African $\mathrm{D}_{\text {iaspora }} \mathrm{J}_{\text {ournal of }} \mathrm{Mathematics}$

Weighted Stepanov-Like Pseudo-Almost Periodic Functions in Lebesgue Space with Variable Exponents $L^{p(x)}$

Toka Diagana*
Department of Mathematics, Howard University, 2441 6th Street N.W., Washington, D.C. 20059, USA
Mohamed Zitane †
Université Ibn Tofaïl, Faculté des Sciences, Laboratoire d'An. Maths et GNC, B.P. 133, Kénitra 1400, Maroc

Abstract

In this paper we introduce and study a new class of functions called $S^{p, q(x)}$-pseudoalmost periodic (or weighted Stepanov-like pseudo-almost periodic functions with variable exponents), which generalizes the class of weighted Stepanov-like pseudoalmost periodic functions. Basic properties of these new spaces are established. The existence of weighted pseudo-almost periodic solutions to some first-order differential equations with $S^{p, q(x)}$-pseudo-almost periodic coefficients will also be studied.

AMS Subject Classification: 34C27; 35B15; 46E30.
Keywords: weighted pseudo-almost periodicity; Lebesgue space with variable exponents; weighted Stepanov-like pseudo-almost periodicity with variable exponents.

1 Introduction

This paper is mainly motived by three sources. The first source is a paper by Diagana [6] in which Stepanov-like pseudo-almost periodic functions were introduced and studied. These functions were then utilized to study the existence of pseudo-almost periodic solutions to various classes of differential equations.

The second source, is a paper by Blot et al. [1] in which the concept of weighted pseudo-almost periodicity, using theoretical measure theory, was introduced and utilized to study the existence of weighted pseudo-almost periodic solutions to differential equations.

The third and last source is a recent paper by Diagana and Zitane [4] in which Stepanovlike pseudo-almost periodic functions were introduced in the Lebesgue space with variable exponents $L^{p(x)}$.

[^0]The main objective of this paper consists of introducing and studying a new class of functions called weighted Stepanov-like pseudo-almost periodic functions with variable exponents, which generalizes the class of Stepanov-like pseudo-almost periodic functions introduced by Diagana and Zitane [4]. Basic properties of these new spaces are established. Next, we study the existence of weighted pseudo-almost periodic solutions of the following nonautonomous differential equations

$$
\begin{gather*}
u^{\prime}(t)=A(t) u(t)+f(t), \quad t \in \mathbb{R}, \tag{1.1}\\
u^{\prime}(t)=A(t) u(t)+F(t, u(t)), \quad t \in \mathbb{R}, \tag{1.2}
\end{gather*}
$$

where $A(t): D(A(t)) \subset \mathbb{X} \mapsto \mathbb{X}$ is a family of closed linear operators on a Banach space \mathbb{X} satisfying the well-known Acquistapace-Terreni conditions, and $f: \mathbb{R} \mapsto \mathbb{X}, F: \mathbb{R} \times \mathbb{X} \mapsto \mathbb{X}$ are jointly continuous satisfying some additional assumptions.

2μ-Pseudo-Almost Periodic Functions

Let $(\mathbb{X},\|\cdot\|),\left(\mathbb{Y},\|\cdot\|_{\mathbb{Y}}\right)$ be two Banach spaces. Let $B C(\mathbb{R}, \mathbb{X})$ (respectively, $B C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$) denote the collection of all \mathbb{X}-valued bounded continuous functions (respectively, the class of jointly bounded continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X})$. The space $B C(\mathbb{R}, \mathbb{X})$ equipped with the sup norm $\|\cdot\|_{\infty}$ is a Banach space. Furthermore, $C(\mathbb{R}, \mathbb{Y})($ respectively, $C(\mathbb{R} \times \mathbb{Y}, \mathbb{X}))$ denotes the class of continuous functions from \mathbb{R} into \mathbb{Y} (respectively, the class of jointly continuous functions $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X})$. Let $B(\mathbb{X}, \mathbb{Y})$ stand for the Banach space of bounded linear operators from \mathbb{X} into \mathbb{Y} equipped with its natural operator topology $\|\cdot\|_{B(\mathbb{X}, \mathbb{Y})}$; in particular, $B(\mathbb{X}, \mathbb{X})$ is denoted by $B(\mathbb{X})$ (its corresponding norm will be denoted $\left.\|\cdot\|_{B(\mathbb{X})}\right)$.

In this section, we recall the concept of μ-pseudo-almost periodicity introduced by J . Blot et al [1].

Definition 2.1. (Bochner) A function $f \in C(\mathbb{R}, \mathbb{X})$ is called almost periodic if for each $\varepsilon>0$ there exists $l(\varepsilon)>0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\|f(t+\tau)-f(t)\|<\varepsilon
$$

for each $t \in \mathbb{R}$.
The collection of all almost periodic functions from \mathbb{R} to \mathbb{X} will be denoted by $A P(\mathbb{X})$.
We denote by \mathcal{B} the Lebesgue σ-field of \mathbb{R} and by \mathcal{M} the set of all positive measures μ on \mathcal{B} satisfying $\mu(\mathbb{R})=\infty$ and $\mu([a, b])<\infty$, for all $a, b \in \mathbb{R}(a \leq b)$.

