Weighted Stepanov-Like Pseudo-Almost Periodic Functions in Lebesgue Space with Variable Exponents $L^{p(x)}$

Тока Diagana* Department of Mathematics, Howard University, 2441 6th Street N.W., Washington, D.C. 20059, USA

Монамер Zitane[†] Université Ibn Tofaïl, Faculté des Sciences, Laboratoire d'An. Maths et GNC, B.P. 133, Kénitra 1400, Maroc

Abstract

In this paper we introduce and study a new class of functions called $S^{p,q(x)}$ -pseudoalmost periodic (or weighted Stepanov-like pseudo-almost periodic functions with variable exponents), which generalizes the class of weighted Stepanov-like pseudoalmost periodic functions. Basic properties of these new spaces are established. The existence of weighted pseudo-almost periodic solutions to some first-order differential equations with $S^{p,q(x)}$ -pseudo-almost periodic coefficients will also be studied.

AMS Subject Classification: 34C27; 35B15; 46E30.

Keywords: weighted pseudo-almost periodicity; Lebesgue space with variable exponents; weighted Stepanov-like pseudo-almost periodicity with variable exponents.

1 Introduction

This paper is mainly motived by three sources. The first source is a paper by Diagana [6] in which Stepanov-like pseudo-almost periodic functions were introduced and studied. These functions were then utilized to study the existence of pseudo-almost periodic solutions to various classes of differential equations.

The second source, is a paper by Blot *et al.* [1] in which the concept of weighted pseudo-almost periodicity, using theoretical measure theory, was introduced and utilized to study the existence of weighted pseudo-almost periodic solutions to differential equations.

The third and last source is a recent paper by Diagana and Zitane [4] in which Stepanovlike pseudo-almost periodic functions were introduced in the Lebesgue space with variable exponents $L^{p(x)}$.

^{*}E-mail address: tdiagana@howard.edu

[†]E-mail address: zitanem@gmail.com

The main objective of this paper consists of introducing and studying a new class of functions called weighted Stepanov-like pseudo-almost periodic functions with variable exponents, which generalizes the class of Stepanov-like pseudo-almost periodic functions introduced by Diagana and Zitane [4]. Basic properties of these new spaces are established. Next, we study the existence of weighted pseudo-almost periodic solutions of the following nonautonomous differential equations

$$u'(t) = A(t)u(t) + f(t), \quad t \in \mathbb{R},$$
 (1.1)

$$u'(t) = A(t)u(t) + F(t, u(t)), \quad t \in \mathbb{R},$$
(1.2)

where $A(t) : D(A(t)) \subset \mathbb{X} \to \mathbb{X}$ is a family of closed linear operators on a Banach space \mathbb{X} satisfying the well-known Acquistapace-Terreni conditions, and $f : \mathbb{R} \to \mathbb{X}, F : \mathbb{R} \times \mathbb{X} \to \mathbb{X}$ are jointly continuous satisfying some additional assumptions.

2 μ-Pseudo-Almost Periodic Functions

Let $(\mathbb{X}, \|\cdot\|), (\mathbb{Y}, \|\cdot\|_{\mathbb{Y}})$ be two Banach spaces. Let $BC(\mathbb{R}, \mathbb{X})$ (respectively, $BC(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denote the collection of all X-valued bounded continuous functions (respectively, the class of jointly bounded continuous functions $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). The space $BC(\mathbb{R}, \mathbb{X})$ equipped with the sup norm $\|\cdot\|_{\infty}$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})$ (respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denotes the class of continuous functions from \mathbb{R} into \mathbb{Y} (respectively, the class of jointly continuous functions $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$). Let $B(\mathbb{X}, \mathbb{Y})$ stand for the Banach space of bounded linear operators from \mathbb{X} into \mathbb{Y} equipped with its natural operator topology $\|\cdot\|_{B(\mathbb{X},\mathbb{Y})}$; in particular, $B(\mathbb{X}, \mathbb{X})$ is denoted by $B(\mathbb{X})$ (its corresponding norm will be denoted $\|\cdot\|_{B(\mathbb{X})}$).

In this section, we recall the concept of μ -pseudo-almost periodicity introduced by J. Blot *et al* [1].

Definition 2.1. (Bochner) A function $f \in C(\mathbb{R}, \mathbb{X})$ is called almost periodic if for each $\varepsilon > 0$ there exists $l(\varepsilon) > 0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\|f(t+\tau) - f(t)\| < \varepsilon$$

for each $t \in \mathbb{R}$.

The collection of all almost periodic functions from \mathbb{R} to \mathbb{X} will be denoted by $AP(\mathbb{X})$.

We denote by \mathcal{B} the Lebesgue σ -field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R}) = \infty$ and $\mu([a,b]) < \infty$, for all $a, b \in \mathbb{R}$ $(a \le b)$.

Definition 2.2. [1] Let $\mu \in \mathcal{M}$. A function $f \in BC(\mathbb{R}, \mathbb{X})$ is said to be μ -ergodic if

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|f(t)\| d\mu(t) = 0$$

where $Q_r := [-r, r]$.

The collection of such functions will be denoted by $\mathcal{E}(\mathbb{X},\mu)$.

Proposition 2.3. [1] Let $\mu \in \mathcal{M}$. Then $(\mathcal{E}(\mathbb{X},\mu), \|\cdot\|_{\infty})$ is a Banach space.

Theorem 2.4. [1] Let $\mu \in M$ and *I* be a bounded interval (eventually $I = \emptyset$). Assume that $f \in BC(\mathbb{R}, \mathbb{X})$. Then the following assertions are equivalent:

(a) $f \in \mathcal{E}(\mathbb{X}, \mu)$;

(b)
$$\lim_{r\to\infty}\frac{1}{\mu([-r,r]\setminus I)}\int_{[-r,r]\setminus I}\|f(t)\|\,d\mu(t)=0;$$

(c) For any
$$\varepsilon > 0$$
, $\lim_{r \to \infty} \frac{\mu(\{t \in [-r, r] \setminus I : ||f(t)|| > \varepsilon\})}{\mu([-r, r] \setminus I)} = 0.$

Definition 2.5. [1] A function $f \in C(\mathbb{R}, \mathbb{X})$ is called μ -pseudo almost periodic if it can be expressed as $f = g + \phi$, where $g \in AP(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$. The collection of such functions will be denoted by $PAP(\mathbb{X}, \mu)$.

Let N_1 denotes the set of all positive measure $\mu \in M$ such that for all a, b and $c \in \mathbb{R}$ such that $0 \le a < b \le c$, there exist $\tau_0 \ge 0$ and $\alpha_0 > 0$ such that

$$|\tau| \ge \tau_0 \Rightarrow \mu((a+\tau, b+\tau)) \ge \alpha_0 \mu([\tau, c+\tau]).$$

And let N_2 denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all $\tau \in \mathbb{R}$, there exist $\beta > 0$ and a bounded interval *I* such that

 $\mu(\{a + \tau : a \in A\}) \le \beta \mu(A) \text{ for all } A \in \mathcal{B} \text{ such that } A \cap I = \emptyset.$

Theorem 2.6. [1] Let $\mu \in N_1$. Then the decomposition of a μ -pseudo almost periodic function in the form $f = g + \phi$, where $g \in AP(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$ is unique.

Theorem 2.7. [1] Let $\mu \in \mathcal{N}_1$. Then $(PAP(\mathbb{X}, \mu), \|\cdot\|_{\infty})$ is a Banach space.

Theorem 2.8. [1] Let $\mu \in N_2$. Then the space $\mathcal{E}(\mathbb{X},\mu)$ is translation invariant, therefore $PAP(\mathbb{X},\mu)$ is also translation invariant, that is, if $f \in PAP(\mathbb{X},\mu)$ implies $f_{\tau} = f(\cdot + \tau) \in PAP(\mathbb{X},\mu)$ for all $\tau \in \mathbb{R}$.

Definition 2.9. [2] A jointly continuous function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is called almost periodic in $t \in \mathbb{R}$ uniformly in $x \in \mathbb{Y}$ if for each $\varepsilon > 0$ and any $K \subset \mathbb{Y}$ a bounded subset, there exists $l(\varepsilon)$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\|F(t+\tau, y) - F(t, y)\| < \varepsilon$$

for each $t \in \mathbb{R}$, $y \in K$.

