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Abstract
In this paper we introduce and study a new class of functions called S p,q(x)-pseudo-

almost periodic (or weighted Stepanov-like pseudo-almost periodic functions with
variable exponents), which generalizes the class of weighted Stepanov-like pseudo-
almost periodic functions. Basic properties of these new spaces are established. The
existence of weighted pseudo-almost periodic solutions to some first-order differential
equations with S p,q(x)-pseudo-almost periodic coefficients will also be studied.
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1 Introduction

This paper is mainly motived by three sources. The first source is a paper by Diagana [6] in
which Stepanov-like pseudo-almost periodic functions were introduced and studied. These
functions were then utilized to study the existence of pseudo-almost periodic solutions to
various classes of differential equations.

The second source, is a paper by Blot et al. [1] in which the concept of weighted
pseudo-almost periodicity, using theoretical measure theory, was introduced and utilized to
study the existence of weighted pseudo-almost periodic solutions to differential equations.

The third and last source is a recent paper by Diagana and Zitane [4] in which Stepanov-
like pseudo-almost periodic functions were introduced in the Lebesgue space with variable
exponents Lp(x).
∗E-mail address: tdiagana@howard.edu
†E-mail address: zitanem@gmail.com
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The main objective of this paper consists of introducing and studying a new class of
functions called weighted Stepanov-like pseudo-almost periodic functions with variable
exponents, which generalizes the class of Stepanov-like pseudo-almost periodic functions
introduced by Diagana and Zitane [4]. Basic properties of these new spaces are established.
Next, we study the existence of weighted pseudo-almost periodic solutions of the following
nonautonomous differential equations

u′(t) = A(t)u(t)+ f (t), t ∈ R, (1.1)

u′(t) = A(t)u(t)+F(t,u(t)), t ∈ R, (1.2)

where A(t) : D(A(t)) ⊂ X 7→ X is a family of closed linear operators on a Banach space X
satisfying the well-known Acquistapace-Terreni conditions, and f : R 7→ X, F : R×X 7→ X
are jointly continuous satisfying some additional assumptions.

2 µ-Pseudo-Almost Periodic Functions

Let (X,‖ · ‖), (Y,‖ · ‖Y) be two Banach spaces. Let BC(R,X) (respectively, BC(R×Y,X))
denote the collection of all X-valued bounded continuous functions (respectively, the class
of jointly bounded continuous functions F : R×Y→ X). The space BC(R,X) equipped
with the sup norm ‖ ·‖∞ is a Banach space. Furthermore, C(R,Y) (respectively, C(R×Y,X))
denotes the class of continuous functions from R into Y (respectively, the class of jointly
continuous functions F : R×Y→ X). Let B(X,Y) stand for the Banach space of bounded
linear operators from X into Y equipped with its natural operator topology ‖ · ‖B(X,Y); in
particular, B(X,X) is denoted by B(X) (its corresponding norm will be denoted ‖ · ‖B(X)).

In this section, we recall the concept of µ-pseudo-almost periodicity introduced by J.
Blot et al [1].

Definition 2.1. (Bochner) A function f ∈C(R,X) is called almost periodic if for each ε > 0
there exists l(ε) > 0 such that every interval of length l(ε) contains a number τ with the
property that

‖ f (t+τ)− f (t)‖ < ε

for each t ∈ R.
The collection of all almost periodic functions from R to X will be denoted by AP(X).

We denote by B the Lebesgue σ-field of R and byM the set of all positive measures µ
on B satisfying µ(R) =∞ and µ([a,b]) <∞, for all a,b ∈ R (a ≤ b).

Definition 2.2. [1] Let µ ∈M. A function f ∈ BC(R,X) is said to be µ-ergodic if

lim
r→∞

1
µ(Qr)

∫
Qr

‖ f (t)‖dµ(t) = 0

where Qr := [−r,r].
The collection of such functions will be denoted by E (X,µ).

Proposition 2.3. [1] Let µ ∈M. Then (E (X,µ),‖ · ‖∞) is a Banach space.
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Theorem 2.4. [1] Let µ ∈M and I be a bounded interval (eventually I = ∅). Assume that
f ∈ BC(R,X). Then the following assertions are equivalent:

(a) f ∈ E (X,µ);

(b) lim
r→∞

1
µ([−r,r] \ I)

∫
[−r,r]\I

‖ f (t)‖dµ(t) = 0;

(c) For any ε > 0, lim
r→∞

µ
({

t ∈ [−r,r] \ I : ‖ f (t)‖ > ε
})

µ([−r,r] \ I)
= 0.

Definition 2.5. [1] A function f ∈ C(R,X) is called µ-pseudo almost periodic if it can be
expressed as f = g+φ, where g ∈ AP(X) and φ ∈ E (X,µ). The collection of such functions
will be denoted by PAP(X,µ).

LetN1 denotes the set of all positive measure µ ∈M such that for all a,b and c ∈R such
that 0 ≤ a < b ≤ c, there exist τ0 ≥ 0 and α0 > 0 such that

|τ| ≥ τ0⇒ µ((a+τ,b+τ)) ≥ α0µ([τ,c+τ]).

And let N2 denotes the set of all positive measure µ ∈M such that for all τ ∈ R, there
exist β > 0 and a bounded interval I such that

µ({a+τ : a ∈ A}) ≤ βµ(A) for all A ∈ B such that A∩ I = ∅.

Theorem 2.6. [1] Let µ ∈N1. Then the decomposition of a µ-pseudo almost periodic func-
tion in the form f = g+φ, where g ∈ AP(X) and φ ∈ E (X,µ) is unique.

Theorem 2.7. [1] Let µ ∈ N1. Then (PAP(X,µ),‖ · ‖∞) is a Banach space.

Theorem 2.8. [1] Let µ ∈ N2. Then the space E (X,µ) is translation invariant, therefore
PAP(X,µ) is also translation invariant, that is, if f ∈ PAP(X,µ) implies fτ = f (· + τ) ∈
PAP(X,µ) for all τ ∈ R.

Definition 2.9. [2] A jointly continuous function F ∈C(R×Y,X) is called almost periodic
in t ∈ R uniformly in x ∈ Y if for each ε > 0 and any K ⊂ Y a bounded subset, there exists
l(ε) such that every interval of length l(ε) contains a number τ with the property that

‖F(t+τ,y)−F(t,y)‖ < ε

for each t ∈ R, y ∈ K.
The collection of such functions will be denoted by AP(Y,X).