Definition 2.2. [1] Let $\mu \in \mathcal{M}$. A function $f \in B C(\mathbb{R}, \mathbb{X})$ is said to be μ-ergodic if

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|f(t)\| d \mu(t)=0
$$

where $Q_{r}:=[-r, r]$.
The collection of such functions will be denoted by $\mathcal{E}(\mathbb{X}, \mu)$.
Proposition 2.3. [1] Let $\mu \in \mathcal{M}$. Then $\left(\mathcal{E}(\mathbb{X}, \mu),\|\cdot\|_{\infty}\right)$ is a Banach space.

Theorem 2.4. [1] Let $\mu \in \mathcal{M}$ and I be a bounded interval (eventually $I=\emptyset$). Assume that $f \in B C(\mathbb{R}, \mathbb{X})$. Then the following assertions are equivalent:
(a) $f \in \mathcal{E}(\mathbb{X}, \mu)$;
(b) $\lim _{r \rightarrow \infty} \frac{1}{\mu([-r, r] \backslash I)} \int_{[-r, r] \backslash I}\|f(t)\| d \mu(t)=0$;
(c) For any $\varepsilon>0, \lim _{r \rightarrow \infty} \frac{\mu(\{t \in[-r, r] \backslash I:\|f(t)\|>\varepsilon\})}{\mu([-r, r] \backslash I)}=0$.

Definition 2.5. [1] A function $f \in C(\mathbb{R}, \mathbb{X})$ is called μ-pseudo almost periodic if it can be expressed as $f=g+\phi$, where $g \in A P(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$. The collection of such functions will be denoted by $\operatorname{PAP}(\mathbb{X}, \mu)$.

Let \mathcal{N}_{1} denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all a, b and $c \in \mathbb{R}$ such that $0 \leq a<b \leq c$, there exist $\tau_{0} \geq 0$ and $\alpha_{0}>0$ such that

$$
|\tau| \geq \tau_{0} \Rightarrow \mu((a+\tau, b+\tau)) \geq \alpha_{0} \mu([\tau, c+\tau])
$$

And let \mathcal{N}_{2} denotes the set of all positive measure $\mu \in \mathcal{M}$ such that for all $\tau \in \mathbb{R}$, there exist $\beta>0$ and a bounded interval I such that

$$
\mu(\{a+\tau: a \in A\}) \leq \beta \mu(A) \text { for all } A \in \mathcal{B} \text { such that } A \cap I=\emptyset
$$

Theorem 2.6. [1] Let $\mu \in \mathcal{N}_{1}$. Then the decomposition of a μ-pseudo almost periodic function in the form $f=g+\phi$, where $g \in A P(\mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{X}, \mu)$ is unique.

Theorem 2.7. [1] Let $\mu \in \mathcal{N}_{1}$. Then $\left(\operatorname{PAP}(\mathbb{X}, \mu),\|\cdot\|_{\infty}\right)$ is a Banach space.
Theorem 2.8. [1] Let $\mu \in \mathcal{N}_{2}$. Then the space $\mathcal{E}(\mathbb{X}, \mu)$ is translation invariant, therefore $\operatorname{PAP}(\mathbb{X}, \mu)$ is also translation invariant, that is, if $f \in P A P(\mathbb{X}, \mu)$ implies $f_{\tau}=f(\cdot+\tau) \in$ $\operatorname{PAP}(\mathbb{X}, \mu)$ for all $\tau \in \mathbb{R}$.

Definition 2.9. [2] A jointly continuous function $F \in C(\mathbb{R} \times \mathbb{Y}, \mathbb{X})$ is called almost periodic in $t \in \mathbb{R}$ uniformly in $x \in \mathbb{Y}$ if for each $\varepsilon>0$ and any $K \subset \mathbb{Y}$ a bounded subset, there exists $l(\varepsilon)$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\|F(t+\tau, y)-F(t, y)\|<\varepsilon
$$

for each $t \in \mathbb{R}, y \in K$.
The collection of such functions will be denoted by $A P(\mathbb{Y}, \mathbb{X})$.
Definition 2.10. [1] Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ-ergodic in t uniformly with respect to x in \mathbb{X} if the following two conditions hold:
(a) for all x in $\mathbb{X}, f(\cdot, x) \in \mathcal{E}(\mathbb{Y}, \mu)$;
(b) f is uniformly continuous on each compact set $K \subset \mathbb{X}$ with respect to the second variable x.

We denote the space of all such functions by $\mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$.
Definition 2.11. [1] Let $\mu \in \mathcal{M}$. A function $f \in C(\mathbb{R} \times \mathbb{X}, \mathbb{Y})$ is called μ-pseudo almost periodic if it can be expressed as

$$
f=g+\phi
$$

where $g \in A P(\mathbb{Y}, \mathbb{X})$ and $\phi \in \mathcal{E}(\mathbb{Y}, \mathbb{X}, \mu)$. The collection of such functions will be denoted by $\operatorname{PAP}(\mathbb{Y}, \mathbb{X}, \mu)$.

3 Weighted Stepanov-Like Pseudo-Almost Periodic Functions with Variable Exponents

In what follows, we recall the notion of Lebesgue spaces with variable exponents $L^{p(x)}(\mathbb{R}, \mathbb{X})$ developed in $[4,5,7,9,11]$.

