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Abstract

In this paper we introduce and study a new class of functions called S 7¢*¥)-pseudo-
almost periodic (or weighted Stepanov-like pseudo-almost periodic functions with
variable exponents), which generalizes the class of weighted Stepanov-like pseudo-
almost periodic functions. Basic properties of these new spaces are established. The
existence of weighted pseudo-almost periodic solutions to some first-order differential
equations with S ”¢®)_pseudo-almost periodic coefficients will also be studied.
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1 Introduction

This paper is mainly motived by three sources. The first source is a paper by Diagana [6] in
which Stepanov-like pseudo-almost periodic functions were introduced and studied. These
functions were then utilized to study the existence of pseudo-almost periodic solutions to
various classes of differential equations.

The second source, is a paper by Blot er al. [1] in which the concept of weighted
pseudo-almost periodicity, using theoretical measure theory, was introduced and utilized to
study the existence of weighted pseudo-almost periodic solutions to differential equations.

The third and last source is a recent paper by Diagana and Zitane [4] in which Stepanov-
like pseudo-almost periodic functions were introduced in the Lebesgue space with variable
exponents L),

*E-mail address: tdiagana@howard.edu
TE-mail address: zitanem@gmail.com



Weighted Stepanov-Like Pseudo-Almost Periodic Functions in Lebesgue Space 57

The main objective of this paper consists of introducing and studying a new class of
functions called weighted Stepanov-like pseudo-almost periodic functions with variable
exponents, which generalizes the class of Stepanov-like pseudo-almost periodic functions
introduced by Diagana and Zitane [4]. Basic properties of these new spaces are established.
Next, we study the existence of weighted pseudo-almost periodic solutions of the following
nonautonomous differential equations

u'(t)=Au(t)+ f(r), teR, (1.1

u'(t) = A(u(t) + F(t,u(r)), teR, (1.2)

where A(f) : D(A(t)) ¢ X — X is a family of closed linear operators on a Banach space X
satisfying the well-known Acquistapace-Terreni conditions, and f: R— X, F: RxX - X
are jointly continuous satisfying some additional assumptions.

2 u-Pseudo-Almost Periodic Functions

Let |- 1D, (Y, || - |ly) be two Banach spaces. Let BC(R,X) (respectively, BC(R X Y, X))
denote the collection of all X-valued bounded continuous functions (respectively, the class
of jointly bounded continuous functions F : RxXY — X). The space BC(R,X) equipped
with the sup norm || || is @ Banach space. Furthermore, C(R,Y) (respectively, C(R X Y, X))
denotes the class of continuous functions from R into Y (respectively, the class of jointly
continuous functions F : RXY — X). Let B(X,Y) stand for the Banach space of bounded
linear operators from X into Y equipped with its natural operator topology |- ||px v); in
particular, B(X,X) is denoted by B(X) (its corresponding norm will be denoted || - ||px)).

In this section, we recall the concept of u-pseudo-almost periodicity introduced by J.
Blot et al [1].

Definition 2.1. (Bochner) A function f € C(R,X) is called almost periodic if for each € >0
there exists I(¢) > O such that every interval of length /(g) contains a number 7 with the
property that

lfc+n)—-fll<e

for each t e R.
The collection of all almost periodic functions from R to X will be denoted by AP(X).

We denote by B the Lebesgue o-field of R and by M the set of all positive measures
on & satisfying u(R) = oo and u([a,b]) < oo, for all a,b € R(a < b).

Definition 2.2. [1] Let u € M. A function f € BC(R,X) is said to be u-ergodic if

lim

du( =0
fim — 55, 1F@lduo

where Q, :=[-r,r].
The collection of such functions will be denoted by & (X, w).

Proposition 2.3. [1] Let u € M. Then (E(X, ), |l~) is a Banach space.
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Theorem 2.4. []] Let u € M and I be a bounded interval (eventually / = (). Assume that
f € BC(R,X). Then the following assertions are equivalent:

(a) fe&X p);

(b) lim ————
rooo u([=r,rI\ D) Ji—p 1
te[-r, I: || >
(c) Forany &> 0, lim plt € [=r,rI\1: If ()l > &})
roe p([=r,rI\ 1)
Definition 2.5. [1] A function f € C(R,X) is called u-pseudo almost periodic if it can be

expressed as f = g+ ¢, where g € AP(X) and ¢ € E(X, u). The collection of such functions
will be denoted by PAP(X, ).

ILf Dlldp() = 0;

=0.

Let N} denotes the set of all positive measure u € M such that for all a,b and ¢ € R such
that 0 < a < b < ¢, there exist 79 > 0 and a( > 0 such that

IT| =2 10 = pu((a+ 1,0+ 1)) = apu([t,c +7]).

And let N, denotes the set of all positive measure u € M such that for all T € R, there
exist > 0 and a bounded interval / such that

ufa+t:aeA}) <pu(A) forall Ae B suchthat AnI=0.