Definition 2.10. [1] Let µ ∈M.A function f ∈C(R×X,Y) is called µ-ergodic in t uniformly
with respect to x in X if the following two conditions hold:

(a) for all x in X, f (·, x) ∈ E (Y,µ);

(b) f is uniformly continuous on each compact set K ⊂ X with respect to the second
variable x.
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We denote the space of all such functions by E (Y,X,µ).

Definition 2.11. [1] Let µ ∈ M. A function f ∈ C(R ×X,Y) is called µ-pseudo almost
periodic if it can be expressed as

f = g+φ,

where g ∈ AP(Y,X) and φ ∈ E (Y,X,µ). The collection of such functions will be denoted by
PAP(Y,X,µ).

3 Weighted Stepanov-Like Pseudo-Almost Periodic Functions
with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents Lp(x)(R,X)
developed in [4, 5, 7, 9, 11].

Let Ω ⊆ R be a subset and let M(Ω,X) denote the collection of all measurable functions
f : Ω 7→ X. Let us recall that two functions f and g of M(Ω,X) are equal whether they are
equal almost everywhere. Set m(Ω) := M(Ω,R) and fix p ∈ m(Ω).

Define

p− := ess infx∈Ω p(x), p+ := esssupx∈Ω p(x),

C+(Ω) :=
{
p ∈ m(Ω) : 1 < p− ≤ p(x) ≤ p+ <∞, for each x ∈Ω

}
,

D+(Ω) :=
{

p ∈ m(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ <∞, for each x ∈Ω
}
,

ρ(u) = ρp(x)(u) =
∫
Ω

‖u(x)‖p(x)dx.

We then define the Lebesgue spaces with variable exponents Lp(x)(Ω,X) with p ∈C+(Ω),
by

Lp(x)(Ω,X) :=
{
u ∈ M(Ω,X) :

∫
Ω

‖u(x)‖p(x)dx <∞
}
.

Define, for each u ∈ Lp(x)(Ω,X),

‖u‖p(x) := inf
{
λ > 0 :

∫
Ω

∥∥∥∥u(x)
λ

∥∥∥∥p(x)
dx ≤ 1

}
.

It can be shown that ‖ · ‖p(x) is a norm upon Lp(x)(Ω,X), which is referred to as the
Luxemburg norm.

Remark 3.1. Let p ∈ C+(Ω). If p is constant, then the space Lp(·)(Ω,X), as defined above,
coincides with the usual space Lp(Ω,X).

Proposition 3.2. [7, 11] Let p ∈ C+(Ω). If u,v ∈ Lp(x)(Ω,X), then the following properties
hold,

(a) ‖u‖p(x) ≥ 0, with equality if and only if u = 0;

(b) ρp(u) ≤ ρp(v) and ‖u‖p(x) ≤ ‖v‖p(x) if ‖u‖ ≤ ‖v‖;
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(c) ρp(u‖u‖−1
p(x)) = 1 if u , 0;

(d) ρp(u) ≤ 1 if and only if ‖u‖p(x) ≤ 1;

(e) If ‖u‖p(x) ≤ 1, then [
ρp(u)

]1/p−
≤ ‖u‖p(x) ≤

[
ρp(u)

]1/p+
.

(f) If ‖u‖p(x) ≥ 1, then [
ρp(u)

]1/p+
≤ ‖u‖p(x) ≤

[
ρp(u)

]1/p−
.

Theorem 3.3. [7, 9] Let p ∈C+(Ω). The space (Lp(x)(Ω,X),‖·‖p(x)) is a Banach space that is
separable and uniform convex. Its topological dual is Lq(x)(Ω,X), where p−1(x)+q−1(x)= 1.
Moreover, for any u ∈ Lp(x)(Ω,X) and v ∈ Lq(x)(Ω,R), we have∥∥∥∥∫

Ω

uvdx
∥∥∥∥ ≤ ( 1

p−
+

1
q−

)
‖u‖p(x). |v|q(x).

Corollary 3.4. [11] Let p,r ∈ D+(Ω). If the function q defined by the equation

1
q(x)
=

1
p(x)
+

1
r(x)

is in D+(Ω), then there exists a constant C =C(p,r) ∈ [1,5] such that

‖uv‖q(x) ≤C‖u‖p(x). |v|r(x),

for every u ∈ Lp(x)(Ω,X) and v ∈ Lr(x)(Ω,R).

Corollary 3.5. [7] Let mes (Ω) < ∞ where mes (·) stands for the Lebesgue measure and
p,q ∈ D+(Ω). If q(·) ≤ p(·) almost everywhere in Ω, then the embedding Lp(x)(Ω,X) ↪→
Lq(x)(Ω,X) is continuous whose norm does not exceed 2(mes (Ω)+1).

Definition 3.6. [2] The Bochner transform f b(t, s), t ∈ R, s ∈ [0,1] of a function f : R→ X
is defined by f b(t, s) := f (t+ s).

Remark 3.7. [2] (i) A function ϕ(t, s), t ∈ R, s ∈ [0,1], is the Bochner transform of a certain
function f , ϕ(t, s) = f b(t, s) , if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all t ∈ R, s ∈ [0,1] and
τ ∈ [s−1, s].

(ii) Note that if f = h+ϕ, then f b = hb+ϕb. Moreover, (λ f )b = λ f b for each scalar λ.

Definition 3.8. [2] The Bochner transform Fb(t, s,u), t ∈ R, s ∈ [0,1], u ∈ X of a function
F(t,u) on R×X, with values in X, is defined by Fb(t, s,u) := F(t+ s,u) for each u ∈ X.

Definition 3.9. [2] Let p ∈ [1,∞). The space BS p(X) of all Stepanov bounded functions,
with the exponent p, consists of all measurable functions f on R with values in X such that
f b ∈ L∞

(
R,Lp((0,1),X)

)
. This is a Banach space with the norm

‖ f ‖S p = ‖ f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t
‖ f (τ)‖p dτ

)1/p

.
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Note that for each p ≥ 1, we have the following continuous inclusion:

(BC(X),‖ · ‖∞) ↪→ (BS p(X),‖ · ‖S p).