Let $\Omega \subseteq \mathbb{R}$ be a subset and let $M(\Omega, \mathbb{X})$ denote the collection of all measurable functions $f: \Omega \mapsto \mathbb{X}$. Let us recall that two functions f and g of $M(\Omega, \mathbb{X})$ are equal whether they are equal almost everywhere. Set $m(\Omega):=M(\Omega, \mathbb{R})$ and fix $p \in m(\Omega)$.

Define

$$
\begin{gathered}
p^{-}:=\operatorname{essinf}_{x \in \Omega} p(x), \quad p^{+}:=\operatorname{ess}^{2} \sup _{x \in \Omega} p(x) \\
C_{+}(\Omega):=\left\{p \in m(\Omega): 1<p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\} \\
D_{+}(\Omega):=\left\{p \in m(\Omega): 1 \leq p^{-} \leq p(x) \leq p^{+}<\infty, \text { for each } x \in \Omega\right\} \\
\rho(u)=\rho_{p(x)}(u)=\int_{\Omega}\|u(x)\|^{p(x)} d x
\end{gathered}
$$

We then define the Lebesgue spaces with variable exponents $L^{p(x)}(\Omega, \mathbb{X})$ with $p \in C_{+}(\Omega)$, by

$$
L^{p(x)}(\Omega, \mathbb{X}):=\left\{u \in M(\Omega, \mathbb{X}): \int_{\Omega}\|u(x)\|^{p(x)} d x<\infty\right\}
$$

Define, for each $u \in L^{p(x)}(\Omega, \mathbb{X})$,

$$
\|u\|_{p(x)}:=\inf \left\{\lambda>0: \int_{\Omega}\left\|\frac{u(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}
$$

It can be shown that $\|\cdot\|_{p(x)}$ is a norm upon $L^{p(x)}(\Omega, \mathbb{X})$, which is referred to as the Luxemburg norm.
Remark 3.1. Let $p \in C_{+}(\Omega)$. If p is constant, then the space $L^{p(\cdot)}(\Omega, \mathbb{X})$, as defined above, coincides with the usual space $L^{p}(\Omega, \mathbb{X})$.

Proposition 3.2. [7, 11] Let $p \in C_{+}(\Omega)$. If $u, v \in L^{p(x)}(\Omega, \mathbb{X})$, then the following properties hold,
(a) $\|u\|_{p(x)} \geq 0$, with equality if and only if $u=0$;
(b) $\rho_{p}(u) \leq \rho_{p}(v)$ and $\|u\|_{p(x)} \leq\|v\|_{p(x)}$ if $\|u\| \leq\|v\|$;
(c) $\rho_{p}\left(u\|u\|_{p(x)}^{-1}\right)=1$ if $u \neq 0$;
(d) $\rho_{p}(u) \leq 1$ if and only if $\|u\|_{p(x)} \leq 1$;
(e) If $\|u\|_{p(x)} \leq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{-}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{+}}
$$

(f) If $\|u\|_{p(x)} \geq 1$, then

$$
\left[\rho_{p}(u)\right]^{1 / p^{+}} \leq\|u\|_{p(x)} \leq\left[\rho_{p}(u)\right]^{1 / p^{-}}
$$

Theorem 3.3. [7, 9] Let $p \in C_{+}(\Omega)$. The space $\left(L^{p(x)}(\Omega, \mathbb{X}),\|\cdot\|_{p(x)}\right)$ is a Banach space that is separable and uniform convex. Its topological dual is $L^{q(x)}(\Omega, \mathbb{X})$, where $p^{-1}(x)+q^{-1}(x)=1$. Moreover, for any $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{q(x)}(\Omega, \mathbb{R})$, we have

$$
\left\|\int_{\Omega} u v d x\right\| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)\|u\|_{p(x)} \cdot|v|_{q(x)}
$$

Corollary 3.4. [11] Let $p, r \in D_{+}(\Omega)$. If the function q defined by the equation

$$
\frac{1}{q(x)}=\frac{1}{p(x)}+\frac{1}{r(x)}
$$

is in $D_{+}(\Omega)$, then there exists a constant $C=C(p, r) \in[1,5]$ such that

$$
\|u v\|_{q(x)} \leq C\|u\|_{p(x)} \cdot|v|_{r(x)},
$$

for every $u \in L^{p(x)}(\Omega, \mathbb{X})$ and $v \in L^{r(x)}(\Omega, \mathbb{R})$.
Corollary 3.5. [7] Let mes $(\Omega)<\infty$ where mes (\cdot) stands for the Lebesgue measure and $p, q \in D_{+}(\Omega)$. If $q(\cdot) \leq p(\cdot)$ almost everywhere in Ω, then the embedding $L^{p(x)}(\Omega, \mathbb{X}) \hookrightarrow$ $L^{q(x)}(\Omega, \mathbb{X})$ is continuous whose norm does not exceed $2($ mes $(\Omega)+1)$.

Definition 3.6. [2] The Bochner transform $f^{b}(t, s), t \in \mathbb{R}, s \in[0,1]$ of a function $f: \mathbb{R} \rightarrow \mathbb{X}$ is defined by $f^{b}(t, s):=f(t+s)$.

