (respectively, limd(x,yn)= d(x,W)). The set W is called ε−approximatively
compact[9], (respectively, approximatively compact[2]) if for each x ∈ X, each ε−minimizing
(respectively, minimizing) sequence has a subsequence converging to an element of W.W
is called quasi-Chebyshev if PW(x) is compact.

(4) [9] If W is an ε−approximatively compact set in a metric space (X,d), then PW, ε(x) is a
nonempty compact set i.e. W is ε−quasi Chebyshev subset of X.

(5) [13] If W is an approximatively compact subset of a metric space (X,d), then PW(x) is
compact and so W is quasi-Chebyshev.

(6) If W is a proximinal and ε− quasi Chebyshev set for every ε > 0 in a metric space (X,d)
then W is quasi-Chebyshev.

Proof. Let < yn > be a sequence in PW(x). Then < yn >⊆ PW, ε(x) for all ε > 0. Since W
is ε−quasi Chebyshev, < yn > has a subsequence < yni >→ y0 ∈ PW, ε (x) for all ε > 0. This
implies

d(x,yni) ≤ d(x,W)+ε f or all ε > 0.

Letting ε→ 0, we get d(x,y0) ≤ d(x,W). This gives y0 ∈ PW(x). Hence PW(x) is quasi-
Chebyshev.

Note. Converse is not true (see Example 2.3 [12]).

For a metric space (X,d), a continuous mapping W : X×X× [0,1]→ X is said to be
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a convex structure on X if for all x,y ∈ X and λ ∈ [0,1], we have

d(u,W(x,y,λ)) ≤ λd(u, x)+ (1−λ)d(u,y)

for all u ∈ X. The metric space (X,d) together with a convex structure W is called a convex
metric space [14].

A subset K of a convex metric space (X,d) is said to be a convex set [14] if W(x,y,λ) ∈
K for all x,y ∈ K and λ ∈ [0,1].

(7) If M is a convex subset of a convex metric space (X,d) then PM, ε(x) is also convex.

Proof. Let y1,y2 ∈ PM, ε(x) and λ ∈ [0,1]. Consider

d(x,W(y1,y2,λ)) ≤ λd(x,y1)+ (1−λ)d(x,y2)

≤ λ[d(x,M)+ε]+ (1−λ)[d(x,M)+ε]

= d(x,M)+ε.
This gives W(y1, y2,λ) ∈ PM, ε(x) and hence PM, ε(x) is convex as W(y1,y2,λ) ∈ M.

3 Simultaneous Characterization of a set of elements of ε−approximation

This section deals with the problem of simultaneous characterization of a set of elements
of ε−approximation in metric spaces.

Let (X,d) be a metric space and x0 be a fixed point of X. The set

X#
0 = { f : X→ R, sup

x,y∈X, x,y

| f (x)− f (y)|
d(x,y)

<∞, f (x0) = 0}

with the usual operations of addition and multiplication by real scalars, normed by

‖ f ‖X = sup
x,y∈X, x,y

| f (x)− f (y)|
d(x,y)

, f ∈ X#
0

is a Banach space (even a conjugate Banach space [4]).

We shall be using the following theorem on the characterization of elements of
ε−approximation:

Theorem 3.1. [7] Let Y be a subset of a metric space (X,d) such that x0 ∈ Y and let x ∈
X\Y,y0 ∈ Y and ε > 0. Then y0 ∈ PY,ε(x) if and only if there exists an f ∈ X#

0 such that

(i) ‖ f ‖X = 1

(ii) f | Y = 0

(iii) | f (x)− f (y0)| ≥ d(x,y0)−ε.

Applying Theorem 3.1, we prove the following:
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Theorem 3.2. Let Y be a subset of a metric space (X,d) such that x0 ∈ Y and let x ∈ X \Y,
M ⊂ Y and ε > 0. Then M ⊂ PY,ε(x) if and only if there exists f ∈ X#

0 satisfying

(i) ‖ f ‖X = 1

(ii) f | Y = 0

(iii) | f (x)− f (y)| ≥ d(x,y)−ε. for all y ∈ M.

Proof.Suppose M ⊂ PY,ε(x) and y0 ∈ M. Then y0 ⊂ PY,ε(x) and so by Theorem 3.1, there
exists f ∈ X#

0 defined by f (z) = d(z,Y),z ∈ X such that ‖ f ‖X = 1, f | Y = 0 and | f (x)− f (y0)| ≥
d(x,y0)−ε, y0 ∈ M.

Let y ∈ M be arbitrary. Then y ∈ PY,ε(x). Consider

| f (x)− f (y)| = | f (x)| = d(x,Y) ≥ d(x,y)−ε, by de f inition.

Conversely, suppose there exists f ∈ X#
0 satisfying (i), (ii) and (iii) and let y0 ∈ M.

Consider

d(x,y0) ≤ | f (x)− f (y0)|+ε

= | f (x)− f (y)|+ε for all y ∈ Y

≤ ‖ f ‖X d(x,y)+ε for all y ∈ Y

= d(x,y)+ε for all y ∈ Y
This implies d(x,y0) ≤ d(x,y)+ε i.e y0 ∈ PY,ε(x). Hence M ⊂ PY,ε(x).

