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Abstract

Harald Bohr was the founder of the theory of almost periodicity. The theory of
almost periodic functions taking values in locally convex spaces was studied by G.M.
N’Guérékata in his papers [9, 10]. Khan and Alsulami [12] studied the concept of
almost periodicity in the general topological vector spaces. In this paper, we pursue
their study further and extend the concept of weakly almost periodicity to topological
vector spaces having non-trivial duals.
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1 Introduction

The topological vector spaces (TVSs) of continuous vector-valued functions have been the
objects of intensive study for the last several decades in the realm of topological algebraic
analysis and have played significant role in unification and classification of results in the
broader areas of functional analysis. Harald Bohr was the founder of the theory of almost
periodicity which had rapidly led to a strong development of harmonic analysis on groups
and compact topological semigroups of linear operators. The theory has attracted many
mathematicians for decades. The concept became one of the most attractive topics in the
qualitative theory of differential equations because of their significance and applications in
physics, mathematical biology, control theory, and other related fields. Some generaliza-
tions of the concept have been introduced successfully by V.V. Stepanov and A.S. Besicov-
itch. Almost periodic functions defined on the real line with values in a Banach space were
studied by S. Bochner and developed by several mathematicians including C. Corduneanu,
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S. Zaidman, J.A. Goldstein, L. Amerio, G. Prouse, K. Deleeuw, I. Glicksberg, A.M. Fink
and others. Applications include ordinary, partial as well as abstract differential equations,
topological and smooth dynamical systems, statistics, etc. The theory of almost periodic
functions taking values in locally convex spaces (LCSs) was studied by G.M. N’Guérékata
in his papers [9, 10].

Khan and Alsulami [12] had studied and generalized the concept of almost periodic-
ity to general topological vector spaces, not necessarily locally convex. In this paper, we
pursue their study further and extend the concept of weakly almost periodicity to general
topological vector spaces, not necessarily locally convex. We hope that our results will
open the door to many applications of differential and integro-differential equations in gen-
eral topological vector spaces. In order to make this paper easy to be read, we will recall
some results in section 2 and 3 from [12].

2 Preliminaries

In this section, we recall some results of [12]. Throughout this paper, E denotes a Hausdorff
topological vector space (in short, a TVS) over the field K (= R or C) and having a baseW
of neighbourhoods of 0 consisting of balanced sets.

2.1 Differentiation in TVSs

Definition 2.1. Let E be a TVS. A function f : (a,b)→ E is said to be differentiable at
t0 ∈ (a,b) if there exists an element z ∈ E, denoted by f

′

(t0), such that, given any balanced
neighbourhood V of 0 in E, there exists a δ > 0 satisfying,

f (t0+h)− f (t0)
h

− f
′

(t0) ∈ V,

whenever 0 < |h| < δ; f
′

(t0) is called the Gateaux derivative of f at t0 and we briefly write
as,

f
′

(t0) = lim
h→0

f (t0+h)− f (t0)
h

.

The following theorems extend results of [14].

Theorem 2.2. Let E be a TVS. A function f : (a,b)→ E can have at most one derivative at
any point t = t0.

Proof. Suppose f : [a,b]→ E has two derivatives z1,z2 ∈ E at t = t0, and let W ∈W.
Choose balanced V ∈W with V +V ⊆W. Then there exist δ1, δ2 > 0 such that

f (t0+h)− f (t0)
h

− z1 ∈ V for 0 < |h| < δ1.

f (t0+h)− f (t0)
h

− z2 ∈ V for 0 < |h| < δ2.

Then, for 0 < |h| <min{δ1, δ2},

z1− z2 = [z1−
f (t0+h)− f (t0)

h
]+ [

f (t0+h)− f (t0)
h

− z2]

∈ −V +V ⊆W.
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Since W ∈W is arbitrary, z1 − z2 ∈ ∩W∈WW = {0} as E is assumed to be Hausdorff. Thus
z1 = z2.

Theorem 2.3. Let E be a TVS. If a function f : (a,b)→ E is differentiable at t = t0 ∈ (a,b),
then f is continuous at t0.

Proof. Let W ∈W. Choose V ∈W with V +V ⊆W. Since f is differentiable at t = t0,
there exists a δ = δV > 0 satisfying

f (t0+h)− f (t0)
h

− f
′

(t0) ∈ V for 0 < |h| < δ.

This implies that
f (t0+h)− f (t0)−h f

′

(t0) ∈ hV for 0 < |h| < δ,

and hence

f (t0+h)− f (t0) = f (t0+h)− f (t0)−h f
′

(t0)+h f
′

(t0)

∈ hV +h f
′

(t0) for 0 < |h| < δ.