Theorem 2.6. [/] Let u € Ni. Then the decomposition of a u-pseudo almost periodic func-
tion in the form f = g+ ¢, where g € AP(X) and ¢ € &E(X, p) is unique.

Theorem 2.7. [I1] Let u € N1. Then (PAP(X,u),||-|l~) is @ Banach space.

Theorem 2.8. [/] Let u € N,. Then the space &(X,u) is translation invariant, therefore
PAP(X,u) is also translation invariant, that is, if f € PAP(X,u) implies f; = f(-+7) €
PAP(X,u) forall T e R.

Definition 2.9. [2] A jointly continuous function F € C(R X Y, X) is called almost periodic
in ¢t € R uniformly in x € Y if for each £ > 0 and any K C Y a bounded subset, there exists
I(¢) such that every interval of length /() contains a number 7 with the property that

IFt+m,y)-FEyll <e

foreachteR,ye K.
The collection of such functions will be denoted by AP(Y,X).

Definition 2.10. [1] Let x € M. A function f € C(RxX,Y) is called u-ergodic in ¢ uniformly
with respect to x in X if the following two conditions hold:

(a) forall xin X, f(-,x) e &Y, p);

(b) f is uniformly continuous on each compact set K ¢ X with respect to the second
variable x.
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We denote the space of all such functions by &(Y,X, u).

Definition 2.11. [1] Let u € M. A function f € C(Rx X,Y) is called u-pseudo almost
periodic if it can be expressed as

f=g+9,

where g € AP(Y,X) and ¢ € E(Y, X, ). The collection of such functions will be denoted by
PAP(Y, X, ).

3 Weighted Stepanov-Like Pseudo-Almost Periodic Functions
with Variable Exponents
In what follows, we recall the notion of Lebesgue spaces with variable exponents LP¥ (R, X)
developed in [4, 5, 7,9, 11].
Let Q C R be a subset and let M(Q, X) denote the collection of all measurable functions
f:Q— X, Let us recall that two functions f and g of M(€,X) are equal whether they are

equal almost everywhere. Set m(Q) := M(,R) and fix p € m(Q).
Define

p~=essinfecqp(x), pTi=esssup,qp(x),

Ci(Q):={pem(Q):1<p < p(x)< p* < oo, foreach x € Q},

D, (Q):= {p em(Q):1<p” <p(x)<p*<oo, foreach x € Q},

p() = pp(u) = fg (NP Ddx.

We then define the Lebesgue spaces with variable exponents LP“Y(Q, X) with p € C(Q),
by

LPI(Q,X) := {u e M(Q,X): f lu(OIPPdx < oo}.
Q

Define, for each u € LPY(Q, X),

[ ::inf{1>0:fg||@|

It can be shown that || - ||,y is a norm upon LPM(Q,X), which is referred to as the
Luxemburg norm.

(x)
pxdxsl}

Remark 3.1. Let p € C(Q). If p is constant, then the space LPO(Q,X), as defined above,
coincides with the usual space LP(€2, X).

Proposition 3.2. [7, I1]Let pe C.(Q). If u,v e LPX(Q, X), then the following properties
hold,

(@) |lullpxy > 0, with equality if and only if u = 0;

() pp(u) < pp(v) and |lullpcxy < VIl pew IF [luel] < IVI];
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(©) pp(ullull,l ) = 1if u0;
(d) pp(w) < 1if and only if [ul| ) < 1;

() If [lullpc < 1, then

+

1" <l <[]

|op()

() If ||ullpx) > 1, then
1/p* 1/p
lop@] " <Ml < [op)] "

Theorem 3.3. [7, 9] Let p € C.(Q). The space (LP™(Q,X), |||+ is a Banach space that is
separable and uniform convex. Its topological dual is L¢¥(Q, X), where p~' (x)+¢ ' (x) = 1.
Moreover, for any u € Lp(x)(Q,X) andv e Lq(x)(Q,R), we have

[ v = (= ol

Corollary 3.4. [11] Let p,r € D.(Q). If the function q defined by the equation
1 1 1

—=—
q(x)  px)  rx)

is in D;(Q), then there exists a constant C = C(p,r) € [1,5] such that
”“V”q(x) < C”“”p(x)- |V|r(x),
for every u € LP™(Q,X) and v € L' (Q,R).

Corollary 3.5. [7] Let mes(2) < oo where mes(-) stands for the Lebesgue measure and
p.q € DL(Q). If q(-) < p(-) almost everywhere in Q, then the embedding LP(Q,X) <
LI9(Q, X) is continuous whose norm does not exceed 2(mes(Q)+ 1).

Definition 3.6. [2] The Bochner transform fb (t,s),t€R, s€[0,1] of a function f: R —» X
is defined by (1, 5) := f(t+ ).