Definition 3.10. [4] Let p ∈ C+(R). The space BS p(x)(X) consists of all functions f ∈
M(R,X) such that ‖ f ‖S p(x) <∞, where

‖ f ‖S p(x) = sup
t∈R

[
inf

{
λ > 0 :

∫ 1

0

∥∥∥∥ f (x+ t)
λ

∥∥∥∥p(x+t)
dx ≤ 1

}]
= sup

t∈R

[
inf

{
λ > 0 :

∫ t+1

t

∥∥∥∥ f (x)
λ

∥∥∥∥p(x)
dx ≤ 1

}]
.

Note that the space
(
BS p(x)(X),‖ · ‖S p(x)

)
is a Banach space, which, depending on p(·),

may or may not be translation-invariant.

Definition 3.11. [4] If p,q ∈C+(R), we then define the space BS p(x),q(x)(X) as follows:

BS p(x),q(x)(X) := BS p(x)(X)+BS q(x)(X)

=
{
f = h+ϕ ∈ M(R,X) : h ∈ BS p(x)(X) and ϕ ∈ BS q(x)(X)

}
.

We equip BS p(x),q(x)(X) with the norm ‖ · ‖S p(x),q(x) defined by

‖ f ‖S p(x),q(x) := inf
{
‖h‖S p(x) + ‖ϕ‖S q(x) : f = h+ϕ

}
.

Clearly,
(
BS p(x),q(x)(X),‖ · ‖S p(x),q(x)

)
is a Banach space, which, depending on both p(·)

and q(·), may or may not be translation-invariant.

Lemma 3.12. [4] Let p,q ∈C+(R). Then the following continuous inclusion holds,(
BC(R,X),‖ · ‖∞

)
↪→

(
BS p(x)(X),‖ · ‖S p(x)

)
↪→

(
BS p(x),q(x)(X),‖ · ‖S p(x),q(x)

)
.

Definition 3.13. [2] Let p ≥ 1 be a constant. A function f ∈ BS p(X) is said to be S p-almost
periodic (or Stepanov-like almost periodic) if f b ∈ AP

(
Lp((0,1),X)

)
. That is, for each ε > 0

there exists l(ε) > 0 such that every interval of length l(ε) contains a number τ with the
property that

sup
t∈R

(∫ 1

0

∥∥∥∥ f b(t+τ, s)− f b(t, s)
∥∥∥∥p

ds
)1/p

= sup
t∈R

(∫ t+1

t

∥∥∥∥ f (s+τ)− f (s)
∥∥∥∥p

ds
)1/p

< ε.

The collection of such functions will be denoted by S p
ap(X).

Remark 3.14. [4] There are some difficulties in defining S p(x)
ap (X) for a function p ∈ C+(R)

that is not necessarily constant. This is mainly due to the fact that the space BS p(x)(X) is
not always translation-invariant. In other words, the quantities f b(t+ τ, s) and f b(t, s) (for
t ∈ R, s ∈ [0,1]) that are used in the definition of S p-almost periodicity, do not belong to the
same space, unless p is constant.
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We now introduce the concept of weighted S p,q(x)-pseudo-almost periodicity as follows:

Definition 3.15. Let µ ∈M, p≥ 1 be a constant and let q ∈C+(R). A function f ∈ BS p,q(x)(X)
is said to be weighted S p,q(x)-pseudo-almost periodic (or weighted Stepanov-like pseudo-
almost periodic with variable exponents p,q(x)) if it can be decomposed as f = h+ϕ, where
h ∈ S p

ap(X) and ϕb ∈ E (Lqb(x)((0,1),X),µ
)
, i.e.,

lim
r→∞

1
µ(Qr)

∫
Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥ϕ(x+ t)
λ

∥∥∥∥p(x+t)
dx ≤ 1

}
dµ(t) = 0.

The collection of such functions will be denoted by S p,q(x)
pap (X,µ).

Proposition 3.16. Let r, s≥ 1, p,q ∈D+(R) , µ ∈M. If s≤ r,q(·)≤ p(·) and f ∈ BS r,p(x)(X) is
weighted S r,p(x)-pseudo-almost periodic, then f is weighted S s,q(x)-pseudo-almost periodic.

Proof. Suppose f is weighted S r,p(x)-pseudo-almost periodic. Thus f can be decomposed
as f = h+ϕ, where hb ∈ AP(Lr((0,1),X)

)
and ϕb ∈ E (Lpb(x)((0,1),X),µ

)
.

Since hb ∈ AP
(
Lr((0,1),X)

)
, for each ε > 0 there exists l(ε) > 0 such that every interval

of length l(ε) contains a number τ with the property that

‖hb(t+τ)−hb(t)‖S r ≤ ε,

for each t ∈ R.
In view of the continuous injection

Lr((0,1),X) ↪→ Ls((0,1),X),

it follows that for each t ∈ R

‖hb(t+τ)−hb(t)‖S s ≤ ‖hb(t+τ)−hb(t)‖S r ≤ ε,

that is, h ∈ AP(Ls((0,1),X)
)
.

From µ(R) =∞, we deduce the existence of r0 ≥ 0 such that µ(Qr) > 0 for all r ≥ r0. By
using the fact that ϕb ∈ E (Lpb(x)((0,1),X),µ

)
and Corollary 3.5, one has

1
µ(Qr)

∫
Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥ϕ(x+ t)
λ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t)

≤
4
µ(Qr)

∫
Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥ϕ(x+ t)
λ

∥∥∥∥p(x+t)
dx ≤ 1

}
dµ(t).

that is ϕb ∈ E (Lqb(x)((0,1),X),µ
)

and hence f is weighted S s,q(x)-pseudo-almost periodic.
�

Proposition 3.17. Let p ≥ 1 be a constant, q ∈ C+(R) and let µ ∈ N2. Then PAP(X,µ) ⊂
S p,q(x)

pap (X,µ).
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Proof. Let f ∈ PAP(X,µ). Thus there exist two functions h,ϕ : R→ X such that f = h+ϕ,
where h ∈ AP(X) and ϕ ∈ E

(
X,µ

)
. We first show that h ∈ S p

ap(X). Indeed, since h ∈ AP(X),
for each ε > 0 there exists l(ε) > 0 such that every interval of length l(ε) contains a number
τ with the property that

‖h(t+τ)−h(t)‖ < ε

for each t ∈ R.
Now ∫ t+1

t

∥∥∥∥h(s+τ)−h(s)
∥∥∥∥p

ds ≤
∫ t+1

t
εpdx = εp

for all t ∈ R, which means that

‖h(·+τ)−h(·)‖S p ≤ ε,

that is, hb ∈ AP
(
Lp((0,1),X)

)
.