Since V is absorbing, choose 0 < δ
′

< 1 such that h f
′

(t0) ∈ V for |h| < δ
′

Hence, if |h| <
min{δ,δ

′

},

f (t0+h)− f (t0) ∈ V +V ⊆W.

Thus f is continuous at t0.

2.2 Almost Periodic Functions in TVSs

Definition 2.4. (i) A subset J of R is called relatively dense in R if there exists a number
` > 0 such that every interval [t, t+ `] contains at least one point of J.

(ii) Let (E, τ) be TVS with a baseW of balanced neighbourhoods of 0, and let f : R→ E
and W ∈W. Then a number τ = τW is called a W-almost period of f if

f (t+τ)− f (t) ∈W for all t ∈ R.

Let PW, f denote the set of all W-almost period of f .

Definition 2.5. f : R→ E is called almost periodic if it is continuous and, for each W ∈W,
there exists a number ` = `W > 0 such that each interval [t, t+`W] contains at least one point
τW ∈ PW, f such that

f (t+τW)− f (t) ∈W for all t ∈ R.

Clearly, PW, f is relatively dense in R.

Equivalently:

Definition 2.6. A continuous function f : R → E is called almost periodic if, for each
W ∈W, there exists a set PW, f ⊆ R such that

(i) PW, f is relatively dense in R; i.e. there exists a number ` = `W > 0 such that each
interval [t, t+ `W] ⊆ R contains at least one point τW ∈ PW, f ,
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(ii)
f (t+τW)− f (t) ∈W for all τW ∈ PW, f and t ∈ R.

τW is then called a W-translation number of the function f .

We recall the following properties of almost periodic functions.

Theorem 2.7. (i) Any almost periodic function f : R → E has precompact range f (R);
hence f is bounded.

(ii) If f : R→ E is almost periodic, then f is uniformly continuous on R.
(iii) If { fn} is a sequence of almost periodic functions which converges uniformly on R

to a function f , then f is also almost periodic.
(iv) Let E be a complete TVS. If f : R→ E is almostperiodic, then the functions λ f (λ ∈

K) and f (t) ≡ f (−t) are also almost periodic.

Moreover, the almost periodic functions satisfy the Bochner’s criterion., see [12].

Theorem 2.8. Let E be a quasi-complete metrizable TVS and f : R→ E. Then, f is almost
periodic if and only if for every real sequence {s′n} , there exists a subsequence {sn} such
that { f (t+ sn)} is uniformly convergent in t ∈ R.

3 Weakly Almost Periodic Functions

Recall that, if X is a topological space and E a TVS with dual E∗, then a function f : X→ E
is said to be weakly continuous if, if for each ϕ ∈ E∗, the function ϕ ◦ f : X → K (= R or
C) is continuous. Clearly, any continuous function (i.e. a strongly continuous function)
f : X→ E is weakly continuous; the converse holds if E is finite dimensional. We mention
that the concept of weak continuity is well-defined in the non-locally convex setting, at least
in the cases of E = `p and E = Hp, 0 < p < 1. Indeed in such cases, the dual spaces (`p)∗ and
(Hp)∗ are non-trivial and in fact separate the points of `p and Hp, respectively. However, it
is not well-defined in the case of E = Lp, 0 < p < 1, since (Lp)∗ may be the trivial space {0}.

Let E be a TVS with non-trivial dual E∗.

Definition 3.1. A function f : R→ E is called weakly almost periodic (we write w.a.p.)
in E if, for every x∗ ∈ E∗, the numerical function x∗ f : R→ K is a.p.

Obviously,
(1) Every a.p. function f : R→ E is w.a.p.
(2) If f : R→ E is w.a.p., then it is weakly continuous and weakly bounded.
The following example [7] shows that the w.a.p. function may not be almost periodic

even in the scalar case.

Example 3.2. Consider

f0(t) =
{

e2iπαn2
if 0 ≤ n < t < n+1;

0 if t < 0;
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where α ∈ R \Q.
Let c ∈ N, then the convolution product

f =
sin(4παct)

t
∗ f0 ∈WAP(R,R).

is weakly almost periodic and not almost periodic.

Definition 3.3. For any continuous bounded function f :R→ E, its primitive (or indefinite
integral) is defined as the function F : R→ E given by

F(t) =
∫ t

0
f (s)ds, t ∈ R.

Theorem 3.4. Let E be a complete TVS. Let f :R→ E be a w.a.p. and continuous function.
If F is the primitive of f with F(R) weakly bounded, then F is w.a.p..