Remark 3.7. [2] (i) A function ¢(t, s), t € R, s € [0, 1], is the Bochner transform of a certain
function f, ¢(t,s) = f2(t,s), if and only if o(t+7,5—7) = ¢(s,t) forall t e R, s € [0,1] and
TE[s—1,s].

(ii) Note that if f = h+¢, then f* = h? + ¢”. Moreover, (1f)? = Af? for each scalar A.

Definition 3.8. [2] The Bochner transform F?(z,s,u), t € R, s € [0,1], u € X of a function
F(t,u) on R x X, with values in X, is defined by F®(t,s,u) := F(t+ s,u) for each u € X.

Definition 3.9. [2] Let p € [1,00). The space BS?(X) of all Stepanov bounded functions,
with the exponent p, consists of all measurable functions f on R with values in X such that
f? e L*(R,LP((0,1),X)). This is a Banach space with the norm

1/p

teR

f+1
1llse = 1Ll n = Sup( f IIf(T)II”dT)
t
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Note that for each p > 1, we have the following continuous inclusion:
(BCX), |l lloo) = (BSPX), 1 lls»)-

Definition 3.10. [4] Let p € C.(R). The space BS”“(X) consists of all functions f €
M(R,X) such that || f||gpw < co, where

sup[inf{/l>0 : fl ||f(x+t)
0

teR A
r+1
= sup[inf{/l>0:f |M
teR t A

Note that the space (BS PO(X), ]| - IISW»)) is a Banach space, which, depending on p(-),
may or may not be translation-invariant.

1 f1ls peo

PO < 1}]

p(X)dx < 1}]

Definition 3.11. [4] If p,q € C,(R), we then define the space BS P4 (X) as follows:

BS P(x),q(x)(X) .= BS p(x)(X) +BS q(x)(X)
= {f=h+oe MR,X):he BS"™(X) and ¢ € BS1V(X)}.

We equip BS P4 (X) with the norm || - ||gpwa defined by
1 £1lg peonaeo := inf{llhllspm +lgllgaw : f=h +<,0}-

Clearly, (BS PO (), || - 11 p(x),q(x)) is a Banach space, which, depending on both p(-)
and ¢(-), may or may not be translation-invariant.

Lemma 3.12. /4] Let p,q € C+(R). Then the following continuous inclusion holds,
(BCR. X, lleo) = (BSPOE). N - lls ) = (BSPOCOK, |- lg oo )-

Definition 3.13. [2] Let p > 1 be a constant. A function f € BS?(X) is said to be S ”-almost
periodic (or Stepanov-like almost periodic) if f” € AP(LP((0,1),X)). That is, for each £ > 0
there exists I(g) > O such that every interval of length /(g) contains a number 7 with the
property that

1 1/p 1+1
sup(f “fb(t+1',s)—fb(t,s)des) :sup(f
teR 0 teR t

The collection of such functions will be denoted by S ffp(X).

|f(s+7’)—f(s)||pds)l/p <s.

Remark 3.14. [4] There are some difficulties in defining S g};‘) (X) for a function p € C(R)
that is not necessarily constant. This is mainly due to the fact that the space BS "W (X) is
not always translation-invariant. In other words, the quantities f°(t + 7, s) and f’(z,s) (for
teR, s€[0,1]) that are used in the definition of S #-almost periodicity, do not belong to the
same space, unless p is constant.
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We now introduce the concept of weighted S 7*4¥)-pseudo-almost periodicity as follows:

Definition 3.15. Let z € M, p > 1 be a constant and let ¢ € C,(R). A function f € BS 749 (X)
is said to be weighted §79-pseudo-almost periodic (or weighted Stepanov-like pseudo-
almost periodic with variable exponents p, g(x)) if it can be decomposed as f = h+ ¢, where
heSh,(X) and ¢” € ELTD(0,1),X),p), ie.,

g e o [

The collection of such functions will be denoted by S ﬁ;lq;x) X, ).

p(x+1)
dx < l}du(t) =0.

Proposition 3.16. Letr,s>1,p,ge D.(R), ue M. If s<r,q(-) < p(-) and f € BS"PX(X) is
weighted S""P™-pseudo-almost periodic, then f is weighted S 1% -pseudo-almost periodic.

Proof. Suppose f is weighted "™ -pseudo-almost periodic. Thus f can be decomposed
as f = h+ ¢, where h? € AP(L"((0,1),X)) and ¢’ € E(LP'D((0,1),X), ).
Since K’ € AP(L'((0,1),X)), for each & > 0 there exists I(¢) > 0 such that every interval
of length /() contains a number T with the property that
1@+ 7) =R @)is- <,

foreach t € R.
In view of the continuous injection

L'((0,1),X) < L*((0,1),X),
it follows that for each r € R
W+ 1) =B @)llss < WPt +1) =R @)llsr < &,
that is, h € AP(L*((0, 1), X)).