Remark 3.7. [2] (i) A function $\varphi(t, s), t \in \mathbb{R}, s \in[0,1]$, is the Bochner transform of a certain function $f, \varphi(t, s)=f^{b}(t, s)$, if and only if $\varphi(t+\tau, s-\tau)=\varphi(s, t)$ for all $t \in \mathbb{R}, s \in[0,1]$ and $\tau \in[s-1, s]$.
(ii) Note that if $f=h+\varphi$, then $f^{b}=h^{b}+\varphi^{b}$. Moreover, $(\lambda f)^{b}=\lambda f^{b}$ for each scalar λ.

Definition 3.8. [2] The Bochner transform $F^{b}(t, s, u), t \in \mathbb{R}, s \in[0,1], u \in \mathbb{X}$ of a function $F(t, u)$ on $\mathbb{R} \times \mathbb{X}$, with values in \mathbb{X}, is defined by $F^{b}(t, s, u):=F(t+s, u)$ for each $u \in \mathbb{X}$.

Definition 3.9. [2] Let $p \in[1, \infty)$. The space $B S^{p}(\mathbb{X})$ of all Stepanov bounded functions, with the exponent p, consists of all measurable functions f on \mathbb{R} with values in \mathbb{X} such that $f^{b} \in L^{\infty}\left(\mathbb{R}, L^{p}((0,1), \mathbb{X})\right)$. This is a Banach space with the norm

$$
\|f\|_{S^{p}}=\left\|f^{b}\right\|_{L^{\infty}\left(\mathbb{R}, L^{p}\right)}=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(\tau)\|^{p} d \tau\right)^{1 / p}
$$

Note that for each $p \geq 1$, we have the following continuous inclusion:

$$
\left(B C(\mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p}(\mathbb{X}),\|\cdot\|_{S^{p}}\right) .
$$

Definition 3.10. [4] Let $p \in C_{+}(\mathbb{R})$. The space $B S^{p(x)}(\mathbb{X})$ consists of all functions $f \in$ $M(\mathbb{R}, \mathbb{X})$ such that $\|f\|_{S^{p(x)}}<\infty$, where

$$
\begin{aligned}
\|f\|_{S^{p(x)}} & =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{f(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\}\right] \\
& =\sup _{t \in \mathbb{R}}\left[\inf \left\{\lambda>0: \int_{t}^{t+1}\left\|\frac{f(x)}{\lambda}\right\|^{p(x)} d x \leq 1\right\}\right] .
\end{aligned}
$$

Note that the space $\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right)$ is a Banach space, which, depending on $p(\cdot)$, may or may not be translation-invariant.
Definition 3.11. [4] If $p, q \in C_{+}(\mathbb{R})$, we then define the space $B S^{p(x), q(x)}(\mathbb{X})$ as follows:

$$
\begin{aligned}
B S^{p(x), q(x)}(\mathbb{X}) & :=B S^{p(x)}(\mathbb{X})+B S^{q(x)}(\mathbb{X}) \\
& =\left\{f=h+\varphi \in M(\mathbb{R}, \mathbb{X}): h \in B S^{p(x)}(\mathbb{X}) \text { and } \varphi \in B S^{q(x)}(\mathbb{X})\right\}
\end{aligned}
$$

We equip $B S^{p(x), q(x)}(\mathbb{X})$ with the norm $\|\cdot\|_{S p(x), q(x)}$ defined by

$$
\|f\|_{S^{p(x), q(x)}}:=\inf \left\{\|h\|_{S^{p(x)}}+\|\varphi\|_{S^{q(x)}}: \quad f=h+\varphi\right\} .
$$

Clearly, $\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)$ is a Banach space, which, depending on both $p(\cdot)$ and $q(\cdot)$, may or may not be translation-invariant.

Lemma 3.12. [4] Let $p, q \in C_{+}(\mathbb{R})$. Then the following continuous inclusion holds,

$$
\left(B C(\mathbb{R}, \mathbb{X}),\|\cdot\|_{\infty}\right) \hookrightarrow\left(B S^{p(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x)}}\right) \hookrightarrow\left(B S^{p(x), q(x)}(\mathbb{X}),\|\cdot\|_{S^{p(x), q(x)}}\right)
$$

Definition 3.13. [2] Let $p \geq 1$ be a constant. A function $f \in B S^{p}(\mathbb{X})$ is said to be S^{p}-almost periodic (or Stepanov-like almost periodic) if $f^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$. That is, for each $\varepsilon>0$ there exists $l(\varepsilon)>0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\sup _{t \in \mathbb{R}}\left(\int_{0}^{1}\left\|f^{b}(t+\tau, s)-f^{b}(t, s)\right\|^{p} d s\right)^{1 / p}=\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|f(s+\tau)-f(s)\|^{p} d s\right)^{1 / p}<\varepsilon .
$$

The collection of such functions will be denoted by $S_{a p}^{p}(\mathbb{X})$.
Remark 3.14. [4] There are some difficulties in defining $S_{a p}^{p(x)}(\mathbb{X})$ for a function $p \in C_{+}(\mathbb{R})$ that is not necessarily constant. This is mainly due to the fact that the space $B S^{p(x)}(\mathbb{X})$ is not always translation-invariant. In other words, the quantities $f^{b}(t+\tau, s)$ and $f^{b}(t, s)$ (for $t \in \mathbb{R}, s \in[0,1])$ that are used in the definition of S^{p}-almost periodicity, do not belong to the same space, unless p is constant.