To complete the proof, we need to show that ϕb ∈ E (Lqb(x)((0,1),X),µ
)
. From µ(R) =∞,

we deduce the existence of r0 ≥ 0 such that µ(Qr) > 0 for all r ≥ r0.

Using (e)-(f) of Proposition 3.2, the usual Hölder inequality and Fubini’s theorem it
follows that ∫

Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥ϕ(x+ t)
λ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t)

≤

∫
Qr

(∫ 1

0
‖ϕ(t+ x)‖q(t+x) dx

)γ
dµ(t)

≤ (µ(Qr))1−γ
[∫

Qr

(∫ 1

0
‖ϕ(t+ x)‖q(t+x) dx

)
dµ(t)

]γ
≤ (µ(Qr))1−γ

[∫
Qr

(∫ 1

0
‖ϕ(t+ x)‖.‖ϕ‖q(t+x)−1

∞ dx
)

dµ(t)
]γ

≤ (µ(Qr))1−γ
(
‖ϕ‖∞+1

) q+−1
γ

[∫
Qr

(∫ 1

0
‖ϕ(t+ x)‖dx

)
dµ(t)

]γ
= (µ(Qr))1−γ

(
‖ϕ‖∞+1

) q+−1
γ

[∫ 1

0

(∫
Qr

‖ϕ(t+ x)‖dµ(t)
)

dx
]γ

= (µ(Qr))
(
‖ϕ‖∞+1

) q+−1
γ

[∫ 1

0

(
1
µ(Qr)

∫
Qr

‖ϕ(t+ x)‖dµ(t)
)

dx
]γ
,

where

γ =


1

q+ if ‖ϕ‖ < 1,

1
q− if ‖ϕ‖ ≥ 1.

Using the fact that E (X,µ) is translation invariant and the (usual) Dominated Conver-
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gence Theorem, it follows that

lim
r→+∞

1
µ(Qr)

∫
Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥ϕ(x+ t)
λ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t)

≤
(
‖ϕ‖∞+1

) q+−1
γ

[∫ 1

0

(
lim

r→+∞

1
µ(Qr)

∫
Qr

‖ϕ(t+ x)‖dµ(t)
)

dx
]γ
= 0.

�

Theorem 3.18. Let p,q ≥ 1 be constants, µ ∈M and f ∈ S p,q
pap(X,µ) be such that

f = h+ϕ

where hb ∈ AP
(
Lp((0,1),X)

)
and ϕb ∈ E (Lq((0,1),X),µ

)
. Then{

h(t+ .) : t ∈ R
}
⊂

{
f (t+ .) : t ∈ R

}
, in BS p,q(X).

Proof. The proof follows along the same lignes as in [1, Theorem 2.24]. We prove it by
contradiction. Indeed, if this is not true, then there exists t0 ∈ R and ε > 0 such that

‖ f (t+ ·)−h(t0+ ·)‖S p,q > 3ε, ∀t ∈ R. (3.1)

Since hb ∈ AP
(
Lp((0,1),X)

)
, there exists l > 0 and for all n ∈ Z, there exists τn ∈ [nl− t0,nl−

t0+ l] such that
‖h(t0+ ·+τn)−h(t0+ ·)‖S p ≤ ε. (3.2)

By using the uniform continuity on R of the almost periodic function h, there exists K0 ∈ N

such that K0 ≥ 2 and

‖h(t+ ·)−h(t0+ ·+τn)‖S p ≤ ε, ∀t ∈ [t0+τn−
l

K0
, t0+τn+

l
K0

]. (3.3)

From the following inequality

‖ f (t+ ·)−h(t0+ ·)‖S p,q ≤ ‖ f (t+ ·)−h(t+ ·)‖S p,q + ‖h(t+ ·)−h(t0+ ·+τn)‖S p,q

+ ‖h(t0+ ·+τn)−h(t0+ ·)‖S p,q

= ‖ f (t+ ·)−h(t+ ·)‖S p,q + ‖h(t+ ·)−h(t0+ ·+τn)‖S p

+ ‖h(t0+ ·+τn)−h(t0+ ·)‖S p .

and from (3.1)-(3.3), we deduce that

‖ϕ(t+ ·)‖S q = ‖ϕ(t+ ·)‖S p,q = ‖ f (t+ ·)−h(t+ ·)‖S p,q > ε, (3.4)

for all t ∈ [t0+τn− l
K0
, t0+τn+ l

K0
].

Similarly, as in the proof of [1, Theorem 2.24], we obtain the existence of constants
α∗ > 0 and n∗ ∈ N,n∗ ≥ 1, such that

|n| ≥ n∗⇒ α∗µ([nl,nl+ l]) ≤ µ({t ∈ (nl,nl+ l] : ‖ϕ(t+ ·)‖S q > ε}). (3.5)
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Let N ∈ N be such that N > n∗. Denote by S the finite set of integers defined by

S = {−N,−N +1, ...,−n∗−1}∪ {n∗,n∗+1, ...,N −1}.

By summing (3.5) on S, we obtain

α∗
∑
n∈S

µ([nl,nl+ l]) ≤
∑
n∈S

µ({t ∈ (nl,nl+ l] : ‖ϕ(t+ ·)‖S q > ε}). (3.6)

From the following inequalities:

α∗
∑
n∈S

µ([nl,nl+ l]) ≥ α∗µ
(⋃

n∈S

[nl,nl+ l]
)

= α∗µ([−Nl,Nl] \ (−n∗l,n∗l)),

∑
n∈S

µ({t ∈ (nl,nl+ l] : ‖ϕ(t+ ·)‖S q > ε}) = µ
(⋃

n∈S

{t ∈ (nl,nl+ l] : ‖ϕ(t+ ·)‖S q > ε}
)

= µ({t ∈ (−Nl,Nl] \ (−n∗l,n∗l] : ‖ϕ(t+ ·)‖S q > ε})

≤ µ({t ∈ [−Nl,Nl] \ (−n∗l,n∗l) : ‖ϕ(t+ ·)‖S q > ε}),

and from (3.6), we deduce that for all N > n∗

α∗µ([−Nl,Nl] \ (−n∗l,n∗l)) ≤ µ({t ∈ [−Nl,Nl] \ (−n∗l,n∗l) : ‖ϕ(t+ ·)‖S q > ε}),

therefore we obtain

lim
N→+∞

µ({t ∈ [−Nl,Nl] \ (−n∗l,n∗l) : ‖ϕ(t+ ·)‖S q > ε})
µ([−Nl,Nl] \ (−n∗l,n∗l))

≥ α∗ > 0.