From u(R) = oo, we deduce the existence of rg > 0 such that u(Q,) > 0 for all » > rg. By
using the fact that ¢ € &(LP'™@((0,1),X), ) and Corollary 3.5, one has

1
u(lQr) fQ rinf{bo: fo £+
: M(Z» fQ inf{ﬁ » 0 fo | ” W; °

that is ¢? € E(LT@((0,1),X), 1) and hence f is weighted S *4*)-pseudo-almost periodic.
O

(x+1)
‘ desl}wdﬂ

(x+1)
”HMS@@m

Proposition 3.17. Let p > 1 be a constant, g € C+(R) and let u € Np. Then PAP(X,u) C

e ant
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Proof. Let f € PAP(X,u). Thus there exist two functions h,¢ : R — X such that f = h+ ¢,
where h € AP(X) and ¢ € E(X, ). We first show that i € S7,(X). Indeed, since i € AP(X),
for each € > 0 there exists /(g) > 0 such that every interval of length I(¢) contains a number
7 with the property that

lh(t+7)=h(t)|| < &

for each r e R.
Now

ft+ 1
t

for all t € R, which means that

p r+1
h(s+7’)—h(s)|| dssf ePdx = &P
t

¢ +7)=h(O)lls» <&,
that is, i’ € AP(L?((0,1),X)).

To complete the proof, we need to show that gob € 8(L‘/h(x)((0, 1),X),u). From u(R) = oo,
we deduce the existence of rg > 0 such that u(Q,) > 0 for all r > ry.

Using (e)-(f) of Proposition 3.2, the usual Holder inequality and Fubini’s theorem it
follows that

1
finf{/l>0:f ||9”(x+” dxsl}du(z)
o, 0 A
1 Y
< f ( f ||so<r+x>||q<f+x>dx) (1)
O 0
1 Y

sm(Qr))”[ f ( fo ||go<z+x>||q(’”>dx)du(r)]

1 Y
< (N ( f ||so(r+x>||.||so||25’”>‘1dx)du(r)]
f ( f ||<p(t+x)||dX)dﬂ(t)]

Y
[ f ( , ||¢(l+x)||dﬂ(f))dx]

o
du(r)|d
[fo (M(Qr) Qr”‘p(’”)ﬂ u(t)) X

q(x+1)

= @) (llglleo +

q

= (O))(llpll +1) 7

< (@) (llglloo + 1)
(Il 1)
+_1 Y

’

where

if [lell < 1,

»Q+|,_

if ||l > 1.

=

Using the fact that £(X, u) is translation invariant and the (usual) Dominated Conver-
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gence Theorem, it follows that

AR ,U(lQr) fQ inf{ﬂ » 0 fo | |22

+_1 1 )
[ fo (,Elg},o #(;r) erlw(HX)lld/J(t))dx] ~o.

q(x+1)
dx < 1} du(t)

q

< (llglloo +1) 7

Theorem 3.18. Let p,q > 1 be constants, u € Mand f € S %{D(X, W) be such that
f=h+e

where h? € AP(LP((0,1),X)) and ¢* € E(L4((0,1),X), ). Then

{ne+):teRfc{fe+):teR), in  BSPIUX).

Proof. The proof follows along the same lignes as in [1, Theorem 2.24]. We prove it by
contradiction. Indeed, if this is not true, then there exists #y € R and & > 0 such that

If(t+-)—h(to+llsra > 3e, VieR. 3.1)

Since h? € AP(L?((0,1),X)), there exists [ > 0 and for all n € Z, there exists 7, € [nl —ty,nl—
to + [] such that
A(tg + - +1,) —h(tog +)llsr < &. 3.2)

By using the uniform continuity on R of the almost periodic function /4, there exists Ko € N

such that Ky > 2 and

[ l
At +)=h(tg+-+T1p)llsr <&, Vteltog+T1,——,l0+Tp+—]. 3.3)
Ky Ky

From the following inequality

If(+)=h(to+llsra <N f(E+-) = h@+)lspa +1h(E+ ) —h(to + -+ Tu)llsrae
+|hto + - +7) — h(to + s pa
=||f(t+) = h(@+)llspa + |+ ) = h(to+ - +74)lls»
+|hto + - +7,) — h(to + )lls»-

and from (3.1)-(3.3), we deduce that
llp(t +llsa = Nl +llsra =l f(¢+) —hE+)llsra > &, (3.4
forallre [t0+Tn—KiO,t0 FT,+ Kio].
Similarly, as in the proof of [1, Theorem 2.24], we obtain the existence of constants

a, >0 and n, € N,n, > 1, such that

[n| > n, = au((nl,nl+1]) <u({t € ml,nl +1] : ||t +-)||se > €}). 3.5
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Let N € N be such that N > n... Denote by S the finite set of integers defined by
S={-N,-N+1,..,—n.—1}U{n,n.+1,..,N-1}.
By summing (3.5) on S, we obtain

s Z,u([nl,nl+ < Zu({t € (nl,nl+1] : ot +)|lse > &}). (3.6)

nes nesS

From the following inequalities:

Oy Zu([nl, nl+1]) > a/*,u( U[nl, nl+ l])

nesS nesS
= au([-NL NI\ (—n.d,n.l)),

D uClr € (ul 411 N+ s > o) = |t € atnt-+.11: g+ lsa > o)

nes nes
=p({r € (=NLNI\ (—n.l,n.d] : |lpt +)llsa > &})
< p({t € [-NLNIN (=n,Lon.d) : llg(t+ s > &),

and from (3.6), we deduce that for all N > n,
@ u([=NL NI\ (=nid,n.D) < p({t € [-NL NI\ (=n.d,n.d) = lo(t+)llse > &}),

therefore we obtain

fim HA7EENENON Cneoned) gl +)llse > eh) -
N—>too p([~NLND\ (—n.d,n.0))

By using Theorem 2.4, it yields that ¢” ¢ &(L9((0, 1),X),u), which is a contradiction. O

Corollary 3.19. Let p,q > 1 be constants and u € Ny. Then the decomposition of a SP-
u-pseudo-almost periodic function in the form f = h+ ¢ where h® € AP(LP((0,1),X)) and
@ e 8(LI((0,1),X), ), is unique.

Proof. Suppose that f = hy + ¢y = hy + ¢, where h%,h5 € AP(LP((0,1),X)) and ¢%,¢" €
E(LI((0,1),X), ). Then 0= (7 —ho) + (1 —¢2) € S hiah (X, ) where h? —hb € AP(LP((0, 1), X))
and tp’l’ - (,0}1’ € E(L1((0,1),X),u). From Theorem 3.18 we obtain (h; —h;)(R) C {0}, therefore
one has i = hy and ¢ = 5.

O

pq

Theorem 3.20. Let p,q > 1 be constants and u € Ni. The space S,

the norm || - ||s»¢ is a Banach space.

(X, u) equipped with

Proof. It suffices to prove that S17,(X, ) is a closed subspace of BS74(X). Let f;, = hy +¢n

be a sequence in S g;Z,,(X, w) with (h2) a0 € AP(LP((0,1),X)) and (¢2)enr € E(L((0,1),X), 1)

such that ||f, — fllsre — 0 as n — co. By Theorem 3.18, one has

{h,(t+.):teR}C{f,(t+.):t€R]},
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and hence
||hn||sp = ||hn||5p,q < ”fn”SM for all n € N.

Consequently, there exists a function 2 € S f;,,(X) such that ||k, — hlls» — 0 as n — oco. Using
the previous fact, it easily follows that the function ¢ := f —h € BS 4(X) and that ||¢, — ¢|[ss =
|(fn—hn)—(f —h)|lss = 0 as n — co. From p(R) = oo, we deduce the existence of ry > 0 such
that u(Q,) > 0 for all r > rg. Using the fact that ¢ = (¢ —¢,) + ¢, and the triangle inequality,

it follows that

u(ém 0 (fo | et + ’>||qdf)q du(r)
1 1 . é
< o ([ e so-enesoffar] o
1 |
*u0) fg(fo
5||¢n—¢||3q+@j;r(fol|

Letting 7 — +co and then n — oo in the previous inequality yields ¢” € &(LI((0,1),X),u),

thatis, f=h+¢pe€ Sﬁ;z,(X,,u). O

(T + t)||qdr); du(t)

on(T + t)quT)(II du(o).

Definition 3.21. [1] Let uj,u € M. y; is said to be equivalent to py (1 ~ up) if there exist
constants @, > 0 and a bounded interval / (eventually / = 0) such that

au(A) < up(A) < Bui(A), forall Ae B suchthat ANI=0.

Theorem 3.22. Let u € M,p > 1 be a constant, g € C.(R) and uy,u € M. If uy and uy are
equivalent then S8 (3, up) = S AV (X, o).

Proof. The proof is similar to that of [1, Theorem 2.21]. Since y; ~ up, and B is the
Lebesgue o-field of R, we obtain for r sufficiently large

am(te O\ IfOlisrao > &) _ paft € QN I Dllsrar > &})

B u(Qr\ 1) - u(@r\ D

it € QNI IfDllgrae > €})
u(Or\1) '

B

a

By using Theorem 2.4, we deduce that & (LY ®((0, 1),X), 1) = E (LT D((0,1),X), 111). From
the definition of a weighted S ”9™-pseudo-almost periodic function it follows that

S hy ) = S ity (Ko p).
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Definition 3.23. A function F : RxY — X with F(.,u) € BSP4¥(X) for each u € Y, is
said to be §P4™_y-pseudo-almost periodic in 7 € R uniformly in u € Y if t — F(t,u) is
§P4¥)_y-pseudo-almost periodic for each u € B where B C Y is an arbitrary bounded set.