The collection of such functions will be denoted by $AP(\mathbb{Y},\mathbb{X})$.

Definition 2.10. [1] Let $\mu \in M$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ -ergodic in *t* uniformly with respect to *x* in \mathbb{X} if the following two conditions hold:

- (a) for all x in \mathbb{X} , $f(\cdot, x) \in \mathcal{E}(\mathbb{Y}, \mu)$;
- (b) f is uniformly continuous on each compact set $K \subset \mathbb{X}$ with respect to the second variable x.

We denote the space of all such functions by $\mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$.

Definition 2.11. [1] Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ -pseudo almost periodic if it can be expressed as

$$f = g + \phi,$$

where $g \in AP(\mathbb{Y}, \mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$. The collection of such functions will be denoted by $PAP(\mathbb{Y}, \mathbb{X}, \mu)$.

3 Weighted Stepanov-Like Pseudo-Almost Periodic Functions with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents $L^{p(x)}(\mathbb{R},\mathbb{X})$ developed in [4, 5, 7, 9, 11].

Let $\Omega \subseteq \mathbb{R}$ be a subset and let $M(\Omega, \mathbb{X})$ denote the collection of all measurable functions $f : \Omega \mapsto \mathbb{X}$. Let us recall that two functions f and g of $M(\Omega, \mathbb{X})$ are equal whether they are equal almost everywhere. Set $m(\Omega) := M(\Omega, \mathbb{R})$ and fix $p \in m(\Omega)$.

Define

$$p^{-} := \operatorname{ess\,inf}_{x \in \Omega} p(x), \quad p^{+} := \operatorname{ess\,sup}_{x \in \Omega} p(x),$$

$$C_{+}(\Omega) := \left\{ p \in m(\Omega) : 1 < p^{-} \le p(x) \le p^{+} < \infty, \text{ for each } x \in \Omega \right\},$$

$$D_{+}(\Omega) := \left\{ p \in m(\Omega) : 1 \le p^{-} \le p(x) \le p^{+} < \infty, \text{ for each } x \in \Omega \right\},$$

$$\rho(u) = \rho_{p(x)}(u) = \int_{\Omega} ||u(x)||^{p(x)} dx.$$

We then define the Lebesgue spaces with variable exponents $L^{p(x)}(\Omega, \mathbb{X})$ with $p \in C_+(\Omega)$, by

$$L^{p(x)}(\Omega,\mathbb{X}) := \left\{ u \in M(\Omega,\mathbb{X}) : \int_{\Omega} ||u(x)||^{p(x)} dx < \infty \right\}.$$

Define, for each $u \in L^{p(x)}(\Omega, \mathbb{X})$,

$$||u||_{p(x)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left\| \frac{u(x)}{\lambda} \right\|^{p(x)} dx \le 1 \right\}.$$

It can be shown that $\|\cdot\|_{p(x)}$ is a norm upon $L^{p(x)}(\Omega, \mathbb{X})$, which is referred to as the *Luxemburg norm*.

Remark 3.1. Let $p \in C_+(\Omega)$. If p is constant, then the space $L^{p(\cdot)}(\Omega, \mathbb{X})$, as defined above, coincides with the usual space $L^p(\Omega, \mathbb{X})$.

Proposition 3.2. [7, 11] Let $p \in C_+(\Omega)$. If $u, v \in L^{p(x)}(\Omega, \mathbb{X})$, then the following properties hold,

- (a) $||u||_{p(x)} \ge 0$, with equality if and only if u = 0;
- (b) $\rho_p(u) \le \rho_p(v)$ and $||u||_{p(x)} \le ||v||_{p(x)}$ if $||u|| \le ||v||$;

- (c) $\rho_p(u||u||_{p(x)}^{-1}) = 1$ if $u \neq 0$;
- (d) $\rho_p(u) \le 1$ if and only if $||u||_{p(x)} \le 1$;
- (e) If $||u||_{p(x)} \le 1$, then

$$\left[\rho_p(u)\right]^{1/p^-} \le ||u||_{p(x)} \le \left[\rho_p(u)\right]^{1/p^+}$$

(f) If $||u||_{p(x)} \ge 1$, then

$$\left[\rho_p(u)\right]^{1/p^+} \le ||u||_{p(x)} \le \left[\rho_p(u)\right]^{1/p^-}.$$

Theorem 3.3. [7, 9] Let $p \in C_+(\Omega)$. The space $(L^{p(x)}(\Omega, \mathbb{X}), \|\cdot\|_{p(x)})$ is a Banach space that is separable and uniform convex. Its topological dual is $L^{q(x)}(\Omega, \mathbb{X})$, where $p^{-1}(x) + q^{-1}(x) = 1$. Moreover, for any $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{q(x)}(\Omega, \mathbb{R})$, we have

$$\left\| \int_{\Omega} uv dx \right\| \le \left(\frac{1}{p^{-}} + \frac{1}{q^{-}} \right) ||u||_{p(x)} \cdot |v|_{q(x)}$$

Corollary 3.4. [11] Let $p, r \in D_+(\Omega)$. If the function q defined by the equation

$$\frac{1}{q(x)} = \frac{1}{p(x)} + \frac{1}{r(x)}$$

is in $D_+(\Omega)$, then there exists a constant $C = C(p,r) \in [1,5]$ such that

$$||uv||_{q(x)} \le C ||u||_{p(x)} \cdot |v|_{r(x)}$$

for every $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{r(x)}(\Omega, \mathbb{R})$.

Corollary 3.5. [7] Let $mes(\Omega) < \infty$ where $mes(\cdot)$ stands for the Lebesgue measure and $p, q \in D_+(\Omega)$. If $q(\cdot) \le p(\cdot)$ almost everywhere in Ω , then the embedding $L^{p(x)}(\Omega, \mathbb{X}) \hookrightarrow L^{q(x)}(\Omega, \mathbb{X})$ is continuous whose norm does not exceed $2(mes(\Omega) + 1)$.

Definition 3.6. [2] The Bochner transform $f^b(t, s), t \in \mathbb{R}, s \in [0, 1]$ of a function $f : \mathbb{R} \to \mathbb{X}$ is defined by $f^b(t, s) := f(t + s)$.

Remark 3.7. [2] (i) A function $\varphi(t, s), t \in \mathbb{R}, s \in [0, 1]$, is the Bochner transform of a certain function f, $\varphi(t, s) = f^b(t, s)$, if and only if $\varphi(t + \tau, s - \tau) = \varphi(s, t)$ for all $t \in \mathbb{R}, s \in [0, 1]$ and $\tau \in [s - 1, s]$.

(ii) Note that if $f = h + \varphi$, then $f^b = h^b + \varphi^b$. Moreover, $(\lambda f)^b = \lambda f^b$ for each scalar λ .

Definition 3.8. [2] The Bochner transform $F^b(t, s, u), t \in \mathbb{R}, s \in [0, 1], u \in \mathbb{X}$ of a function F(t, u) on $\mathbb{R} \times \mathbb{X}$, with values in \mathbb{X} , is defined by $F^b(t, s, u) := F(t + s, u)$ for each $u \in \mathbb{X}$.

Definition 3.9. [2] Let $p \in [1, \infty)$. The space $BS^p(\mathbb{X})$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{X} such that $f^b \in L^{\infty}(\mathbb{R}, L^p((0, 1), \mathbb{X}))$. This is a Banach space with the norm

$$||f||_{S^p} = ||f^b||_{L^{\infty}(\mathbb{R},L^p)} = \sup_{t \in \mathbb{R}} \left(\int_t^{t+1} ||f(\tau)||^p \, d\tau \right)^{1/p}$$

60

Note that for each $p \ge 1$, we have the following continuous inclusion:

$$(BC(\mathbb{X}), \|\cdot\|_{\infty}) \hookrightarrow (BS^{p}(\mathbb{X}), \|\cdot\|_{S^{p}})$$

Definition 3.10. [4] Let $p \in C_+(\mathbb{R})$. The space $BS^{p(x)}(\mathbb{X})$ consists of all functions $f \in M(\mathbb{R}, \mathbb{X})$ such that $||f||_{S^{p(x)}} < \infty$, where

$$||f||_{S^{p(x)}} = \sup_{t \in \mathbb{R}} \left[\inf \left\{ \lambda > 0 : \int_0^1 \left\| \frac{f(x+t)}{\lambda} \right\|^{p(x+t)} dx \le 1 \right\} \right]$$
$$= \sup_{t \in \mathbb{R}} \left[\inf \left\{ \lambda > 0 : \int_t^{t+1} \left\| \frac{f(x)}{\lambda} \right\|^{p(x)} dx \le 1 \right\} \right].$$

Note that the space $(BS^{p(x)}(X), \|\cdot\|_{S^{p(x)}})$ is a Banach space, which, depending on $p(\cdot)$, may or may not be translation-invariant.