By using Theorem 2.4, it yields that ϕb < E (Lq((0,1),X),µ
)
, which is a contradiction. �

Corollary 3.19. Let p,q ≥ 1 be constants and µ ∈ N1. Then the decomposition of a S p,q-
µ-pseudo-almost periodic function in the form f = h+ϕ where hb ∈ AP

(
Lp((0,1),X)

)
and

ϕb ∈ E (Lq((0,1),X),µ
)
, is unique.

Proof. Suppose that f = h1 + ϕ1 = h2 + ϕ2 where hb
1,h

b
2 ∈ AP

(
Lp((0,1),X)

)
and ϕb

1,ϕ
b
1 ∈

E
(
Lq((0,1),X),µ

)
. Then 0= (h1−h2)+(ϕ1−ϕ2) ∈ S p,q

pap(X,µ) where hb
1−hb

2 ∈ AP
(
Lp((0,1),X)

)
and ϕb

1−ϕ
b
1 ∈ E (Lq((0,1),X),µ

)
. From Theorem 3.18 we obtain (h1−h2)(R) ⊂ {0}, therefore

one has h1 = h2 and ϕ1 = ϕ2.

�

Theorem 3.20. Let p,q ≥ 1 be constants and µ ∈ N1. The space S p,q
pap(X,µ) equipped with

the norm ‖ · ‖S p,q is a Banach space.

Proof. It suffices to prove that S p,q
pap(X,µ) is a closed subspace of BS p,q(X). Let fn = hn+ϕn

be a sequence in S p,q
pap(X,µ) with (hb

n)n∈N ⊂ AP
(
Lp((0,1),X)

)
and (ϕb

n)n∈N ⊂ E (Lq((0,1),X),µ
)

such that ‖ fn− f ‖S p,q → 0 as n→∞. By Theorem 3.18, one has

{hn(t+ .) : t ∈ R} ⊂ { fn(t+ .) : t ∈ R},
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and hence
‖hn‖S p = ‖hn‖S p,q ≤ ‖ fn‖S p,q for all n ∈ N.

Consequently, there exists a function h ∈ S p
ap(X) such that ‖hn−h‖S p → 0 as n→∞. Using

the previous fact, it easily follows that the function ϕ := f −h ∈ BS q(X) and that ‖ϕn−ϕ‖S q =

‖( fn−hn)−( f −h)‖S q→ 0 as n→∞. From µ(R)=∞,we deduce the existence of r0 ≥ 0 such
that µ(Qr) > 0 for all r ≥ r0. Using the fact that ϕ = (ϕ−ϕn)+ϕn and the triangle inequality,
it follows that

1
µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥∥ϕ(τ+ t)
∥∥∥∥q

dτ
) 1

q

dµ(t)

≤
1
µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥∥ϕ(τ+ t)−ϕn(τ+ t)
∥∥∥∥q

dτ
) 1

q

dµ(t)

+
1
µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥∥ϕn(τ+ t)
∥∥∥∥q

dτ
) 1

q

dµ(t)

≤ ‖ϕn−ϕ‖S q +
1
µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥∥ϕn(τ+ t)
∥∥∥∥q

dτ
) 1

q

dµ(t).

Letting r→ +∞ and then n→∞ in the previous inequality yields ϕb ∈ E (Lq((0,1),X),µ
)
,

that is, f = h+ϕ ∈ S p,q
pap(X,µ). �

Definition 3.21. [1] Let µ1,µ2 ∈M. µ1 is said to be equivalent to µ2 (µ1 ∼ µ2) if there exist
constants α,β > 0 and a bounded interval I (eventually I = ∅) such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A), for all A ∈ B such that A∩ I = ∅.

Theorem 3.22. Let µ ∈M, p ≥ 1 be a constant, q ∈C+(R) and µ1,µ2 ∈M. If µ1 and µ2 are
equivalent then S p,q(x)

pap (X,µ1) = S p,q(x)
pap (X,µ2).

Proof. The proof is similar to that of [1, Theorem 2.21]. Since µ1 ∼ µ2, and B is the
Lebesgue σ-field of R, we obtain for r sufficiently large

α

β

µ1
({

t ∈ Qr \ I : ‖ f (t)‖S p,q(·) > ε
})

µ(Qr \ I)
≤
µ2

({
t ∈ Qr \ I : ‖ f (t)‖S p,q(·) > ε

})
µ(Qr \ I)

≤
β

α

µ1
({

t ∈ Qr \ I : ‖ f (t)‖S p,q(·) > ε
})

µ(Qr \ I)
.

By using Theorem 2.4, we deduce that E (Lqb(x)((0,1),X),µ1
)
=E (Lqb(x)((0,1),X),µ1

)
. From

the definition of a weighted S p,q(x)-pseudo-almost periodic function it follows that

S p,q(x)
pap (X,µ1) = S p,q(x)

pap (X,µ2).

�
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Definition 3.23. A function F : R×Y→ X with F(.,u) ∈ BS p,q(x)(X) for each u ∈ Y, is
said to be S p,q(x)-µ-pseudo-almost periodic in t ∈ R uniformly in u ∈ Y if t 7→ F(t,u) is
S p,q(x)-µ-pseudo-almost periodic for each u ∈ B where B ⊂ Y is an arbitrary bounded set.

This means, there exist two functions G,H : R×Y→ X such that F = G +H, where
Gb ∈ AP(Y,Lp((0,1),X)) and Hb ∈ E

(
Y,Lqb(x)((0,1),X),µ

)
, that is,

lim
r→+∞

1
µ(Qr)

∫
Qr

inf
{
λ > 0 :

∫ 1

0

∥∥∥∥H(x+ t,u)
λ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t) = 0,

uniformly in u ∈ B where B ⊂ Y is an arbitrary bounded set.
The collection of such functions will be denoted by S p,q(x)

pap (Y,X,µ).