Proof. We first note existence of the integral because of continuity of f over R. Take
any x∗ ∈ E∗. Since f is w.a.p, (x∗ f )(t) is a.p. By continuity of x∗, we have

(x∗F)(t) =
∫ t

0
(x∗ f )(σ)dσ.

Since, by our assumption, F(R) is weakly bounded, it follows that x∗F is bounded. Now
(x∗F)(t) is a.p.

Before proving the next result, we need to prove the following lemma.

Lemma 3.5. Let E be a complete metrizable TVS and ϕ : R→ E be a.p.. Let {sn} be a real
sequence such that lim

n→∞
ϕ(sn+ak) exists for each k = 1,2, ..., where {ak} is dense in R. Then

{ϕ(t+ sn)} is uniformly convergent in t ∈ R.

Proof. Suppose by contradiction {ϕ(t+ sn)} is not uniformly convergent in t; then there
exists a W ∈W such that for every N = 1,2, ..., there exists nN , mN ∈ N and tN ∈ R such
that:

ϕ(tN + snN )−ϕ(tN + smN ) <W. (3.1)

By Bochner’s criterion we can extract two subsequences (s′nN
) ⊂ (snN ) and (s′mN

) ⊂ (smN )
such that

lim
N→∞
ϕ(t+ s′nN

) = g1(t) uniformly in t ∈ R,

lim
N→∞
ϕ(t+ s′mN

) = g1(t) uniformly in t ∈ R.

Let V ∈W be balanced with V+V+V ⊂W. Then there exists N0 = N0V such that if N > N0,

ϕ(tN + s′nN
)−g1(tN) ∈ V,

ϕ(tN + s′mN
)−g2(tN) ∈ V.
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We conclude g1(tN)−g2(tN) < V . For, if not, we should get

ϕ(tN + s′nN
)−ϕ(tN + s′mN

) = ϕ(tN + s′nN
)−g1(tN)

+g1(tN)−g2(tN)

+g2(tN)−ϕ(tN + s′mN
)

∈ V +V +V ⊆W,

which contradicts (3.1).
We have found V with the property that if N is large enough, there exists tN ∈ R such

that

g1(tN)−g2(tN) < V.

But this is impossible. In fact, if we take a subsequence {bk)∞k=1 ⊂ {ak)∞k=1 and bk→ tN , then
we have

lim
N→∞
ϕ(bk + s′nN

) = lim
N→∞
ϕ(bk + s′mN

)

for every k, and therefore g1(bk) = g2(bk) for every k; by continuity of g1 and g2, g1(tN) =
g2(tN); thus

g1(tN)−g2(tN) = 0 ∈ U for every U ∈W. �

Theorem 3.6. Let E be a metrizable TVS with point separating dual E∗ and f : R→ E a
given function. Then the following are equivalent:

(a) f is a.p.
(b) If f is w.a.p. and f (R) is relatively compact in E.

Proof. Clearly, by earlier remarks, (a)⇒ (b).
(b)⇒ (a) (I) First we show that f is continuous. Suppose there exists t0 such that f is

discontinuous at t0. Then we can find a W ∈W and two sequences {s′n1
} and {s′n2

} such that
lim
n→∞

s′n1
= 0 = lim

n→∞
s′n2

and

f (t0+ s′n1
)− f (t0+ s′n2

) <W (3.2)

for every n ∈ N. By relative compactness of f (R) we can extract {s′n1
} and {s′n2

} from the
respective first two sequences such that lim

n→∞
f (t0+ sn1) = a1 ∈ E and lim

n→∞
f (t0+ sn2) = a2 ∈ E.

Consequently, using (3.2), we get a1 , a2 in E. Therefore, since E∗ is point separating dual,
there exists x∗ ∈ E∗ such that

x∗(a1) , x∗(a2). (3.3)

By continuity of x∗, we have:

x∗(a1) = x∗[ lim
n→∞

f (t0+ sn1)] = lim
n→∞

x∗ f (t0+ sn1)

= lim
n→∞

x∗ f (t0+ sn2) = x∗[ lim
n→∞

x∗ f (t0+ sn2)] = x∗(a2),
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which contradicts (3.3). f is therefore continuous over R.
(II) We are now going to show almost-periodicity of f :
Consider arbitrary real sequences {hn} and {ηr)∞r=1 the rational numbers.
By relative compacity of f (R), we can extract a subsequence {hn} (we do not change

notation) such that for each r,

lim
n→∞

f (ηr +hn) = xr exists in E (3.4)