Definition 3.11. [4] If $p, q \in C_+(\mathbb{R})$, we then define the space $BS^{p(x),q(x)}(\mathbb{X})$ as follows:

$$BS^{p(x),q(x)}(\mathbb{X}) := BS^{p(x)}(\mathbb{X}) + BS^{q(x)}(\mathbb{X})$$

= $\{f = h + \varphi \in M(\mathbb{R},\mathbb{X}) : h \in BS^{p(x)}(\mathbb{X}) \text{ and } \varphi \in BS^{q(x)}(\mathbb{X})\}.$

We equip $BS^{p(x),q(x)}(\mathbb{X})$ with the norm $\|\cdot\|_{S^{p(x),q(x)}}$ defined by

$$||f||_{S^{p(x),q(x)}} := \inf \left\{ ||h||_{S^{p(x)}} + ||\varphi||_{S^{q(x)}} : f = h + \varphi \right\}.$$

Clearly, $(BS^{p(x),q(x)}(\mathbb{X}), \|\cdot\|_{S^{p(x),q(x)}})$ is a Banach space, which, depending on both $p(\cdot)$ and $q(\cdot)$, may or may not be translation-invariant.

Lemma 3.12. [4] Let $p, q \in C_+(\mathbb{R})$. Then the following continuous inclusion holds,

$$\left(BC(\mathbb{R},\mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow \left(BS^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow \left(BS^{p(x),q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x),q(x)}}\right).$$

Definition 3.13. [2] Let $p \ge 1$ be a constant. A function $f \in BS^{p}(\mathbb{X})$ is said to be S^{p} -almost periodic (or Stepanov-like almost periodic) if $f^{b} \in AP(L^{p}((0,1),\mathbb{X}))$. That is, for each $\varepsilon > 0$ there exists $l(\varepsilon) > 0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\sup_{t\in\mathbb{R}} \left(\int_0^1 \left\| f^b(t+\tau,s) - f^b(t,s) \right\|^p ds \right)^{1/p} = \sup_{t\in\mathbb{R}} \left(\int_t^{t+1} \left\| f(s+\tau) - f(s) \right\|^p ds \right)^{1/p} < \varepsilon.$$

The collection of such functions will be denoted by $S_{ap}^{p}(\mathbb{X})$.

Remark 3.14. [4] There are some difficulties in defining $S_{ap}^{p(x)}(\mathbb{X})$ for a function $p \in C_+(\mathbb{R})$ that is not necessarily constant. This is mainly due to the fact that the space $BS^{p(x)}(\mathbb{X})$ is not always translation-invariant. In other words, the quantities $f^b(t + \tau, s)$ and $f^b(t, s)$ (for $t \in \mathbb{R}, s \in [0, 1]$) that are used in the definition of S^p -almost periodicity, do not belong to the same space, unless p is constant.

We now introduce the concept of weighted $S^{p,q(x)}$ -pseudo-almost periodicity as follows:

Definition 3.15. Let $\mu \in \mathcal{M}, p \ge 1$ be a constant and let $q \in C_+(\mathbb{R})$. A function $f \in BS^{p,q(x)}(\mathbb{X})$ is said to be weighted $S^{p,q(x)}$ -pseudo-almost periodic (or weighted Stepanov-like pseudo-almost periodic with variable exponents p, q(x)) if it can be decomposed as $f = h + \varphi$, where $h \in S^p_{ap}(\mathbb{X})$ and $\varphi^b \in \mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu)$, i.e.,

$$\lim_{r \to \infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf \left\{ \lambda > 0 : \int_0^1 \left\| \frac{\varphi(x+t)}{\lambda} \right\|^{p(x+t)} dx \le 1 \right\} d\mu(t) = 0.$$

The collection of such functions will be denoted by $S_{pap}^{p,q(x)}(\mathbb{X},\mu)$.

Proposition 3.16. Let $r, s \ge 1, p, q \in D_+(\mathbb{R}), \mu \in \mathcal{M}$. If $s \le r, q(\cdot) \le p(\cdot)$ and $f \in BS^{r,p(x)}(\mathbb{X})$ is weighted $S^{r,p(x)}$ -pseudo-almost periodic, then f is weighted $S^{s,q(x)}$ -pseudo-almost periodic.

Proof. Suppose *f* is weighted $S^{r,p(x)}$ -pseudo-almost periodic. Thus *f* can be decomposed as $f = h + \varphi$, where $h^b \in AP(L^r((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^{p^b(x)}((0,1),\mathbb{X}),\mu)$.

Since $h^b \in AP(L^r((0,1),\mathbb{X}))$, for each $\varepsilon > 0$ there exists $l(\varepsilon) > 0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\|h^b(t+\tau) - h^b(t)\|_{S^r} \le \varepsilon,$$

for each $t \in \mathbb{R}$.

In view of the continuous injection

$$L^{r}((0,1),\mathbb{X}) \hookrightarrow L^{s}((0,1),\mathbb{X}),$$

it follows that for each $t \in \mathbb{R}$

$$||h^{b}(t+\tau) - h^{b}(t)||_{S^{s}} \le ||h^{b}(t+\tau) - h^{b}(t)||_{S^{r}} \le \varepsilon,$$

that is, $h \in AP(L^{s}((0, 1), X))$.

From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu(Q_r) > 0$ for all $r \ge r_0$. By using the fact that $\varphi^b \in \mathcal{E}(L^{p^b(x)}((0,1),\mathbb{X}),\mu)$ and Corollary 3.5, one has

$$\frac{1}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t)$$
$$\le \frac{4}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} dx \le 1\right\} d\mu(t)$$

that is $\varphi^b \in \mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu)$ and hence f is weighted $S^{s,q(x)}$ -pseudo-almost periodic.

Proposition 3.17. Let $p \ge 1$ be a constant, $q \in C_+(\mathbb{R})$ and let $\mu \in \mathcal{N}_2$. Then $PAP(\mathbb{X},\mu) \subset S_{pap}^{p,q(x)}(\mathbb{X},\mu)$.

Proof. Let $f \in PAP(\mathbb{X}, \mu)$. Thus there exist two functions $h, \varphi : \mathbb{R} \to \mathbb{X}$ such that $f = h + \varphi$, where $h \in AP(\mathbb{X})$ and $\varphi \in \mathcal{E}(\mathbb{X}, \mu)$. We first show that $h \in S_{ap}^{p}(\mathbb{X})$. Indeed, since $h \in AP(\mathbb{X})$, for each $\varepsilon > 0$ there exists $l(\varepsilon) > 0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\|h(t+\tau) - h(t)\| < \varepsilon$$

for each $t \in \mathbb{R}$.

Now

$$\int_{t}^{t+1} \left\| h(s+\tau) - h(s) \right\|^{p} ds \leq \int_{t}^{t+1} \varepsilon^{p} dx = \varepsilon^{p}$$

for all $t \in \mathbb{R}$, which means that

$$\|h(\cdot+\tau)-h(\cdot)\|_{S^p}\leq\varepsilon,$$

that is, $h^b \in AP(L^p((0, 1), X))$.

To complete the proof, we need to show that $\varphi^b \in \mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu)$. From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu(Q_r) > 0$ for all $r \ge r_0$.