Let Lipr(Y,X) denote the collection of functions f : R×Y→ X satisfying: there exists
a nonnegative function Lb

f ∈ Lr(R) such that

‖ f (t,u)− f (t,v)‖ ≤ L f (t)‖u− v‖Y for all u,v ∈ Y, t ∈ R. (3.7)

Now, we recall the composition theorem for S p
ap functions.

Theorem 3.24. [8] Let p > 1 be a constant. We suppose that the following conditions hold:

(a) f ∈ S p
ap(R×X)∩Lipr(R,X) with r ≥max{p, p

p−1 }.

(b) φ ∈ S p
ap(X) and there exists a set E ⊂ R with mes (E) = 0 such that

K := {φ(t) : t ∈ R \E}

is compact in X.

Then there exists m ∈ [1, p) such that f (·,φ(·)) ∈ S m
ap(R×X).

To obtain the composition theorem for S p(x)
pap functions, we need the following lemma:

Lemma 3.25. Let q > 1 be a constant, µ ∈ M and K ⊆ Y be a compact subset. If f ∈
Lipq(Y,X) and f b ∈ E (Y,Lq((0,1),X),µ), then f̃ ∈ E (X,µ), where the function f̃ is defined
by

f̃ (t) :=
∥∥∥∥sup

u∈K
‖ f (t+ ·,u)‖

∥∥∥∥
q

(3.8)

for all t ∈ R.

Proof. We make extensive use of ideas of [8, Lemma 2.3]. Using the fact that K ⊂ Y is a
compact subset, for any ε > 0 , there exists x1, x2, ...., xk such that

K ⊆
k⋃

i=1

B(xi, ε).

Using this argument along with the fact that f ∈ Lipq(Y,X), for all u ∈ K, there exists
xi(u) ∈ {x1, x2, ...., xk} such that

‖ f (t+ s,u)‖ ≤ ‖ f (t+ s,u)− f (t+ s, xi(u))‖+ ‖ f (t+ s, xi(u))‖ ≤ L f (t+ s)ε+ ‖ f (t+ s, xi(u))‖



68 T. Diagana and M. Zitane

for each t ∈ R and s ∈ [0,1]. Thus, we have

sup
u∈K
‖ f (t+ s,u)‖ ≤ L f (t+ s)ε+

k∑
i=1

‖ f (t+ s, xi(u))‖, ∀t ∈ R, ∀s ∈ [0,1],

which yields

f̃ (t) =
∥∥∥∥sup

u∈K
‖ f (t+ ·,u)‖

∥∥∥∥
q
≤ ‖L f ‖S q . ε+

k∑
i=1

‖ f (t, xi(u))‖q, ∀t ∈ R. (3.9)

Now using the fact that f b ∈ E (Y,Lq((0,1),X),µ), for the above ε > 0, there exists r0 > 0
such that, for all r > r0,

1
µ(Qr)

∫
Qr

(∫ 1

0

∥∥∥∥ f (t+ s, xi)
∥∥∥∥q

dτ
) 1

q

dµ(t) <
ε

k
, i = 1,2, ...,k.

This along with Eq. (3.9) yield

1
µ(Qr)

∫
Qr

f̃ (t) dµ(t) ≤
(
‖L f ‖S q +1

)
. ε,

and hence f̃ ∈ E (X,µ). �

Theorem 3.26. Let p,q > 1 be constants such that p ≤ q and µ ∈ M. Suppose that the
following conditions hold:

(a) f = g+h ∈ S p,q
pap(Y,X,µ) with gb ∈ AP

(
Y,Lp((0,1),X)

)
and hb ∈ E

(
Y,Lq((0,1),X),µ

)
.

Further, f ,g ∈ Lipr(Y,X) with r ≥max{q, p
p−1 }.

(b) φ = α+β ∈ S p,q
pap(Y) with αb ∈ AP

(
Lp((0,1),Y)

)
and βb ∈ E

(
Lq((0,1),Y),µ

)
, and there

exists a set E ⊂ R with mes (E) = 0 such that

K := {α(t) : t ∈ R \E}

is compact in Y.

Then there exists m ∈ [1, p) such that f (·,φ(·)) ∈ S m,m
pap

(
Y,X,µ

)
.

Proof. We will make use of ideas of [8, Theorem 2.4]. Indeed, decompose f b as follows:

f b(·,φb(·)) = gb(·,αb(·))+ f b(·,φb(·))− f b(·,αb(·))+hb(·,αb(·)).

Using Theorem 3.24, it easily follows that there exists m ∈ [1, p) with 1
m =

1
p +

1
r such that

gb(·,αb(·)) ∈ AP(R×Lm((0,1),X)).
Set

ϕb(·) = f b(·,φb(·))− f b(·,αb(·)).
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Clearly, ϕb ∈ E (Lm((0,1),X),µ). Indeed, there exists r0 > 0 such that, for all r > r0,

1
µ(Qr)

∫
Qr

(∫ 1

0
‖ϕb(t+ s)‖mds

) 1
m

dµ(t)

=
1
µ(Qr)

∫
Qr

(∫ 1

0
‖ f b(t+ s,φb(t+ s))− f b(t+ s,αb(t+ s))‖mds

) 1
m

dµ(t)

≤
1
µ(Qr)

∫
Qr

(∫ 1

0

(
Lb

f (t+ s).‖βb(t+ s)‖
)m

ds
) 1

m

dµ(t)

≤ ‖Lb
f ‖S r .

[
1
µ(Qr)

∫
Qr

(∫ 1

0
‖βb(t+ s)‖pds

) 1
p

dµ(t)
]

≤ ‖Lb
f ‖S r .

[
1
µ(Qr)

∫
Qr

(∫ 1

0
‖βb(t+ s)‖qds

) 1
q

dµ(t)
]
.

Using the fact that βb ∈ E (Lq((0,1),X),µ
)
, it follows that ϕb ∈ E (Lm((0,1),X),µ).