This means, there exist two functions G,H : RXY — X such that F = G + H, where
G € AP(Y,LP((0,1),X)) and H? € &(Y, LY @((0,1),X), ), that is,

1
r_'>+ooﬂ(1Qr)erinf{/l>0:fO HM|

lim

(x+1)
< l}dp(t) -0,

uniformly in u € B where B C Y is an arbitrary bounded set.

The collection of such functions will be denoted by S g’;f[ﬁ”(Y,X, ).

Let Lip"(Y,X) denote the collection of functions f : RXY — X satisfying: there exists
a nonnegative function Ll)’p € L"(R) such that

f(t,u)— fEVI < Lp@llu—vlly forall u,veY, teR. 3.7
Now, we recall the composition theorem for 7 p» functions.
Theorem 3.24. [8] Let p > 1 be a constant. We suppose that the following conditions hold:
(a) feSh »RXX)N Lip"(R,X) with r > max{p, ppl )

(b) peSt »(X) and there exists a set E C R with mes (E) = 0 such that

={¢(r): 1R\ E}
is compact in X.
Then there exists m € [1, p) such that f(-,¢(-)) € (R x X).

p(x)

To obtain the composition theorem for S,;,

functions, we need the following lemma:

Lemma 3.25. Let g > | be a constant, 4 € M and K C Y be a compact subset. If f €
Lip?(Y,X) and f” € E(Y,LI((0,1),X), ), then f € E(X, u), where the function f is defined
by

F(0) = | supe+ - (3:38)
uek q

for all r € R.

Proof. We make extensive use of ideas of [8, Lemma 2.3]. Using the fact that K C Y is a
compact subset, for any € > 0 , there exists xy, X2, ...., X such that

k
KC U B(x;,e).
i=1

Using this argument along with the fact that f € Lip?(Y,X), for all u € K, there exists
Xiw) € {x1,x2,...., x;} such that

1fC+ s, < | f @+ s,u) = f(£+ s, Xia)I| + [ f(E+ 5, Xi@w)ll < Le(t+8)e+|[f(E+ 5, Xiw)l
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for each r € R and s € [0, 1]. Thus, we have

k

SuPIIf(t+S,u)|ISLf(t+S)8+ZIIf(Hs,xi(u))ll, VieR, Vse[0,1],
uek =1

which yields
_ k
Fo) =||supllfe+wll| < Mepllsee+ Y IFGExialys  VeeR. (3.9)
uek 9q =1

Now using the fact that fb e &Y, L1((0,1),X),u), for the above & > 0, there exists rg >0
such that, for all r > ry,

1
ﬂ(Qr) o,

This along with Eq. (3.9) yield

(f01||f(’”’xi>||qdf);d#<f> <z i=12k

1 —
0, [OwO < (L llss+1).,

and hence fe EX ). O

Theorem 3.26. Let p,q > 1 be constants such that p < q and u € M. Suppose that the
following conditions hold:

(a) f=g+heSha,(¥. X p) with g € AP(Y,LP((0,1),X)) and h* € E(Y, LI((0, 1), X). ).

Further, f,g € Lip"(Y,X) with r > max{q, p%l}.

(b) ¢=a+BeSEI Y)witha® e AP(LP((0,1),Y)) and B € E(LI((0,1),Y), ), and there

pap
exists a set E C R with mes (E) = 0 such that

K:={a(n):1e€R\E}
is compact in Y.
Then there exists m € [1, p) such that f(-,¢(-)) € S ap (Y, X, ).
Proof. We will make use of ideas of [8, Theorem 2.4]. Indeed, decompose f* as follows:
68" ) =8O+ 7" () = fC.a’ (D +H (e ().

Using Theorem 3.24, it easily follows that there exists m € [1, p) with % = 117 + % such that
g’(¢.ab()) e APR x L™((0,1),X)).
Set
@)= f1C ") = Pl
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Clearly, ©? € E(L™((0,1),X), ). Indeed, there exists 7o > 0 such that, for all > r,

u(Q» ( f I+ )l ds) du(t)

( f Ifot+ 5,002+ 5)) - fb(t+sozb(t+s))||mds) du(?)

,U(Qr)

1 "
Su(;r) ( f (L?(t+s).||,8b(t+s)||) ds) du(r)
SIILI}Ilsr[ TR ( f |w"<r+s)||1’ds) d/«t(t)}

1 i
SllLl}llsn[lu(—Q) , ( fo |wb<z+s)||qu) du(t)].