Remarks 1 Let Y be a subspace of a linear metric space (X,d) with a translation invari-
ant metric d and x0 = 0, the additive identity of X, then one can choose the function f in the
preceding discussion such that f ∈ Xv, where

Xv = { f : X→ R, sup
x∈X\{0}

| f (x)|
d(x,0)

<∞, f (0) = 0, f subadditive},

is the cone of subadditive functions in X (see [11]).

Moreover, f satisfies
(a)| f (x)− f (y)| = |d(x,Y)−d(y,Y)|

≤ d(x,y) for all x,y ∈ X.
(b) f (x−g) = d(x−g,Y) = d(x,g+Y) = d(x,Y)

≥ d(x,g)−ε for all g ∈ Y and M ⊂ PY,ε(x).

2. Theorem 3.2 gives Theorems 2.1, 2.2 and 3.1 of [10].

3. If Y is a subspace of a normed linear space X then one can choose f ∈ X∗, the
conjugate space of X (see Singer [13])and above theorem gives Lemmas 1.2 and 2.2 of [12]
and Theorem 6.12 of [13] on ε−approximation.



28 T. D. Narang

Theorem 3.3. Let Y be a subset of a metric space (X,d), x ∈ X,y0 ∈ Y and ε > 0 be given.
Then y0 ∈ PY,ε(x) if and if only d(x,y0) ≤ dY⊥(x,y0)+ε, where

dY⊥(x,y0) = sup{ | f (x)− f (y0)|
‖ f ‖X

, f ∈ Y⊥\{0}},Y⊥ = { f : f ∈ X#
0 , f \Y = 0}

Proof.Let y0 ∈ PY,ε(x) then there exists f ∈ Y⊥ such that

‖ f ‖X = 1, | f (x)− f (y0)| ≥ d(x,y0)−ε.
Consider

dY⊥(x,y0) = supg∈Y⊥\{0}
|g(x)−g(y0)|
‖g‖X

≥
| f (x)− f (y0)|
‖ f ‖X

≥ d(x,y0)−ε
i.e. d(x,y0) ≤ dY⊥(x,y0)+ε.

Conversely, suppose d(x,y0) ≤ dY⊥(x,y0)+ε
i.e. d(x,y0)−ε ≤ dY⊥(x,y0)

= sup f∈Y⊥\{0}
| f (x)− f (y0)|
‖ f ‖X

= sup f∈Y⊥\{0}
| f (x)− f (y)|
‖ f ‖X

for all y ∈ Y

≤ dY⊥(x,y) for all y ∈ Y

≤ d(x,y) for all y ∈ Y (see [6]).
This gives d(x,y0) ≤ d(x,y)+ε i.e. y0 ∈ PY,ε(x).

In the particular case, for ε = 0 Theorem 3.3 gives:

Corollary 3.4. [12] Let Y be a subspace of a normed linear space X, x ∈ X,g0 ∈ Y and ε > 0
be given. Then g0 ∈ PW,ε(x) if and only if ‖x−g0‖ ≤ ‖x−g0‖Y⊥ +ε,where

‖x−g0‖Y⊥ = sup{| f (x− y0)| : ‖ f ‖ ≤ 1, f ∈ Y⊥}.

Corollary 3.5. [6] Let Y be a subset of a metric space (X,d) and y0 ∈ Y, x ∈ X\Y. Then y0 ∈ Y
is an element of best approximation for x by elements of Y if and if only dY⊥(x,y0) = d(x,y0).

Theorem 3.6. Let Y be a subset of a metric space (X,d) such that y0 ∈ Y and let x ∈ X,M ⊂ Y
and ε > 0 be given. Then y0 ∈ PY,ε(x) if and only if

d(x,y) ≤ dY⊥(x,y)+ε for all y ∈ M.

Proof.Let M ⊂ PY,ε(x). Then there exists f ∈ Y⊥ such that

‖ f ‖X = 1, | f (x)− f (y)| ≥ d(x,y)−ε for all y ∈ M.
We have

dY⊥(x,y) = supg∈Y⊥\{0}
|g(x)−g(y)|
‖g‖X

≥
| f (x)− f (y)|
‖ f ‖X

≥ d(x,y)−ε
i.e. d(x,y) ≤ dY⊥(x,y)+ε for all y ∈ M.

Conversely, suppose d(x,y) ≤ dY⊥(x,y)+ ε for all y ∈ M. Then for any y0 ∈ M and
z ∈ Y , we have

d(x,y0) ≤ dY⊥(x,y0)+ε = sup f∈Y⊥\{0}
| f (x)− f (y0)|
‖ f ‖X

+ε
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= sup f∈Y⊥\{0}
| f (x)− f (z)|
‖ f ‖X

+ε for all z ∈ Y

= dY⊥(x,z)+ε for all z ∈ Y

≤ d(x,z)+ε for all z ∈ Y
This gives d(x,y0) ≤ d(x,Y)+ε i.e. y0 ∈ PY,ε(x).

In the particular case, for ε = 0 Theorem 3.6. gives:

Corollary 3.7. Let Y be a subset of a metric space (X,d) such that y0 ∈ Y and let x ∈
X\Y. Then y0 ∈ Y is an element of best approximation for x by elements of Y if and only if
dY⊥(x,y0) = d(x,y0).
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chitziene, , Revista de Analizǎ Numericǎ Si Teoria Aproxamatiei 2 (1973), 81-87.
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