Now using the fact that h = f −g ∈ Lipr(R,X) ⊂ Lipq(R,X), it follows by Lemma 3.25
that

lim
r→+∞

1
µ(Qr)

∫
Qr

∥∥∥∥sup
u∈K
‖h(t+ ·,u)‖

∥∥∥∥
q

dµ(t) = 0,

which yields

1
µ(Qr)

∫
Qr

(∫ 1

0
‖hb(t+ s,αb(t+ s))‖mds

) 1
m

dµ(t)

≤
1
µ(Qr)

∫
Qr

(∫ 1

0
‖hb(t+ s,αb(t+ s))‖qds

) 1
q

dµ(t)

≤
1
µ(Qr)

∫
Qr

(∫ 1

0

(
sup
u∈K
‖hb(t+ s,u)‖

)q

ds
) 1

q

dµ(t)→ 0 as r→∞,

which means that hb(·,αb(·)) ∈ E ((Lm(0,1);X),µ). This completes the proof. �

Remark 3.27. A general composition theorem in S p,q(x)
pap (R×X) is unlikely as compositions

of elements of S p,q(x)
pap (R×X,µ) may not be well-defined unless q(·) is the constant function.

4 Exsitecne Results for Evolution Equations

Let p,q> 1 be constants such that p≤ q, ϑ ∈C+(R) and µ ∈N1. This section is devoted to the
search of a µ-pseudo-almost periodic solutions to the abstract nonautonomous differential
equations Eq. (1.1) and Eq. (1.2).

Throughout the rest of the paper we suppose that the following assumptiona hold:

(A.1) The family of closed linear operators A(t), for t ∈ R, on X with domain D(A(t))
(possibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions;
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namely, there exist constants λ0 ≥ 0, θ ∈ (π2 ,π), M1,M2 ≥ 0, and α,β ∈ (0,1] with
α+β > 1 such that

Σθ∪{0} ⊂ ρ(A(t)−λ0), ‖R(λ,A(t)−λ0)‖B(X) ≤
M1

1+ |λ|

and

‖(A(t)−λ0)R(λ,A(t)−λ0)[R(λ0,A(t))−R(λ0,A(s))]‖B(X) ≤ M2|t− s|α|λ|−β

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C−{0} : |argλ| ≤ θ}

(A.2) The evolution family U(t, s) is exponentially stable. Namely, there exist some con-
stants M, δ > 0 such that

‖U(t, s)‖B(X) ≤ Me−δ(t−s)

for all s, t ∈ R with t ≥ s. In addition, R(λ0,A(·)) ∈ AP(R,B(X)).

(A.3) F =G+H ∈ S p,q
pap(R×X,µ)∩C(R×X) with Gb ∈ AP(R×L((0,1),X)

)
and Hb ∈ E (R×

Lq((0,1),X),µ
)
.Moreover; F,G ∈ Lipr(R,X) with

r ≥max
{
q,

p
p−1

}
.

Definition 4.1. Under (A.1)-(A.2), if f : R→ X is a bounded continuous function, then a
mild solution to Eq.(1.1) is a continuous function u : R→ X satisfying

u(t) = U(t, s)u(s)+
∫ t

s
U(t,σ) f (σ)dσ (4.1)

for all t, s ∈ R and t ≥ s.

Definition 4.2. Suppose (A.1)-(A.2) hold. If F : R×X→ X is a bounded continuous func-
tion, then a mild solution to Eq.(1.2) is a continuous function u : R→ X satisfying

u(t) = U(t, s)u(s)+
∫ t

s
U(t,σ)F(σ,u(σ))dσ (4.2)

for all t, s ∈ R and t ≥ s.

Lemma 4.3. Under assumptions (A.1)—(A.2), if h ∈ S p,ϑ(x)
paa (X,µ)∩C(R,X), then the oper-

ator Λ defined by

(Λu)(t) :=
∫ t

−∞

U(t,σ)h(σ) dσ, t ∈ R

maps PAP(X,µ) into itself.

Proof. Clearly, Λ is well defined. Moreover, let u ∈ PAP(X,µ). Since h ∈ S p,ϑ(x)
paa (X,µ)∩

C(R,X), then h = g+ϕ, where gb ∈ AP
(
Lp((0,1),X)

)
and ϕb ∈ E

(
Lϑ

b(x)((0,1),X),µ
)
. Then

Λ can be decomposed as
(Λu)(t) = X(t)+Y(t)
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where

X(t) =
∫ t

−∞

U(t, s)g(s)ds, and Y(t) =
∫ t

−∞

U(t, s)ϕ(s)ds.

Define for all n = 1,2, ...., the sequence of integral operators

Xn(t) :=
∫ n

n−1
U(t, t− s)g(t− s) ds =

∫ t−n+1

t−n
U(t, s)g(s) ds,

and

Yn(t) :=
∫ n

n−1
U(t, t− s)ϕ(t− s)ds =

∫ t−n+1

t−n
U(t, s)ϕ(s)ds.

for each t ∈ R.
Let us show that Xn ∈ AP(X). Let p

′

> 1 such that 1
p +

1
p′
= 1. Using the Hölder’s in-

equality, it follows that

‖Xn(t)‖ ≤ M
∫ t−n+1

t−n
e−δ(t−σ)‖g(σ)‖dσ

≤ M
(∫ t−n+1

t−n
e−p

′
δ(t−σ)dσ

) 1
p′

(∫ t−n+1

t−n
‖g(σ)‖pdσ

) 1
p

≤
M

p
′√

p′δ

(
e−p

′
(n−1)δ− e−p

′
nδ
) 1

q
‖g‖S p

≤ Me−nδ p
′

√
1+ ep′δ

p′δ
‖g‖S p

:= K1e−nδ‖g‖S p .

Since the series

K1

∞∑
n=1

e−nδ

is convergent, we deduce from the well-known Weierstrass test that the sequence of func-
tions

∑∞
n=1 Xn(t) is uniformly convergent on R.