Using the fact that 8° € E(LI((0, 1),X), ), it follows that ¢’ € E(L™((0,1),X), ).
Now using the fact that 2 = f — g € Lip"(R,X) C Lip?(R,X), it follows by Lemma 3.25

that .
lim f sup ||t + -, w)|||| du(?) =
e 1(00) Jo, ek 2
which yields
| 1
( f 1" (¢ + 5,0 (1 + s))||'"ds) dp(r)
w(Qr) Jo,
1
WPt + 5,0"(t + s))Iqus) du(r)
,U(Qr) (f
1 1 q ;
< (f (supllhh(t+ s, u)ll) ds) du(f) >0 as r— oo,
1(Or) Jo, \Jo \uek
which means that #°(-,a?(-)) € E(L™(0, 1); X), 1). This completes the proof. O
Remark 3.27. A general composition theorem in S %’,ﬁx)(R x X) is unlikely as compositions
of elements of S 5;’,5")(1& x X, u) may not be well-defined unless g(-) is the constant function.

4 [Exsitecne Results for Evolution Equations

Let p,q > 1 be constants such that p < g, ¥ € C,(R) and u € N;. This section is devoted to the
search of a y-pseudo-almost periodic solutions to the abstract nonautonomous differential
equations Eq. (1.1) and Eq. (1.2).

Throughout the rest of the paper we suppose that the following assumptiona hold:

(A.1) The family of closed linear operators A(¢), for t € R, on X with domain D(A(?))
(possibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions;
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namely, there exist constants 1y > 0, 6 € (g,n), Mi,M; >0, and «,B € (0,1] with
a+ > 1 such that

2y U {0} C p(A(1) = A0), [IR(A,A®) = o)lIBexy < 1+|1/1|

and
ICA() = 20)R(A, A(t) — 20)[R(A0, A()) — R(o, A(s)]ll ey < Malt — ||
fort,s e R, 1€%y:={1€C—{0}: |argd| <6}

(A.2) The evolution family U(t,s) is exponentially stable. Namely, there exist some con-
stants M, 6 > 0 such that
WU, 5l < Me

for all 5,7 € R with ¢ > s. In addition, R(4y,A(-)) € AP(R, B(X)).

(A3) F=G+HeShHlRxX,u)NCRXX) with G* € APRX L((0,1),X)) and H” € E(R X
L1((0,1),X),u). Moreover; F,G € Lip"(R,X) with

r= max{q,L}.
p—1

Definition 4.1. Under (A.1)-(A.2), if f: R — X is a bounded continuous function, then a
mild solution to Eq.(1.1) is a continuous function « : R — X satisfying

f
u(t) = U, s)u(s)+ f Ut,o) f(o)do “4.1)

forall t,se Rand ¢ > s.

Definition 4.2. Suppose (A.1)-(A.2) hold. If F: RxX — X is a bounded continuous func-
tion, then a mild solution to Eq.(1.2) is a continuous function u : R — X satisfying

t

u(t) = U(t, s)u(s) +f U(t,o)F(o,u(o))do 4.2)

s

forall t,se Rand ¢ > s.

Lemma 4.3. Under assumptions (A.1)—(A.2), if he S Z;Z,(x)(X, WNCR,X), then the oper-
ator A defined by

!
(Au)(t) := f Ut,o)h(o)do, teR

[ee)

maps PAP(X, ) into itself.

Proof. Clearly, A is well defined. Moreover, let u € PAP(X,u). Since h € S, ’ﬁ(x)(X, nnN

paa
C(R,X), then h = g + ¢, where g* € AP(LP((0,1),X)) and ¢* € E(L?"®((0,1),X), ). Then
A can be decomposed as

(Au)(t) = X(t) + Y (0
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where . )
X(t)=f U(t,s)g(s)ds, and Y(t)=f Ul(t, s)p(s)ds.

Define for all n = 1,2,...., the sequence of integral operators

n t—n+1
Xu(t) = f Ut,t—s)g(t—s)ds = f Ul(t,s)g(s)ds,
n—-1 t

-n
and
n t—n+1
Y, () := f U(t,t—s)p(t—s)ds = f Ul(t, s)p(s)ds.
n—1 t-n
foreach r e R.
Let us show that X, € AP(X). Let p' > 1 such that % + % = 1. Using the Holder’s in-

equality, it follows that

t—n+1
X (0)l| < M e |g(or)|ldor
—n
1

t—n+1 , i t—n+1 7
M( f e P 50—"%10) ( f ||g(0')||pd0')
1— t—n

1

n
M o o 7
, (e PO e ”"5) lglls»

IA

IA

P

"[1+eP'o
< Me™ ”\/ —llglls»
po

, —ns
= Kie7"|Igllsp.