We now introduce the concept of weighted $S^{p, q(x)}$-pseudo-almost periodicity as follows:
Definition 3.15. Let $\mu \in \mathcal{M}, p \geq 1$ be a constant and let $q \in C_{+}(\mathbb{R})$. A function $f \in B S^{p, q(x)}(\mathbb{X})$ is said to be weighted $S^{p, q(x)}$-pseudo-almost periodic (or weighted Stepanov-like pseudoalmost periodic with variable exponents $p, q(x))$ if it can be decomposed as $f=h+\varphi$, where $h \in S_{a p}^{p}(\mathbb{X})$ and $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$, i.e.,

$$
\lim _{r \rightarrow \infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\} d \mu(t)=0
$$

The collection of such functions will be denoted by $S_{p a p}^{p, q(x)}(\mathbb{X}, \mu)$.
Proposition 3.16. Let $r, s \geq 1, p, q \in D_{+}(\mathbb{R}), \mu \in \mathcal{M}$. If $s \leq r, q(\cdot) \leq p(\cdot)$ and $f \in B S^{r, p(x)}(\mathbb{X})$ is weighted $S^{r, p(x)}$-pseudo-almost periodic, then f is weighted $S^{s, q(x)}$-pseudo-almost periodic.

Proof. Suppose f is weighted $S^{r, p(x)}$-pseudo-almost periodic. Thus f can be decomposed as $f=h+\varphi$, where $h^{b} \in A P\left(L^{r}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{p^{b}(x)}((0,1), \mathbb{X}), \mu\right)$.

Since $h^{b} \in A P\left(L^{r}((0,1), \mathbb{X})\right)$, for each $\varepsilon>0$ there exists $l(\varepsilon)>0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\left\|h^{b}(t+\tau)-h^{b}(t)\right\|_{S^{r}} \leq \varepsilon
$$

for each $t \in \mathbb{R}$.
In view of the continuous injection

$$
L^{r}((0,1), \mathbb{X}) \hookrightarrow L^{s}((0,1), \mathbb{X})
$$

it follows that for each $t \in \mathbb{R}$

$$
\left\|h^{b}(t+\tau)-h^{b}(t)\right\|_{S^{s}} \leq\left\|h^{b}(t+\tau)-h^{b}(t)\right\|_{S^{r}} \leq \varepsilon
$$

that is, $h \in A P\left(L^{s}((0,1), \mathbb{X})\right)$.
From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$. By using the fact that $\varphi^{b} \in \mathcal{E}\left(L^{p^{b}(x)}((0,1), \mathbb{X}), \mu\right)$ and Corollary 3.5 , one has

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq \frac{4}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{p(x+t)} d x \leq 1\right\} d \mu(t)
\end{aligned}
$$

that is $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$ and hence f is weighted $S^{s, q(x)}$-pseudo-almost periodic.

Proposition 3.17. Let $p \geq 1$ be a constant, $q \in C_{+}(\mathbb{R})$ and let $\mu \in \mathcal{N}_{2}$. Then $P A P(\mathbb{X}, \mu) \subset$ $S_{p a p}^{p, q(x)}(\mathbb{X}, \mu)$.

Proof. Let $f \in \operatorname{PAP}(\mathbb{X}, \mu)$. Thus there exist two functions $h, \varphi: \mathbb{R} \rightarrow \mathbb{X}$ such that $f=h+\varphi$, where $h \in A P(\mathbb{X})$ and $\varphi \in \mathcal{E}(\mathbb{X}, \mu)$. We first show that $h \in S_{a p}^{p}(\mathbb{X})$. Indeed, since $h \in A P(\mathbb{X})$, for each $\varepsilon>0$ there exists $l(\varepsilon)>0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\|h(t+\tau)-h(t)\|<\varepsilon
$$

for each $t \in \mathbb{R}$.
Now

$$
\int_{t}^{t+1}\|h(s+\tau)-h(s)\|^{p} d s \leq \int_{t}^{t+1} \varepsilon^{p} d x=\varepsilon^{p}
$$

for all $t \in \mathbb{R}$, which means that

$$
\|h(\cdot+\tau)-h(\cdot)\|_{S^{p}} \leq \varepsilon,
$$

that is, $h^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$.
To complete the proof, we need to show that $\varphi^{b} \in \mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$. From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$.

Using (e)-(f) of Proposition 3.2, the usual Hölder inequality and Fubini's theorem it follows that

$$
\begin{aligned}
& \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq \int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right)^{\gamma} d \mu(t) \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\|^{q(t+x)} d x\right) d \mu(t)\right]^{\gamma} \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\| \cdot\|\varphi\|_{\infty}^{q(t+x)-1} d x\right) d \mu(t)\right]^{\gamma} \\
& \leq\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{Q_{r}}\left(\int_{0}^{1}\|\varphi(t+x)\| d x\right) d \mu(t)\right]^{\gamma} \\
& \quad=\left(\mu\left(Q_{r}\right)\right)^{1-\gamma}\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right) d x\right]^{\gamma} \\
& \quad=\left(\mu\left(Q_{r}\right)\right)\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right)^{\gamma} d x\right]^{\gamma}
\end{aligned}
$$

where

$$
\gamma= \begin{cases}\frac{1}{q^{+}} & \text {if }\|\varphi\|<1 \\ \frac{1}{q^{-}} & \text {if }\|\varphi\| \geq 1\end{cases}
$$