Using (e)-(f) of Proposition 3.2, the usual Hölder inequality and Fubini's theorem it follows that

$$\begin{split} &\int_{Q_r} \inf\left\{\lambda > 0: \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t) \\ &\leq \int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\|^{q(t+x)} dx\right)^{\gamma} d\mu(t) \\ &\leq (\mu(Q_r))^{1-\gamma} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\|^{q(t+x)} dx\right) d\mu(t)\right]^{\gamma} \\ &\leq (\mu(Q_r))^{1-\gamma} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\|.\|\varphi\|_{\infty}^{q(t+x)-1} dx\right) d\mu(t)\right]^{\gamma} \\ &\leq (\mu(Q_r))^{1-\gamma} \left(\|\varphi\|_{\infty} + 1\right)^{\frac{q^{4}-1}{\gamma}} \left[\int_{Q_r} \left(\int_0^1 \|\varphi(t+x)\| dx\right) d\mu(t)\right]^{\gamma} \\ &= (\mu(Q_r))^{1-\gamma} \left(\|\varphi\|_{\infty} + 1\right)^{\frac{q^{4}-1}{\gamma}} \left[\int_0^1 \left(\int_{Q_r} \|\varphi(t+x)\| d\mu(t)\right) dx\right]^{\gamma} \\ &= (\mu(Q_r)) \left(\|\varphi\|_{\infty} + 1\right)^{\frac{q^{4}-1}{\gamma}} \left[\int_0^1 \left(\frac{1}{\mu(Q_r)} \int_{Q_r} \|\varphi(t+x)\| d\mu(t)\right) dx\right]^{\gamma} \end{split}$$

where

$$\gamma = \begin{cases} \frac{1}{q^+} & \text{if } ||\varphi|| < 1, \\\\ \\ \frac{1}{q^-} & \text{if } ||\varphi|| \ge 1. \end{cases}$$

Using the fact that $\mathcal{E}(\mathbb{X},\mu)$ is translation invariant and the (usual) Dominated Conver-

gence Theorem, it follows that

$$\begin{split} &\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf\left\{\lambda > 0 : \int_0^1 \left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} dx \le 1\right\} d\mu(t) \\ &\le \left(\|\varphi\|_{\infty} + 1\right)^{\frac{q^4 - 1}{\gamma}} \left[\int_0^1 \left(\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \|\varphi(t+x)\| d\mu(t)\right) dx\right]^{\gamma} = 0. \end{split}$$

Theorem 3.18. Let $p,q \ge 1$ be constants, $\mu \in \mathcal{M}$ and $f \in S_{pap}^{p,q}(\mathbb{X},\mu)$ be such that

 $f = h + \varphi$

where $h^b \in AP(L^p((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$. Then

$$\{h(t+.): t \in \mathbb{R}\} \subset \overline{\{f(t+.): t \in \mathbb{R}\}}, \quad in \quad BS^{p,q}(\mathbb{X}).$$

Proof. The proof follows along the same lignes as in [1, Theorem 2.24]. We prove it by contradiction. Indeed, if this is not true, then there exists $t_0 \in \mathbb{R}$ and $\varepsilon > 0$ such that

$$\|f(t+\cdot) - h(t_0+\cdot)\|_{S^{p,q}} > 3\varepsilon, \quad \forall t \in \mathbb{R}.$$
(3.1)

Since $h^b \in AP(L^p((0,1),\mathbb{X}))$, there exists l > 0 and for all $n \in \mathbb{Z}$, there exists $\tau_n \in [nl - t_0, nl - t_0, nl$ $t_0 + l$] such that

$$\|h(t_0 + \cdot + \tau_n) - h(t_0 + \cdot)\|_{S^p} \le \varepsilon.$$
(3.2)

By using the uniform continuity on \mathbb{R} of the almost periodic function *h*, there exists $K_0 \in \mathbb{N}$ such that $K_0 \ge 2$ and

$$\|h(t+\cdot) - h(t_0 + \cdot + \tau_n)\|_{S^p} \le \varepsilon, \quad \forall t \in [t_0 + \tau_n - \frac{l}{K_0}, t_0 + \tau_n + \frac{l}{K_0}].$$
(3.3)

From the following inequality

$$\begin{split} \|f(t+\cdot) - h(t_0+\cdot)\|_{S^{p,q}} &\leq \|f(t+\cdot) - h(t+\cdot)\|_{S^{p,q}} + \|h(t+\cdot) - h(t_0+\cdot+\tau_n)\|_{S^{p,q}} \\ &+ \|h(t_0+\cdot+\tau_n) - h(t_0+\cdot)\|_{S^{p,q}} \\ &= \|f(t+\cdot) - h(t+\cdot)\|_{S^{p,q}} + \|h(t+\cdot) - h(t_0+\cdot+\tau_n)\|_{S^{p}} \\ &+ \|h(t_0+\cdot+\tau_n) - h(t_0+\cdot)\|_{S^{p,q}}. \end{split}$$

and from (3.1)-(3.3), we deduce that

$$\|\varphi(t+\cdot)\|_{S^{q}} = \|\varphi(t+\cdot)\|_{S^{p,q}} = \|f(t+\cdot) - h(t+\cdot)\|_{S^{p,q}} > \varepsilon,$$
(3.4)

for all $t \in [t_0 + \tau_n - \frac{l}{K_0}, t_0 + \tau_n + \frac{l}{K_0}]$. Similarly, as in the proof of [1, Theorem 2.24], we obtain the existence of constants $\alpha_* > 0$ and $n_* \in \mathbb{N}, n_* \ge 1$, such that

$$|n| \ge n_* \Rightarrow \alpha_* \mu([nl, nl+l]) \le \mu(\{t \in (nl, nl+l] : \|\varphi(t+\cdot)\|_{S^q} > \varepsilon\}).$$

$$(3.5)$$

Let $N \in \mathbb{N}$ be such that $N > n_*$. Denote by S the finite set of integers defined by

$$S = \{-N, -N+1, ..., -n_* - 1\} \cup \{n_*, n_* + 1, ..., N - 1\}.$$

By summing (3.5) on S, we obtain

$$\alpha_* \sum_{n \in \mathcal{S}} \mu([nl, nl+l]) \le \sum_{n \in \mathcal{S}} \mu(\{t \in (nl, nl+l] : ||\varphi(t+\cdot)||_{S^q} > \varepsilon\}).$$
(3.6)

From the following inequalities:

$$\alpha_* \sum_{n \in \mathcal{S}} \mu([nl, nl+l]) \ge \alpha_* \mu \left(\bigcup_{n \in \mathcal{S}} [nl, nl+l] \right)$$
$$= \alpha_* \mu([-Nl, Nl] \setminus (-n_*l, n_*l)),$$

$$\begin{split} \sum_{n \in \mathcal{S}} \mu(\{t \in (nl, nl+l] : \|\varphi(t+\cdot)\|_{S^q} > \varepsilon\}) &= \mu\Big(\bigcup_{n \in \mathcal{S}} \{t \in (nl, nl+l] : \|\varphi(t+\cdot)\|_{S^q} > \varepsilon\}\Big) \\ &= \mu(\{t \in (-Nl, Nl] \setminus (-n_*l, n_*l] : \|\varphi(t+\cdot)\|_{S^q} > \varepsilon\}) \\ &\leq \mu(\{t \in [-Nl, Nl] \setminus (-n_*l, n_*l) : \|\varphi(t+\cdot)\|_{S^q} > \varepsilon\}), \end{split}$$

and from (3.6), we deduce that for all $N > n_*$

$$\alpha_*\mu([-Nl,Nl] \setminus (-n_*l,n_*l)) \le \mu(\{t \in [-Nl,Nl] \setminus (-n_*l,n_*l) : ||\varphi(t+\cdot)||_{S^q} > \varepsilon\}),$$

therefore we obtain

$$\lim_{N \to +\infty} \frac{\mu(\{t \in [-Nl, Nl] \setminus (-n_*l, n_*l) : \|\varphi(t + \cdot)\|_{S^q} > \varepsilon\})}{\mu([-Nl, Nl] \setminus (-n_*l, n_*l))} \ge \alpha_* > 0$$

By using Theorem 2.4, it yields that $\varphi^b \notin \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, which is a contradiction. \Box

Corollary 3.19. Let $p,q \ge 1$ be constants and $\mu \in N_1$. Then the decomposition of a $S^{p,q}$ - μ -pseudo-almost periodic function in the form $f = h + \varphi$ where $h^b \in AP(L^p((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, is unique.