3]

Since the series
K 1 i e_”‘s
n=1
is convergent, we deduce from the well-known Weierstrass test that the sequence of func-
tions 3}, X,,(?) is uniformly convergent on R.
Using the fact that

X0 =) X0,
n=1

it follows that X € C(R,X). Moreover, for any ¢t € R, we have

Xl < > IXa (0l < Cp (M, 6)iglls

n=1

where C,; (M, 6) depends only on the fixed constants p M and 6.
Since g” € AP(LP((0, 1), X)), for each & > 0, there exists I(g) > 0 such that every interval
of length /() contains a number T with the property that
( ft+l &
su _—.
e\, C, (M.5)

’g(s +7) —g(s)“p ds)p <
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Using triangle inequality, Holder inequality and [10, Proposition 4.4], we obtain

! !
1X(t+71)— X)) < 'f U(t+T,S+T)g(S+T)dS—f U(t,s)g(s)ds

(o8]

< 'f Uit+t,s+71)g(s+71)—g(s)]ds

+‘ f [Ut+T,s+1)=U(t,9)]g(s)ds
<M "o - —g(t—y9)||d
< ;j;_le Hg(t s+T1)—g(t s)” s

+f UG+ 75+ 0) = U, 5)|| g laC = 9)ll s
<Cy(M,O)llg(t+7) = g@llsr

!
+ f g2 \g(t— )|l ds
<e+e. Cp/ 0).11glls»
=(1+C(9).llgllsr) e,
and therefore, X € AP(X).
Now, let us show that ¥, € &(X, ). Indeed, let d € m(R) such that d~!(x) + 9~ (x) = 1.

From u(R) = oo, we deduce the existence of rg > 0 such that yu([—r,7]) > O for all » > rg. By
using the Holder inequality (Theorem 3.3), it follows that

t—n+1
1Yol < M f I o(s)llds
t—n
<M( 1 N 1 )
< L

t—n+l _—w(t—s)
: . e d(s)
yE 1nf{ﬂ>0.£n ( - ) ds< 1}]

t—n+1 9(s)
X inf{/l>0:f @H dssl}}.
t-n 1

r—n+1 e—w(t s) d(s)
—n [ —w(n— 1)

Now since

t—n+1

w(s t+n— D:Id(g)ds

ft n+1 d( Y)
1

<
<
. —n+1 / —w(t-5)\d(S) .
it follows that e=“"~D ¢ {/l >0: tt_nn+ (eT()) Yds < 1}, which shows that

t—n+1 _—w(t—s) d
[inf{/1>0:f (e g ) (S)dss IH < e w1
t-n
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Consequently,

1 1y _
1Y, (1) < M(d_— N q—_)e W=D o0

Since the series

(o)

Z e—w(n— 1)

n=1

is convergent, we deduce from the well-known Weierstrass test that the series

i Ya(0)
k=1

is uniformly convergent on R. Furthermore, from
Y(6)= ) Yal0),
n=1
we deduce that Y € C(R, X), and

YOI - 1Yl < Killglls oo,
n=1

[

where K| = M(di_ ¥ %)Ze—w(rz—l)'
n=1

By using the following inequality

1 | i
e TS e ORI ACIE
uierrh [_r’r]” o u(t)<u([—r,r]) [—r,r]” @) ; Ol dp()

SR
e v ol
+;ﬂ([—r,r]) [_m” Ol du(r)

we deduce that the uniform limit Y(r) = 3,7 | Y,,(¢) € E(X, ). Therefore, (Au) € PAP(X, ).
O

Using Lemma 4.3 one can prove the following theorems
Theorem 4.4. Under assumptions (A.1)—(A.2), if f€ S 5%()6)(5{, WNCR,X), then Eq.(1.1)

has a unique p-pseudo-almost periodic (mild) solution given by

u(t) = f Ut,o)f(o)do, teR. 4.3)

[ee)

Proof. Define the function u : R — X by

ut) = f U(t,5)f(s)ds, t € R. (4.4)

(%)
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It is easy to check that u given in Eq. (4.4) satisfies Eq. (4.1) and hence it is a mild
solution.

Since f €S §’j,§”(X, 1) NC(R,X), from Lemma 4.3, we deduce that u given in Eq. (4.4)
is in PAP(X).

To complete the proof it remains to prove the uniqueness. By assumption there exist
some constants M, > 0 such that

U2, $)lpary < Me™™ forall s,t€R with 7> s.
Assume that # : R — X is bounded and satisfies the homogeneous equation
u'(r) = A(u(r), teR, 4.5)

Then u(t) = U(t, s)u(s), for any ¢ > s. Thus |ju(?)|| < MKe =) where |ju(s)|| < K. Take a
sequence of real numbers (s,) such that s, — —o0 as n — oo. For any ¢ € R fixed, one can
find a subsequence (s,,,) C (s,) such that s,, <t forall k=1,2,.... By letting k — oo, we get
u(t) = 0. Now if u,v are bounded solutions to Eq.(1.1), then w = u — v is a bounded solution
to Eq.(4.5). In view of the above, w =u—v =0 thatis u = v. O

Theorem 4.5. Let p,q > 1 be constants such that p < g and p € N. Then under assumptions
(A.1)-(A.3), Eq.(1.2) has a unique u-pseudo-almost periodic solutions whenever ||Lg||s- is
small enough.

Proof. The proof is similar to that of [4, Theorem 6.4]. So, we omit it. O
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