Using the fact that $\mathcal{E}(\mathbb{X}, \mu)$ is translation invariant and the (usual) Dominated Conver-
gence Theorem, it follows that

$$
\begin{aligned}
& \lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{\varphi(x+t)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t) \\
& \leq\left(\|\varphi\|_{\infty}+1\right)^{\frac{q^{+}-1}{\gamma}}\left[\int_{0}^{1}\left(\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\|\varphi(t+x)\| d \mu(t)\right) d x\right]^{\gamma}=0 .
\end{aligned}
$$

Theorem 3.18. Let $p, q \geq 1$ be constants, $\mu \in \mathcal{M}$ and $f \in S_{p a p}^{p, q}(\mathbb{X}, \mu)$ be such that

$$
f=h+\varphi
$$

where $h^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. Then

$$
\{h(t+.): t \in \mathbb{R}\} \subset \overline{\{f(t+.): t \in \mathbb{R}\}}, \quad \text { in } \quad B S^{p, q}(\mathbb{X}) .
$$

Proof. The proof follows along the same lignes as in [1, Theorem 2.24]. We prove it by contradiction. Indeed, if this is not true, then there exists $t_{0} \in \mathbb{R}$ and $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|f(t+\cdot)-h\left(t_{0}+\cdot\right)\right\|_{S^{p, q}}>3 \varepsilon, \quad \forall t \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

Since $h^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$, there exists $l>0$ and for all $n \in \mathbb{Z}$, there exists $\tau_{n} \in\left[n l-t_{0}, n l-\right.$ $\left.t_{0}+l\right]$ such that

$$
\begin{equation*}
\left\|h\left(t_{0}+\cdot+\tau_{n}\right)-h\left(t_{0}+\cdot\right)\right\|_{s^{p}} \leq \varepsilon \tag{3.2}
\end{equation*}
$$

By using the uniform continuity on \mathbb{R} of the almost periodic function h, there exists $K_{0} \in \mathbb{N}$ such that $K_{0} \geq 2$ and

$$
\begin{equation*}
\left\|h(t+\cdot)-h\left(t_{0}+\cdot+\tau_{n}\right)\right\|_{S^{p}} \leq \varepsilon, \quad \forall t \in\left[t_{0}+\tau_{n}-\frac{l}{K_{0}}, t_{0}+\tau_{n}+\frac{l}{K_{0}}\right] . \tag{3.3}
\end{equation*}
$$

From the following inequality

$$
\begin{aligned}
\left\|f(t+\cdot)-h\left(t_{0}+\cdot\right)\right\|_{S^{p, q}} & \leq\|f(t+\cdot)-h(t+\cdot)\|_{s p, q}+\left\|h(t+\cdot)-h\left(t_{0}+\cdot+\tau_{n}\right)\right\|_{s^{p, q}} \\
& +\left\|h\left(t_{0}+\cdot+\tau_{n}\right)-h\left(t_{0}+\cdot\right)\right\|_{S^{p, q}} \\
& =\|f(t+\cdot)-h(t+\cdot)\|_{s, q}+\left\|h(t+\cdot)-h\left(t_{0}+\cdot+\tau_{n}\right)\right\|_{s^{p}} \\
& +\left\|h\left(t_{0}+\cdot+\tau_{n}\right)-h\left(t_{0}+\cdot\right)\right\|_{S^{p}} .
\end{aligned}
$$

and from (3.1)-(3.3), we deduce that

$$
\begin{equation*}
\|\varphi(t+\cdot)\|_{S^{q}}=\|\varphi(t+\cdot)\|_{s^{p, q}}=\|f(t+\cdot)-h(t+\cdot)\|_{S^{p, q}}>\varepsilon \tag{3.4}
\end{equation*}
$$

for all $t \in\left[t_{0}+\tau_{n}-\frac{l}{K_{0}}, t_{0}+\tau_{n}+\frac{l}{K_{0}}\right]$.
Similarly, as in the proof of [1, Theorem 2.24], we obtain the existence of constants $\alpha_{*}>0$ and $n_{*} \in \mathbb{N}, n_{*} \geq 1$, such that

$$
\begin{equation*}
|n| \geq n_{*} \Rightarrow \alpha_{*} \mu([n l, n l+l]) \leq \mu\left(\left\{t \in(n l, n l+l]:\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right) . \tag{3.5}
\end{equation*}
$$

Let $N \in \mathbb{N}$ be such that $N>n_{*}$. Denote by \mathcal{S} the finite set of integers defined by

$$
\mathcal{S}=\left\{-N,-N+1, \ldots,-n_{*}-1\right\} \cup\left\{n_{*}, n_{*}+1, \ldots, N-1\right\} .
$$

By summing (3.5) on \mathcal{S}, we obtain

$$
\begin{equation*}
\alpha_{*} \sum_{n \in \mathcal{S}} \mu([n l, n l+l]) \leq \sum_{n \in \mathcal{S}} \mu\left(\left\{t \in(n l, n l+l]:\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right) \tag{3.6}
\end{equation*}
$$