Now f (ηr + hn)} is uniformly convergent in r. For, if it is not; then we find a U ∈W
and three subsequences {ξr)∞r=1 ⊂ {ηr)∞r=1, {h

′
r)
∞
r=1 ⊂ {hr)∞r=1, {h

′′

r )∞r=1 ⊂ {hr)∞r=1 and

f (ξr +h′r)− f (ξr +h
′′

r ) < U. (3.5)

By relative compactness of f (R) we may say

lim
r→∞

f (ξr +h′r) = b′ ∈ E, lim
r→∞

f (ξr +h
′′

r ) = b
′′

∈ E, (3.6)

and using (3.5), we get

b′−b′′ < U.

Since the dual E∗ is point separating, there exists x∗ ∈ E∗ such that

x∗(b′) , x∗(b′′). (3.7)

But f (t) is w.a.p. hence (x∗ f )(t) is a.p. and consequently it is uniformly continuous over R.
Consider the sequence of functions (ϕn} defined by:

ϕn(t) = (x∗ f )(t+hn), n = 1,2, ...

The equality ϕn(t+τ)−ϕn(t) = x∗ f (t+τ+hn)− x∗ f (t+hn) shows almost-periodicity of each
ϕn. Also {ϕn)∞n=1 is equi-uniformly continuous overR because (x∗ f ) is uniformly continuous
over R, as it is easy to see. Using (3.4), we can say

lim
n→∞

x∗ f (ηr +hn) = x∗(xr) for every r.

Therefore, by Lemma 3.4, {x∗ f (t+hn)} is uniformly convergent in t.
Consider now the sequences {ξr +h′r} and {ξr +h

′′

r }. By Bochner’s criterion, we extract
two subsequences (we use the same notations) such that {x∗ f (t+ ξr +h′r)) and {x∗ f (t+ ξr +
h
′′

r )} are uniformly convergent in t ∈ R.
Let us now prove

lim
r→∞

x∗ f (t+ ξr +h′r) = lim
r→∞

x∗ f (t+ ξr +h
′′

r ). (3.8)

Consider the inequality for each r = 1,2, ...

∣∣∣x∗ f (t+ ξr +h′r)− x∗ f (t+ ξr +h
′′

r )
∣∣∣ ≤ ∣∣∣x∗ f (t+ ξr +h′r)− x∗ f (t+ ξr +hr)

∣∣∣
+
∣∣∣x∗ f (t+ ξr +hr)− x∗ f (t+ ξr +h′′r )

∣∣∣ (3.9)
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Let ε > 0 be given; as (x∗ f (t+ hr))∞r=1 is uniformly convergent in t, we choose ηε such
that for r, s > ηε, we have |x∗ f (t+hs)− x∗ f (t+hr)| < ε2 , for t ∈ R; then for r, s > ηε, we get∣∣∣x∗ f (t+ ξr +hs)− x∗ f (t+ ξr +hr)

∣∣∣ < ε
2
.

Consequently, for r > ηε, we get:

∣∣∣x∗ f (t+ ξr +h′r)− x∗ f (t+ ξr +hr)
∣∣∣ < ε

2
,∣∣∣x∗ f (t+ ξr +h′′r )− x∗ f (t+ ξr +hr)

∣∣∣ < ε

2
,

and the inequality (3.9) gives:∣∣∣x∗ f (t+ ξr +h′r)− x∗ f (t+ ξr +h′′r )
∣∣∣ < ε

for t ∈ R. Then, (3.8) is proved.
Now take t = 0; then using (3.6) we get:

x∗(b′) = lim
r→∞

x∗ f (t+ ξr +h′r) = lim
r→∞

x∗ f (ξr +h′′r ) = x∗(b′′)

which contradicts (3.7). This proves uniform convergence in r for { f (ηr + hn)}. If i, j > N,
we have

f (ηr +hn)− f (ηr +hu) ∈ U for every r (3.10)

Therefore if t ∈R, we take a subsequence of {ηr}which converges to t. Then using continuity
of f and the relation (3.10), we obtain, for i. j > N,

f (t+hi)− f (t+h j) ∈ U.

Thus, f is a.p.

Theorem 3.7. Let E be a metrizable TVS with point separating dual E∗ If f : R→ E is a.p.
and the range F(R) of its primitive is relatively compact in E, then F is a.p.

Proof. Immediate from Theorems 3.3 and 3.5.

Theorem 3.8. Let E be a complete LCS. If f is a.p. and its derivative f ′ uniformly contin-
uous on R, then f ′ is also a.p.