Proof. Suppose that $f = h_1 + \varphi_1 = h_2 + \varphi_2$ where $h_1^b, h_2^b \in AP(L^p((0,1),\mathbb{X}))$ and $\varphi_1^b, \varphi_1^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$. Then $0 = (h_1 - h_2) + (\varphi_1 - \varphi_2) \in S_{pap}^{p,q}(\mathbb{X},\mu)$ where $h_1^b - h_2^b \in AP(L^p((0,1),\mathbb{X}))$ and $\varphi_1^b - \varphi_1^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$. From Theorem 3.18 we obtain $(h_1 - h_2)(\mathbb{R}) \subset \{0\}$, therefore one has $h_1 = h_2$ and $\varphi_1 = \varphi_2$.

Theorem 3.20. Let $p,q \ge 1$ be constants and $\mu \in \mathcal{N}_1$. The space $S_{pap}^{p,q}(\mathbb{X},\mu)$ equipped with the norm $\|\cdot\|_{S^{p,q}}$ is a Banach space.

Proof. It suffices to prove that $S_{pap}^{p,q}(\mathbb{X},\mu)$ is a closed subspace of $BS^{p,q}(\mathbb{X})$. Let $f_n = h_n + \varphi_n$ be a sequence in $S_{pap}^{p,q}(\mathbb{X},\mu)$ with $(h_n^b)_{n\in\mathbb{N}} \subset AP(L^p((0,1),\mathbb{X}))$ and $(\varphi_n^b)_{n\in\mathbb{N}} \subset \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$ such that $||f_n - f||_{S^{p,q}} \to 0$ as $n \to \infty$. By Theorem 3.18, one has

$$\{h_n(t+.): t \in \mathbb{R}\} \subset \{f_n(t+.): t \in \mathbb{R}\},\$$

and hence

$$||h_n||_{S^p} = ||h_n||_{S^{p,q}} \le ||f_n||_{S^{p,q}}$$
 for all $n \in \mathbb{N}$.

Consequently, there exists a function $h \in S_{ap}^{p}(\mathbb{X})$ such that $||h_n - h||_{S^p} \to 0$ as $n \to \infty$. Using the previous fact, it easily follows that the function $\varphi := f - h \in BS^{q}(\mathbb{X})$ and that $||\varphi_n - \varphi||_{S^q} = ||(f_n - h_n) - (f - h)||_{S^q} \to 0$ as $n \to \infty$. From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu(Q_r) > 0$ for all $r \ge r_0$. Using the fact that $\varphi = (\varphi - \varphi_n) + \varphi_n$ and the triangle inequality, it follows that

$$\begin{split} \frac{1}{\mu(Q_r)} &\int_{Q_r} \left(\int_0^1 \left\| \varphi(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi(\tau+t) - \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t) \\ &\quad + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t) \\ &\leq \|\varphi_n - \varphi\|_{S^q} + \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left\| \varphi_n(\tau+t) \right\|^q d\tau \right)^{\frac{1}{q}} d\mu(t). \end{split}$$

Letting $r \to +\infty$ and then $n \to \infty$ in the previous inequality yields $\varphi^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, that is, $f = h + \varphi \in S_{pap}^{p,q}(\mathbb{X},\mu)$.

Definition 3.21. [1] Let $\mu_1, \mu_2 \in \mathcal{M}$. μ_1 is said to be equivalent to μ_2 ($\mu_1 \sim \mu_2$) if there exist constants $\alpha, \beta > 0$ and a bounded interval *I* (eventually $I = \emptyset$) such that

 $\alpha \mu_1(A) \le \mu_2(A) \le \beta \mu_1(A)$, for all $A \in \mathcal{B}$ such that $A \cap I = \emptyset$.

Theorem 3.22. Let $\mu \in \mathcal{M}, p \ge 1$ be a constant, $q \in C_+(\mathbb{R})$ and $\mu_1, \mu_2 \in \mathcal{M}$. If μ_1 and μ_2 are equivalent then $S_{pap}^{p,q(x)}(\mathbb{X}, \mu_1) = S_{pap}^{p,q(x)}(\mathbb{X}, \mu_2)$.

Proof. The proof is similar to that of [1, Theorem 2.21]. Since $\mu_1 \sim \mu_2$, and \mathcal{B} is the Lebesgue σ -field of \mathbb{R} , we obtain for *r* sufficiently large

$$\frac{\alpha}{\beta} \frac{\mu_1(\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\})}{\mu(Q_r \setminus I)} \le \frac{\mu_2(\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\})}{\mu(Q_r \setminus I)}$$
$$\le \frac{\beta}{\alpha} \frac{\mu_1(\{t \in Q_r \setminus I : \|f(t)\|_{S^{p,q(\cdot)}} > \varepsilon\})}{\mu(Q_r \setminus I)}$$

By using Theorem 2.4, we deduce that $\mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu_1) = \mathcal{E}(L^{q^b(x)}((0,1),\mathbb{X}),\mu_1)$. From the definition of a weighted $S^{p,q(x)}$ -pseudo-almost periodic function it follows that

$$S_{pap}^{p,q(x)}(\mathbb{X},\mu_1) = S_{pap}^{p,q(x)}(\mathbb{X},\mu_2).$$

Definition 3.23. A function $F : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ with $F(., u) \in BS^{p,q(x)}(\mathbb{X})$ for each $u \in \mathbb{Y}$, is said to be $S^{p,q(x)}$ - μ -pseudo-almost periodic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{Y}$ if $t \mapsto F(t, u)$ is $S^{p,q(x)}$ - μ -pseudo-almost periodic for each $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

This means, there exist two functions $G, H : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ such that F = G + H, where $G^b \in AP(\mathbb{Y}, L^p((0, 1), \mathbb{X}))$ and $H^b \in \mathcal{E}(\mathbb{Y}, L^{q^b(x)}((0, 1), \mathbb{X}), \mu)$, that is,

$$\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \inf \left\{ \lambda > 0 : \int_0^1 \left\| \frac{H(x+t,u)}{\lambda} \right\|^{q(x+t)} dx \le 1 \right\} d\mu(t) = 0,$$

uniformly in $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

The collection of such functions will be denoted by $S_{pap}^{p,q(x)}(\mathbb{Y},\mathbb{X},\mu)$.

Let $Lip^r(\mathbb{Y}, \mathbb{X})$ denote the collection of functions $f : \mathbb{R} \times \mathbb{Y} \to \mathbb{X}$ satisfying: there exists a nonnegative function $L_f^b \in L^r(\mathbb{R})$ such that

$$\|f(t,u) - f(t,v)\| \le L_f(t) \|u - v\|_{\mathbb{Y}} \text{ for all } u, v \in \mathbb{Y}, \ t \in \mathbb{R}.$$
(3.7)

Now, we recall the composition theorem for S_{ap}^{p} functions.

Theorem 3.24. [8] Let p > 1 be a constant. We suppose that the following conditions hold:

- (a) $f \in S_{ap}^{p}(\mathbb{R} \times \mathbb{X}) \cap Lip^{r}(\mathbb{R}, \mathbb{X})$ with $r \ge \max\{p, \frac{p}{p-1}\}$.
- (b) $\phi \in S_{ap}^{p}(\mathbb{X})$ and there exists a set $E \subset \mathbb{R}$ with mes(E) = 0 such that

$$K := \overline{\{\phi(t) : t \in \mathbb{R} \setminus E\}}$$

is compact in \mathbb{X} .

Then there exists $m \in [1, p)$ such that $f(\cdot, \phi(\cdot)) \in S^m_{ap}(\mathbb{R} \times \mathbb{X})$.

To obtain the composition theorem for $S_{pap}^{p(x)}$ functions, we need the following lemma:

Lemma 3.25. Let q > 1 be a constant, $\mu \in \mathcal{M}$ and $K \subseteq \mathbb{Y}$ be a compact subset. If $f \in Lip^q(\mathbb{Y},\mathbb{X})$ and $f^b \in \mathcal{E}(\mathbb{Y}, L^q((0, 1), \mathbb{X}), \mu)$, then $\tilde{f} \in \mathcal{E}(\mathbb{X}, \mu)$, where the function \tilde{f} is defined by

$$\widetilde{f}(t) := \left\| \sup_{u \in K} \|f(t + \cdot, u)\| \right\|_q$$
(3.8)

for all $t \in \mathbb{R}$.