From the following inequalities:

$$
\begin{aligned}
\alpha_{*} \sum_{n \in \mathcal{S}} \mu([n l, n l+l]) & \geq \alpha_{*} \mu\left(\bigcup_{n \in \mathcal{S}}[n l, n l+l]\right) \\
& =\alpha_{*} \mu\left([-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right)\right), \\
\sum_{n \in \mathcal{S}} \mu\left(\left\{t \in(n l, n l+l]:\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right) & =\mu\left(\bigcup_{n \in \mathcal{S}}\left\{t \in(n l, n l+l]:\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right) \\
& =\mu\left(\left\{t \in(-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right]:\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right) \\
& \leq \mu\left(\left\{t \in[-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right):\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right),
\end{aligned}
$$

and from (3.6), we deduce that for all $N>n_{*}$

$$
\alpha_{*} \mu\left([-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right)\right) \leq \mu\left(\left\{t \in[-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right):\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right)
$$

therefore we obtain

$$
\lim _{N \rightarrow+\infty} \frac{\mu\left(\left\{t \in[-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right):\|\varphi(t+\cdot)\|_{S^{q}}>\varepsilon\right\}\right)}{\mu\left([-N l, N l] \backslash\left(-n_{*} l, n_{*} l\right)\right)} \geq \alpha_{*}>0
$$

By using Theorem 2.4 , it yields that $\varphi^{b} \notin \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, which is a contradiction.
Corollary 3.19. Let $p, q \geq 1$ be constants and $\mu \in \mathcal{N}_{1}$. Then the decomposition of a $S^{p, q_{-}}$ μ-pseudo-almost periodic function in the form $f=h+\varphi$ where $h^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, is unique.
Proof. Suppose that $f=h_{1}+\varphi_{1}=h_{2}+\varphi_{2}$ where $h_{1}^{b}, h_{2}^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi_{1}^{b}, \varphi_{1}^{b} \in$ $\mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. Then $0=\left(h_{1}-h_{2}\right)+\left(\varphi_{1}-\varphi_{2}\right) \in S_{p a p}^{p, q}(\mathbb{X}, \mu)$ where $h_{1}^{b}-h_{2}^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi_{1}^{b}-\varphi_{1}^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$. From Theorem 3.18 we obtain $\left(h_{1}-h_{2}\right)(\mathbb{R}) \subset\{0\}$, therefore one has $h_{1}=h_{2}$ and $\varphi_{1}=\varphi_{2}$.

Theorem 3.20. Let $p, q \geq 1$ be constants and $\mu \in \mathcal{N}_{1}$. The space $S_{p a p}^{p, q}(\mathbb{X}, \mu)$ equipped with the norm $\|\cdot\|_{S^{p, q}}$ is a Banach space.

Proof. It suffices to prove that $S_{p a p}^{p, q}(\mathbb{X}, \mu)$ is a closed subspace of $B S^{p, q}(\mathbb{X})$. Let $f_{n}=h_{n}+\varphi_{n}$ be a sequence in $S_{p a p}^{p, q}(\mathbb{X}, \mu)$ with $\left(h_{n}^{b}\right)_{n \in \mathbb{N}} \subset A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\left(\varphi_{n}^{b}\right)_{n \in \mathbb{N}} \subset \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$ such that $\left\|f_{n}-f\right\|_{S^{p, q}} \rightarrow 0$ as $n \rightarrow \infty$. By Theorem 3.18, one has

$$
\left\{h_{n}(t+.): t \in \mathbb{R}\right\} \subset \overline{\left\{f_{n}(t+.): t \in \mathbb{R}\right\}}
$$

and hence

$$
\left\|h_{n}\right\|_{S^{p}}=\left\|h_{n}\right\|_{S^{p, q}} \leq\left\|f_{n}\right\|_{S^{p, q}} \quad \text { for all } n \in \mathbb{N} .
$$

Consequently, there exists a function $h \in S_{a p}^{p}(\mathbb{X})$ such that $\left\|h_{n}-h\right\|_{S^{p}} \rightarrow 0$ as $n \rightarrow \infty$. Using the previous fact, it easily follows that the function $\varphi:=f-h \in B S^{q}(\mathbb{X})$ and that $\left\|\varphi_{n}-\varphi\right\|_{s^{q}}=$ $\left\|\left(f_{n}-h_{n}\right)-(f-h)\right\|_{s q} \rightarrow 0$ as $n \rightarrow \infty$. From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu\left(Q_{r}\right)>0$ for all $r \geq r_{0}$. Using the fact that $\varphi=\left(\varphi-\varphi_{n}\right)+\varphi_{n}$ and the triangle inequality, it follows that

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}(\left.\int_{0}^{1}\|\varphi(\tau+t)\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
& \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi(\tau+t)-\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
&+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) \\
& \quad \leq\left\|\varphi_{n}-\varphi\right\|_{S^{q}}+\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi_{n}(\tau+t)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t) .
\end{aligned}
$$

Letting $r \rightarrow+\infty$ and then $n \rightarrow \infty$ in the previous inequality yields $\varphi^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, that is, $f=h+\varphi \in S_{p a p}^{p, q}(\mathbb{X}, \mu)$.