Proof. Consider the functions

gn(t) =
f (t+ 1

n )− f (t)
1
n

= n[ f (t+
1
n

)− f (t)], n = 1,2, ...,

which are clearly periodic. Further, since the derivative f ′ exists,

f ′(t) = lim
n→∞

gn(t).
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It suffices to prove that the sequence {gn(t)} converges uniformly over R to f ′(t).
Let U ∈W be balanced. Then there exist ε > 0 and seminorms pi,1 ≤ i ≤ n, on E such

that
U = {x ∈ E : pi(x) < ε for all 1 ≤ i ≤ n}.

By uniform continuity of f ′, we can choose δ = δU > 0 such that

f ′(t1)− f ′(t2) ∈ U for every t1, t2 with |t1− t2| < δ. (3.11)

We write

n
∫ 1/n

0
[ f ′(t+σ)− f ′(t)]dσ = n[ f (t+σ)− f ′(t)σ]1/n

0

= n{[ f (t+
1
n

)− f ′(t)
1
n

]− [ f (t)−0]},

so

gn(t)− f ′(t) = [ f (t+
1
n

)− f ′(t]− f ′(t) = n
∫ 1/n

0
[ f ′(t+σ)− f ′(t)]dσ.

Therefore, if we take N = NU >
1
δ , then for n ≥ N, we have |t+ 1

n )− t| = 1
n <

1
N < δ, hence, by

(3.11),

pi
[
gn(t)− f ′(t)

]
≤ n
∫ 1/n

0
pi[ f ′(t+σ)− f ′(t)]dσ < n[εσ]1/n

0 = ε

for every semi-norm pi,1 ≤ i ≤ n, and every t ∈ R.
Finally, we prove the following generalization of ([9], Theorem 4) without metrizability

and ([10], Theorem1) from LCSs to TVSs.

Theorem 3.9. Let E be a complete TVS. If f : R→ E is a.p., then for every real sequence
{sn}, there exists a subsequence {s′n} such that for every U ∈W,

f (t+ s′n)− f (t+ s′m) ∈ U

for all t ∈ R, m and n.

Proof. Let U ∈W. Choose a balanced V ∈W such that V +V +V +V ⊆ U. By the
definition of almost-periodicity, there exists l = l(V) (therefore l depends on U) such that in
every real interval of length l, there exists τ such that

f (t+τ)− f (t) ∈ V

for every t ∈ R.
Now for each sn, we can find τn and σn such that sn = τn +σn with τn a V-translation

number of f and σn ∈ [0, l] (it suffices to take τn ∈ [sn− l, sn] and then σn = sn−τn).
As f is uniformly continuous on R, there exists δ = δ(ε) such that

f (t′)− f (t′′) ∈ V (3.12)
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for all t′, t′′, |t′− t′′| < 2δ.
Also 0 ≤ σn ≤ l for every n; we can then subtract from {σn}, a convergent subsequence

{σnk }, by the Bolzano-Weierstrass theorem.
Let σ = lim

k→∞
σnk , with 0 ≤ σn ≤ l. Now consider the subsequence {σnk }

∞
k=1 with

σ−δ < σnk < σ+δ, k = 1,2, ...

and let (snk )
∞
k=1 be the corresponding subsequence where

snk = τnk +σnk , k = 1,2, ...

Let us prove the relation

f (t+ snk )− f (t+ sn j) ∈ U for all t ∈ R. (3.13)

For this, write

f (t+ snk )− f (t+ sn j) = f (t+τnk +σnk )− f (t+σnk )

+ f (t+σnk )− f (t+σn j)

+ f (t+σn j)− f (t+τn j +σn j). (3.14)

Because τnk and τn j are V-translation numbers of f , we shall get

f (t+τnk +σnk )− f (t+σnk ) ∈ V, for every t ∈ R

f (t+τn j +σn j)− f (t+σn j) ∈ V, for every t ∈ R. (3.15)

On the other hand ∣∣∣(t+σnk )− (t+σn j)
∣∣∣ = ∣∣∣σnk −σn j

∣∣∣ < 2δ;

therefore, by using relation (3.12), we get

f (t+σnk )− f (t+σnk ) ∈ V, for every t ∈ R. (3.16)

Finally we can deduce (3.13) by putting (3.15) and (3.16) in (3.14):

f (t+ snk )− f (t+ sn j) ∈ V +V +V ⊆ U.

Then, by taking s′n = snk , k = 1,2, ...

f (t+ s′n)− f (t+ s′m) = f (t+ snk )− f (t+ sn j) ∈ U. �
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