Proof. We make extensive use of ideas of [8, Lemma 2.3]. Using the fact that $K \subset \mathbb{Y}$ is a compact subset, for any $\varepsilon > 0$, there exists $x_1, x_2, ..., x_k$ such that

$$K \subseteq \bigcup_{i=1}^k B(x_i,\varepsilon)$$

Using this argument along with the fact that $f \in Lip^q(\mathbb{Y}, \mathbb{X})$, for all $u \in K$, there exists $x_{i(u)} \in \{x_1, x_2, ..., x_k\}$ such that

$$||f(t+s,u)|| \le ||f(t+s,u) - f(t+s,x_{i(u)})|| + ||f(t+s,x_{i(u)})|| \le L_f(t+s)\varepsilon + ||f(t+s,x_{i(u)})||$$

for each $t \in \mathbb{R}$ and $s \in [0, 1]$. Thus, we have

$$\sup_{u \in K} \|f(t+s,u)\| \le L_f(t+s)\varepsilon + \sum_{i=1}^k \|f(t+s,x_{i(u)})\|, \quad \forall t \in \mathbb{R}, \quad \forall s \in [0,1],$$

which yields

$$\widetilde{f}(t) = \left\| \sup_{u \in K} \|f(t+\cdot,u)\| \right\|_q \le \|L_f\|_{S^q} \cdot \varepsilon + \sum_{i=1}^k \|f(t,x_{i(u)})\|_q, \quad \forall t \in \mathbb{R}.$$

$$(3.9)$$

Now using the fact that $f^b \in \mathcal{E}(\mathbb{Y}, L^q((0, 1), \mathbb{X}), \mu)$, for the above $\varepsilon > 0$, there exists $r_0 > 0$ such that, for all $r > r_0$,

$$\frac{1}{\mu(Q_r)}\int_{Q_r}\left(\int_0^1 \left\|f(t+s,x_i)\right\|^q d\tau\right)^{\frac{1}{q}} d\mu(t) < \frac{\varepsilon}{k}, \quad i=1,2,...,k.$$

This along with Eq. (3.9) yield

$$\frac{1}{\mu(Q_r)}\int_{Q_r}\widetilde{f}(t)\,d\mu(t)\leq \left(\|L_f\|_{S^q}+1\right).\varepsilon,$$

and hence $\widetilde{f} \in \mathcal{E}(\mathbb{X}, \mu)$.

Theorem 3.26. Let p,q > 1 be constants such that $p \le q$ and $\mu \in M$. Suppose that the following conditions hold:

- (a) $f = g + h \in S_{pap}^{p,q}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^b \in AP(\mathbb{Y}, L^p((0, 1), \mathbb{X}))$ and $h^b \in \mathcal{E}(\mathbb{Y}, L^q((0, 1), \mathbb{X}), \mu)$. Further, $f, g \in Lip^r(\mathbb{Y}, \mathbb{X})$ with $r \ge \max\{q, \frac{p}{p-1}\}$.
- (b) $\phi = \alpha + \beta \in S_{pap}^{p,q}(\mathbb{Y})$ with $\alpha^b \in AP(L^p((0,1),\mathbb{Y}))$ and $\beta^b \in \mathcal{E}(L^q((0,1),\mathbb{Y}),\mu)$, and there exists a set $E \subset \mathbb{R}$ with mes (E) = 0 such that

$$K := \overline{\{\alpha(t) : t \in \mathbb{R} \setminus E\}}$$

is compact in \mathbb{Y} .

Then there exists $m \in [1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{pap}^{m,m}(\mathbb{Y}, \mathbb{X}, \mu)$.

Proof. We will make use of ideas of [8, Theorem 2.4]. Indeed, decompose f^b as follows:

$$f^{b}(\cdot,\phi^{b}(\cdot)) = g^{b}(\cdot,\alpha^{b}(\cdot)) + f^{b}(\cdot,\phi^{b}(\cdot)) - f^{b}(\cdot,\alpha^{b}(\cdot)) + h^{b}(\cdot,\alpha^{b}(\cdot)).$$

Using Theorem 3.24, it easily follows that there exists $m \in [1, p)$ with $\frac{1}{m} = \frac{1}{p} + \frac{1}{r}$ such that $g^b(\cdot, \alpha^b(\cdot)) \in AP(\mathbb{R} \times L^m((0, 1), \mathbb{X})).$

Set

$$\varphi^b(\cdot) = f^b(\cdot, \phi^b(\cdot)) - f^b(\cdot, \alpha^b(\cdot)).$$

Clearly, $\varphi^b \in \mathcal{E}(L^m((0,1),\mathbb{X}),\mu)$. Indeed, there exists $r_0 > 0$ such that, for all $r > r_0$,

$$\begin{split} \frac{1}{\mu(Q_r)} & \int_{Q_r} \left(\int_0^1 \|\varphi^b(t+s)\|^m ds \right)^{\frac{1}{m}} d\mu(t) \\ &= \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|f^b(t+s,\phi^b(t+s)) - f^b(t+s,\alpha^b(t+s))\|^m ds \right)^{\frac{1}{m}} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left(L_f^b(t+s) \cdot \|\beta^b(t+s)\|\right)^m ds \right)^{\frac{1}{m}} d\mu(t) \\ &\leq \|L_f^b\|_{S^r} \cdot \left[\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|\beta^b(t+s)\|^p ds \right)^{\frac{1}{p}} d\mu(t) \right] \\ &\leq \|L_f^b\|_{S^r} \cdot \left[\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|\beta^b(t+s)\|^q ds \right)^{\frac{1}{q}} d\mu(t) \right] \end{split}$$

Using the fact that $\beta^b \in \mathcal{E}(L^q((0,1),\mathbb{X}),\mu)$, it follows that $\varphi^b \in \mathcal{E}(L^m((0,1),\mathbb{X}),\mu)$.

Now using the fact that $h = f - g \in Lip^r(\mathbb{R}, \mathbb{X}) \subset Lip^q(\mathbb{R}, \mathbb{X})$, it follows by Lemma 3.25 that

$$\lim_{r \to +\infty} \frac{1}{\mu(Q_r)} \int_{Q_r} \left\| \sup_{u \in K} \|h(t + \cdot, u)\| \right\|_q d\mu(t) = 0,$$

which yields

$$\begin{split} &\frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|h^b(t+s,\alpha^b(t+s))\|^m ds \right)^{\frac{1}{m}} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \|h^b(t+s,\alpha^b(t+s))\|^q ds \right)^{\frac{1}{q}} d\mu(t) \\ &\leq \frac{1}{\mu(Q_r)} \int_{Q_r} \left(\int_0^1 \left(\sup_{u \in K} \|h^b(t+s,u)\| \right)^q ds \right)^{\frac{1}{q}} d\mu(t) \to 0 \quad \text{as} \quad r \to \infty, \end{split}$$

which means that $h^b(\cdot, \alpha^b(\cdot)) \in \mathcal{E}((L^m(0, 1); \mathbb{X}), \mu)$. This completes the proof.

Remark 3.27. A general composition theorem in $S_{pap}^{p,q(x)}(\mathbb{R} \times \mathbb{X})$ is unlikely as compositions of elements of $S_{pap}^{p,q(x)}(\mathbb{R} \times \mathbb{X}, \mu)$ may not be well-defined unless $q(\cdot)$ is the constant function.

4 Exsitecne Results for Evolution Equations

Let p, q > 1 be constants such that $p \le q$, $\vartheta \in C_+(\mathbb{R})$ and $\mu \in \mathcal{N}_1$. This section is devoted to the search of a μ -pseudo-almost periodic solutions to the abstract nonautonomous differential equations Eq. (1.1) and Eq. (1.2).