Using the fact that

X(t) =
∞∑

n=1

Xn(t),

it follows that X ∈C(R,X).Moreover, for any t ∈ R, we have

‖X(t)‖ ≤
∞∑

n=1

‖Xn(t)‖ ≤Cp′ (M, δ)‖g‖S p ,

where Cp′ (M, δ) depends only on the fixed constants p
′

,M and δ.
Since gb ∈ AP(Lp((0,1),X)

)
, for each ε > 0, there exists l(ε) > 0 such that every interval

of length l(ε) contains a number τ with the property that

sup
t∈R

(∫ t+1

t

∥∥∥∥g(s+τ)−g(s)
∥∥∥∥p

ds
) 1

p

<
ε

Cp′ (M, δ)
.
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Using triangle inequality, Hölder inequality and [10, Proposition 4.4], we obtain

‖X(t+τ)−X(t)‖ ≤
∥∥∥∥∥∫ t

−∞

U(t+τ, s+τ)g(s+τ) ds−
∫ t

−∞

U(t, s)g(s) ds
∥∥∥∥∥

≤

∥∥∥∥∥∫ t

−∞

U(t+τ, s+τ)
[
g(s+τ)−g(s)

]
ds

∥∥∥∥∥
+

∥∥∥∥∥∫ t

−∞

[
U(t+τ, s+τ)−U(t, s)

]
g(s) ds

∥∥∥∥∥
≤ M

∞∑
n=1

∫ n

n−1
e−δs

∥∥∥g(t− s+τ)−g(t− s)
∥∥∥ds

+

∫ t

−∞

∥∥∥U(t+τ, s+τ)−U(t, s)
∥∥∥

B(X)‖g(t− s)‖ds

≤Cp′ (M, δ)‖g(t+τ)−g(t)‖S p

+

∫ t

−∞

εe−
δ
2 (t−s)‖g(t− s)‖ds

≤ ε+ε.Cp′ (δ).‖g‖S p

=
(
1+Cp′ (δ).‖g‖S p

)
ε,

and therefore, X ∈ AP(X).
Now, let us show that Yn ∈ E (X,µ). Indeed, let d ∈ m(R) such that d−1(x)+ϑ−1(x) = 1.

From µ(R) =∞, we deduce the existence of r0 ≥ 0 such that µ([−r,r]) > 0 for all r ≥ r0. By
using the Hölder inequality (Theorem 3.3), it follows that

‖Yn(t)‖ ≤ M
∫ t−n+1

t−n
e−ω(t−s)‖ϕ(s)‖ds

≤ M
( 1
d−
+

1
ϑ−

)[
inf

{
λ > 0 :

∫ t−n+1

t−n

(e−ω(t−s)

λ

)d(s)
ds ≤ 1

}]
×

[
inf

{
λ > 0 :

∫ t−n+1

t−n

∥∥∥∥ϕ(s)
λ

∥∥∥∥ϑ(s)
ds ≤ 1

}]
.

Now since ∫ t−n+1

t−n

[ e−ω(t−s)

e−ω(n−1)

]d(s)
ds =

∫ t−n+1

t−n

[
eω(s−t+n−1)

]d(s)
ds

≤

∫ t−n+1

t−n

[
1
]d(s)

ds

≤ 1

it follows that e−ω(n−1) ∈

{
λ > 0 :

∫ t−n+1
t−n

(
e−ω(t−s)

λ

)d(s)
ds ≤ 1

}
, which shows that

[
inf

{
λ > 0 :

∫ t−n+1

t−n

(e−ω(t−s)

λ

)d(s)
ds ≤ 1

}]
≤ e−ω(n−1).
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Consequently,

‖Yn(t)‖ ≤ M
( 1
d−
+

1
q−

)
e−ω(n−1)‖ϕ‖S ϑ(x)

Since the series
∞∑

n=1

e−ω(n−1)

is convergent, we deduce from the well-known Weierstrass test that the series

∞∑
k=1

Yn(t)

is uniformly convergent on R. Furthermore, from

Y(t) =
∞∑

n=1

Yn(t),

we deduce that Y ∈C(R,X), and

‖Y(t)‖ ≤
∞∑

n=1

‖Yn(t)‖ ≤ K1‖ϕ‖S ϑ(x) ,

where K1 = M
( 1
d−
+

1
ϑ−

) ∞∑
n=1

e−ω(n−1).

By using the following inequality

1
µ([−r,r])

∫
[−r,r]
‖Y(t)‖dµ(t) ≤

1
µ([−r,r])

∫
[−r,r]
‖Y(t)−

∞∑
n=1

Yn(t)‖dµ(t)

+

∞∑
n=1

1
µ([−r,r])

∫
[−r,r]
‖Yn(t)‖dµ(t)

we deduce that the uniform limit Y(t) =
∑∞

n=1 Yn(t) ∈ E (X,µ). Therefore, (Λu) ∈ PAP(X,µ).
�

Using Lemma 4.3 one can prove the following theorems

Theorem 4.4. Under assumptions (A.1)—(A.2), if f ∈ S p,ϑ(x)
paa (X,µ)∩C(R,X), then Eq.(1.1)

has a unique µ-pseudo-almost periodic (mild) solution given by

u(t) =
∫ t

−∞

U(t,σ) f (σ)dσ, t ∈ R. (4.3)

Proof. Define the function u : R 7→ X by

u(t) =
∫ t

−∞

U(t, s) f (s)ds, t ∈ R. (4.4)
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It is easy to check that u given in Eq. (4.4) satisfies Eq. (4.1) and hence it is a mild
solution.

Since f ∈ S p,q(x)
pap (X,µ)∩C(R,X), from Lemma 4.3, we deduce that u given in Eq. (4.4)

is in PAP(X).
To complete the proof it remains to prove the uniqueness. By assumption there exist

some constants M, δ > 0 such that

‖U(t, s)‖B(X) ≤ Me−δ(t−s) for all s, t ∈ R with t ≥ s.

Assume that u : R→ X is bounded and satisfies the homogeneous equation

u′(t) = A(t)u(t), t ∈ R, (4.5)

Then u(t) = U(t, s)u(s), for any t ≥ s. Thus ‖u(t)‖ ≤ MKe−δ(t−s), where ‖u(s)‖ ≤ K. Take a
sequence of real numbers (sn) such that sn → −∞ as n→∞. For any t ∈ R fixed, one can
find a subsequence (snk ) ⊂ (sn) such that snk < t for all k = 1,2, .... By letting k→∞, we get
u(t) = 0. Now if u,v are bounded solutions to Eq.(1.1), then w = u− v is a bounded solution
to Eq.(4.5). In view of the above, w = u− v = 0 that is u = v. �

Theorem 4.5. Let p,q > 1 be constants such that p ≤ q and µ ∈N . Then under assumptions
(A.1)-(A.3), Eq.(1.2) has a unique µ-pseudo-almost periodic solutions whenever ‖LF‖S r is
small enough.

Proof. The proof is similar to that of [4, Theorem 6.4]. So, we omit it. �
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