Throughout the rest of the paper we suppose that the following assumptiona hold:

(A.1) The family of closed linear operators A(t), for $t \in \mathbb{R}$, on \mathbb{X} with domain D(A(t)) (possibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions;

namely, there exist constants $\lambda_0 \ge 0$, $\theta \in (\frac{\pi}{2}, \pi)$, $M_1, M_2 \ge 0$, and $\alpha, \beta \in (0, 1]$ with $\alpha + \beta > 1$ such that

$$\Sigma_{\theta} \cup \{0\} \subset \rho(A(t) - \lambda_0), \quad \|R(\lambda, A(t) - \lambda_0)\|_{B(\mathbb{X})} \le \frac{M_1}{1 + |\lambda|}$$

and

$$\|(A(t) - \lambda_0)R(\lambda, A(t) - \lambda_0)[R(\lambda_0, A(t)) - R(\lambda_0, A(s))]\|_{B(\mathbb{X})} \le M_2 |t - s|^{\alpha} |\lambda|^{-\beta}$$

for $t, s \in \mathbb{R}$, $\lambda \in \Sigma_{\theta} := \{\lambda \in \mathbb{C} - \{0\} : |arg\lambda| \le \theta\}$

(A.2) The evolution family U(t, s) is exponentially stable. Namely, there exist some constants $M, \delta > 0$ such that

$$||U(t,s)||_{B(\mathbb{X})} \le Me^{-\delta(t-s)}$$

for all $s, t \in \mathbb{R}$ with $t \ge s$. In addition, $R(\lambda_0, A(\cdot)) \in AP(\mathbb{R}, B(\mathbb{X}))$.

(A.3) $F = G + H \in S_{pap}^{p,q}(\mathbb{R} \times \mathbb{X}, \mu) \cap C(\mathbb{R} \times \mathbb{X})$ with $G^b \in AP(\mathbb{R} \times L((0, 1), \mathbb{X}))$ and $H^b \in \mathcal{E}(\mathbb{R} \times L^q((0, 1), \mathbb{X}), \mu)$. Moreover; $F, G \in Lip^r(\mathbb{R}, \mathbb{X})$ with

$$r \ge \max\left\{q, \frac{p}{p-1}\right\}.$$

Definition 4.1. Under (A.1)-(A.2), if $f : \mathbb{R} \to \mathbb{X}$ is a bounded continuous function, then a mild solution to Eq.(1.1) is a continuous function $u : \mathbb{R} \to \mathbb{X}$ satisfying

$$u(t) = U(t,s)u(s) + \int_{s}^{t} U(t,\sigma)f(\sigma)d\sigma$$
(4.1)

for all $t, s \in \mathbb{R}$ and $t \ge s$.

Definition 4.2. Suppose (A.1)-(A.2) hold. If $F : \mathbb{R} \times \mathbb{X} \to \mathbb{X}$ is a bounded continuous function, then a mild solution to Eq.(1.2) is a continuous function $u : \mathbb{R} \to \mathbb{X}$ satisfying

$$u(t) = U(t,s)u(s) + \int_{s}^{t} U(t,\sigma)F(\sigma,u(\sigma))d\sigma$$
(4.2)

for all $t, s \in \mathbb{R}$ and $t \ge s$.

Lemma 4.3. Under assumptions (A.1)—(A.2), if $h \in S_{paa}^{p,\theta(x)}(\mathbb{X},\mu) \cap C(\mathbb{R},\mathbb{X})$, then the operator Λ defined by

$$(\Lambda u)(t) := \int_{-\infty}^{t} U(t,\sigma)h(\sigma)\,d\sigma, \quad t \in \mathbb{R}$$

maps $PAP(X, \mu)$ into itself.

Proof. Clearly, Λ is well defined. Moreover, let $u \in PAP(\mathbb{X},\mu)$. Since $h \in S_{paa}^{p,\theta(x)}(\mathbb{X},\mu) \cap C(\mathbb{R},\mathbb{X})$, then $h = g + \varphi$, where $g^b \in AP(L^p((0,1),\mathbb{X}))$ and $\varphi^b \in \mathcal{E}(L^{\vartheta^b(x)}((0,1),\mathbb{X}),\mu)$. Then Λ can be decomposed as

$$(\Lambda u)(t) = X(t) + Y(t)$$

where

$$X(t) = \int_{-\infty}^{t} U(t,s)g(s)ds$$
, and $Y(t) = \int_{-\infty}^{t} U(t,s)\varphi(s)ds$.

Define for all n = 1, 2, ..., the sequence of integral operators

$$X_n(t) := \int_{n-1}^n U(t, t-s)g(t-s)\,ds = \int_{t-n}^{t-n+1} U(t,s)g(s)\,ds,$$

and

$$Y_n(t) := \int_{n-1}^n U(t, t-s)\varphi(t-s)ds = \int_{t-n}^{t-n+1} U(t, s)\varphi(s)ds.$$

for each $t \in \mathbb{R}$.

Let us show that $X_n \in AP(\mathbb{X})$. Let p' > 1 such that $\frac{1}{p} + \frac{1}{p'} = 1$. Using the Hölder's inequality, it follows that

$$\begin{split} \|X_{n}(t)\| &\leq M \int_{t-n}^{t-n+1} e^{-\delta(t-\sigma)} \|g(\sigma)\| d\sigma \\ &\leq M \Big(\int_{t-n}^{t-n+1} e^{-p'\delta(t-\sigma)} d\sigma \Big)^{\frac{1}{p'}} \Big(\int_{t-n}^{t-n+1} \|g(\sigma)\|^{p} d\sigma \Big)^{\frac{1}{p}} \\ &\leq \frac{M}{\frac{p'}{\sqrt{p'\delta}}} \Big(e^{-p'(n-1)\delta} - e^{-p'n\delta} \Big)^{\frac{1}{q}} \|g\|_{S^{p}} \\ &\leq M e^{-n\delta} \frac{p'}{\sqrt{\frac{1+e^{p'\delta}}{p'\delta}}} \|g\|_{S^{p}} \\ &\leq K_{1} e^{-n\delta} \|g\|_{S^{p}}. \end{split}$$

Since the series

$$K_1 \sum_{n=1}^{\infty} e^{-n\delta}$$

is convergent, we deduce from the well-known Weierstrass test that the sequence of functions $\sum_{n=1}^{\infty} X_n(t)$ is uniformly convergent on \mathbb{R} .

Using the fact that

$$X(t) = \sum_{n=1}^{\infty} X_n(t),$$

it follows that $X \in C(\mathbb{R}, \mathbb{X})$. Moreover, for any $t \in \mathbb{R}$, we have

$$||X(t)|| \le \sum_{n=1}^{\infty} ||X_n(t)|| \le C_{p'}(M,\delta)||g||_{S^p},$$

where $C_{p'}(M, \delta)$ depends only on the fixed constants p', M and δ .

Since $g^b \in AP(L^p((0,1),\mathbb{X}))$, for each $\varepsilon > 0$, there exists $l(\varepsilon) > 0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$\sup_{t\in\mathbb{R}} \left(\int_t^{t+1} \left\| g(s+\tau) - g(s) \right\|^p ds \right)^{\frac{1}{p}} < \frac{\varepsilon}{C_{p'}(M,\delta)}.$$

Using triangle inequality, Hölder inequality and [10, Proposition 4.4], we obtain

$$\begin{split} \|X(t+\tau) - X(t)\| &\leq \left\| \int_{-\infty}^{t} U(t+\tau, s+\tau)g(s+\tau) \, ds - \int_{-\infty}^{t} U(t,s)g(s) \, ds \right\| \\ &\leq \left\| \int_{-\infty}^{t} U(t+\tau, s+\tau)[g(s+\tau) - g(s)] \, ds \right\| \\ &+ \left\| \int_{-\infty}^{t} \left[U(t+\tau, s+\tau) - U(t,s)]g(s) \, ds \right\| \\ &\leq M \sum_{n=1}^{\infty} \int_{n-1}^{n} e^{-\delta s} \left\| g(t-s+\tau) - g(t-s) \right\| \, ds \\ &+ \int_{-\infty}^{t} \left\| U(t+\tau, s+\tau) - U(t,s) \right\|_{B(\mathbb{X})} \|g(t-s)\| \, ds \\ &\leq C_{p'}(M, \delta) \|g(t+\tau) - g(t)\|_{S^{p}} \\ &+ \int_{-\infty}^{t} \varepsilon e^{-\frac{\delta}{2}(t-s)} \|g(t-s)\| \, ds \\ &\leq \varepsilon + \varepsilon. C_{p'}(\delta). \|g\|_{S^{p}} \\ &= (1 + C_{p'}(\delta). \|g\|_{S^{p}}) \varepsilon, \end{split}$$

and therefore, $X \in AP(\mathbb{X})$.

Now, let us show that $Y_n \in \mathcal{E}(\mathbb{X},\mu)$. Indeed, let $d \in m(\mathbb{R})$ such that $d^{-1}(x) + \vartheta^{-1}(x) = 1$. From $\mu(\mathbb{R}) = \infty$, we deduce the existence of $r_0 \ge 0$ such that $\mu([-r,r]) > 0$ for all $r \ge r_0$. By using the Hölder inequality (Theorem 3.3), it follows that

$$\begin{split} \|Y_n(t)\| &\leq M \int_{t-n}^{t-n+1} e^{-\omega(t-s)} \|\varphi(s)\| ds \\ &\leq M \Big(\frac{1}{d^-} + \frac{1}{\vartheta^-} \Big) \bigg[\inf \bigg\{ \lambda > 0 : \int_{t-n}^{t-n+1} \Big(\frac{e^{-\omega(t-s)}}{\lambda} \Big)^{d(s)} ds \leq 1 \bigg\} \bigg] \\ &\times \bigg[\inf \bigg\{ \lambda > 0 : \int_{t-n}^{t-n+1} \bigg\| \frac{\varphi(s)}{\lambda} \bigg\|^{\vartheta(s)} ds \leq 1 \bigg\} \bigg]. \end{split}$$

Now since

$$\int_{t-n}^{t-n+1} \left[\frac{e^{-\omega(t-s)}}{e^{-\omega(n-1)}} \right]^{d(s)} ds = \int_{t-n}^{t-n+1} \left[e^{\omega(s-t+n-1)} \right]^{d(s)} ds$$
$$\leq \int_{t-n}^{t-n+1} \left[1 \right]^{d(s)} ds$$
$$\leq 1$$

it follows that $e^{-\omega(n-1)} \in \left\{\lambda > 0 : \int_{t-n}^{t-n+1} \left(\frac{e^{-\omega(t-s)}}{\lambda}\right)^{d(s)} ds \le 1\right\}$, which shows that $\left[\inf\left\{\lambda > 0 : \int_{t-n}^{t-n+1} \left(\frac{e^{-\omega(t-s)}}{\lambda}\right)^{d(s)} ds \le 1\right\}\right] \le e^{-\omega(n-1)}.$ Consequently,

$$||Y_n(t)|| \le M \left(\frac{1}{d^-} + \frac{1}{q^-}\right) e^{-\omega(n-1)} ||\varphi||_{S^{\vartheta(x)}}$$

Since the series

$$\sum_{n=1}^{\infty} e^{-\omega(n-1)}$$

is convergent, we deduce from the well-known Weierstrass test that the series

$$\sum_{k=1}^{\infty} Y_n(t)$$

is uniformly convergent on R. Furthermore, from

$$Y(t) = \sum_{n=1}^{\infty} Y_n(t),$$

we deduce that $Y \in C(\mathbb{R}, \mathbb{X})$, and

$$||Y(t)|| \leq \sum_{n=1}^{\infty} ||Y_n(t)|| \leq K_1 ||\varphi||_{S^{\vartheta(x)}},$$

where $K_1 = M \Big(\frac{1}{d^-} + \frac{1}{\vartheta^-} \Big) \sum_{n=1}^{\infty} e^{-\omega(n-1)}.$

By using the following inequality

$$\begin{split} \frac{1}{\mu([-r,r])} \int_{[-r,r]} \|Y(t)\| \, d\mu(t) &\leq \frac{1}{\mu([-r,r])} \int_{[-r,r]} \|Y(t) - \sum_{n=1}^{\infty} Y_n(t)\| \, d\mu(t) \\ &+ \sum_{n=1}^{\infty} \frac{1}{\mu([-r,r])} \int_{[-r,r]} \|Y_n(t)\| \, d\mu(t) \end{split}$$

we deduce that the uniform limit $Y(t) = \sum_{n=1}^{\infty} Y_n(t) \in \mathcal{E}(\mathbb{X},\mu)$. Therefore, $(\Lambda u) \in PAP(\mathbb{X},\mu)$.

Using Lemma 4.3 one can prove the following theorems

Theorem 4.4. Under assumptions (A.1)—(A.2), if $f \in S_{paa}^{p,\vartheta(x)}(\mathbb{X},\mu) \cap C(\mathbb{R},\mathbb{X})$, then Eq.(1.1) has a unique μ -pseudo-almost periodic (mild) solution given by

$$u(t) = \int_{-\infty}^{t} U(t,\sigma) f(\sigma) d\sigma, \quad t \in \mathbb{R}.$$
(4.3)

Proof. Define the function $u : \mathbb{R} \mapsto \mathbb{X}$ by

$$u(t) = \int_{-\infty}^{t} U(t,s)f(s)ds, \ t \in \mathbb{R}.$$
(4.4)

It is easy to check that u given in Eq. (4.4) satisfies Eq. (4.1) and hence it is a mild solution.

Since $f \in S_{pap}^{p,q(x)}(\mathbb{X},\mu) \cap C(\mathbb{R},\mathbb{X})$, from Lemma 4.3, we deduce that *u* given in Eq. (4.4) is in $PAP(\mathbb{X})$.

To complete the proof it remains to prove the uniqueness. By assumption there exist some constants $M, \delta > 0$ such that

$$||U(t,s)||_{B(\mathbb{X})} \le Me^{-\delta(t-s)}$$
 for all $s, t \in \mathbb{R}$ with $t \ge s$.

Assume that $u : \mathbb{R} \to \mathbb{X}$ is bounded and satisfies the homogeneous equation

$$u'(t) = A(t)u(t), \quad t \in \mathbb{R}, \tag{4.5}$$

Then u(t) = U(t, s)u(s), for any $t \ge s$. Thus $||u(t)|| \le MKe^{-\delta(t-s)}$, where $||u(s)|| \le K$. Take a sequence of real numbers (s_n) such that $s_n \to -\infty$ as $n \to \infty$. For any $t \in \mathbb{R}$ fixed, one can find a subsequence $(s_{n_k}) \subset (s_n)$ such that $s_{n_k} < t$ for all k = 1, 2, ... By letting $k \to \infty$, we get u(t) = 0. Now if u, v are bounded solutions to Eq.(1.1), then w = u - v is a bounded solution to Eq.(4.5). In view of the above, w = u - v = 0 that is u = v.

Theorem 4.5. Let p, q > 1 be constants such that $p \le q$ and $\mu \in N$. Then under assumptions (A.1)-(A.3), Eq.(1.2) has a unique μ -pseudo-almost periodic solutions whenever $||L_F||_{S^r}$ is small enough.

Proof. The proof is similar to that of [4, Theorem 6.4]. So, we omit it. \Box

References

- J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications. *Applicable Analysis: An International Journal.* 92 (3) (2013), pp. 493–526.
- [2] T. Diagana; Almost automorphic type and almost periodic type functions in abstract spaces. Springer, 2013, New York, 303 pages.
- [3] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations. *Nonlinear Anal.* **69** (2008), pp. 4277–2485.
- [4] T. Diagana and M. Zitane, Stepanov-like pseudo-almost periodic functions in Lebesgue space with variable exponents $L^{p(x)}$. (Submitted).
- [5] T. Diagana and M. Zitane, Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents $L^{p(x)}$, *Electron. J. Diff. Equ.* **2013** (2013), No. 188, pp. 1–20.
- [6] T. Diagana, Weighted pseudo-almost periodic functions and applications. Comptes Rendus de l'Académie des Sciences. Paris. 343 (2006), no. 10, pp. 643–646.
- [7] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, *Lebesgue and Sobolev spaces* with variable exponents. Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

- [8] W. Long, H. S. Ding, Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo-almost periodic functions. *Advance in Difference Equations* (2011), Article ID 654695, 12 pages.
- [9] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$. J. Math. Anal. Appl. 263 (2001), pp. 424–446.
- [10] L. Maniar and S. Roland, Almost periodicity of inhomogeneous parabolic evolution equations, *Lecture Notes in Pure and Appl. Math.* **234** (2003), pp. 299–318.
- [11] P. Q. H. Nguyen, On variable Lebesgue spaces. Thesis (Ph.D.) Kansas State University. ProQuest LLC, Ann Arbor, MI, 2011. 63 pp.