Definition 3.21. [1] Let $\mu_{1}, \mu_{2} \in \mathcal{M}$. μ_{1} is said to be equivalent to $\mu_{2}\left(\mu_{1} \sim \mu_{2}\right)$ if there exist constants $\alpha, \beta>0$ and a bounded interval I (eventually $I=\emptyset$) such that

$$
\alpha \mu_{1}(A) \leq \mu_{2}(A) \leq \beta \mu_{1}(A), \text { for all } A \in \mathcal{B} \text { such that } A \cap I=\emptyset
$$

Theorem 3.22. Let $\mu \in \mathcal{M}, p \geq 1$ be a constant, $q \in C_{+}(\mathbb{R})$ and $\mu_{1}, \mu_{2} \in \mathcal{M}$. If μ_{1} and μ_{2} are equivalent then $S_{p a p}^{p, q(x)}\left(\mathbb{X}, \mu_{1}\right)=S_{p a p}^{p, q(x)}\left(\mathbb{X}, \mu_{2}\right)$.

Proof. The proof is similar to that of [1, Theorem 2.21]. Since $\mu_{1} \sim \mu_{2}$, and \mathcal{B} is the Lebesgue σ-field of \mathbb{R}, we obtain for r sufficiently large

$$
\begin{aligned}
\frac{\alpha}{\beta} \frac{\mu_{1}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{s p, q(\cdot)}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)} & \leq \frac{\mu_{2}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{S p, q(\cdot)}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)} \\
& \leq \frac{\beta}{\alpha} \frac{\mu_{1}\left(\left\{t \in Q_{r} \backslash I:\|f(t)\|_{S p, q(\cdot)}>\varepsilon\right\}\right)}{\mu\left(Q_{r} \backslash I\right)} .
\end{aligned}
$$

By using Theorem 2.4, we deduce that $\mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu_{1}\right)=\mathcal{E}\left(L^{q^{b}(x)}((0,1), \mathbb{X}), \mu_{1}\right)$. From the definition of a weighted $S^{p, q(x)}$-pseudo-almost periodic function it follows that

$$
S_{p a p}^{p, q(x)}\left(\mathbb{X}, \mu_{1}\right)=S_{p a p}^{p, q(x)}\left(\mathbb{X}, \mu_{2}\right) .
$$

Definition 3.23. A function $F: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ with $F(., u) \in B S^{p, q(x)}(\mathbb{X})$ for each $u \in \mathbb{Y}$, is said to be $S^{p, q(x)}-\mu$-pseudo-almost periodic in $t \in \mathbb{R}$ uniformly in $u \in \mathbb{Y}$ if $t \mapsto F(t, u)$ is $S^{p, q(x)}$ - μ-pseudo-almost periodic for each $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.

This means, there exist two functions $G, H: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ such that $F=G+H$, where $G^{b} \in A P\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $H^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q^{b}(x)}((0,1), \mathbb{X}), \mu\right)$, that is,

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \inf \left\{\lambda>0: \int_{0}^{1}\left\|\frac{H(x+t, u)}{\lambda}\right\|^{q(x+t)} d x \leq 1\right\} d \mu(t)=0
$$

uniformly in $u \in B$ where $B \subset \mathbb{Y}$ is an arbitrary bounded set.
The collection of such functions will be denoted by $S_{p a p}^{p, q(x)}(\mathbb{Y}, \mathbb{X}, \mu)$.
Let $\operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ denote the collection of functions $f: \mathbb{R} \times \mathbb{Y} \rightarrow \mathbb{X}$ satisfying: there exists a nonnegative function $L_{f}^{b} \in L^{r}(\mathbb{R})$ such that

$$
\begin{equation*}
\|f(t, u)-f(t, v)\| \leq L_{f}(t)\|u-v\|_{\mathbb{Y}} \text { for all } u, v \in \mathbb{Y}, t \in \mathbb{R} \tag{3.7}
\end{equation*}
$$

Now, we recall the composition theorem for $S_{a p}^{p}$ functions.
Theorem 3.24. [8] Let $p>1$ be a constant. We suppose that the following conditions hold:
(a) $f \in S_{a p}^{p}(\mathbb{R} \times \mathbb{X}) \cap L i p^{r}(\mathbb{R}, \mathbb{X})$ with $r \geq \max \left\{p, \frac{p}{p-1}\right\}$.
(b) $\phi \in S_{a p}^{p}(\mathbb{X})$ and there exists a set $E \subset \mathbb{R}$ with mes $(E)=0$ such that

$$
K:=\overline{\{\phi(t): t \in \mathbb{R} \backslash E\}}
$$

is compact in \mathbb{X}.
Then there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{a p}^{m}(\mathbb{R} \times \mathbb{X})$.
To obtain the composition theorem for $S_{p a p}^{p(x)}$ functions, we need the following lemma:
Lemma 3.25. Let $q>1$ be a constant, $\mu \in \mathcal{M}$ and $K \subseteq \mathbb{Y}$ be a compact subset. If $f \in$ $\operatorname{Lip}^{q}(\mathbb{Y}, \mathbb{X})$ and $f^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q}((0,1), \mathbb{X}), \mu\right)$, then $\widetilde{f} \in \mathcal{E}(\mathbb{X}, \mu)$, where the function \widetilde{f} is defined by

$$
\begin{equation*}
\widetilde{f}(t):=\left\|\sup _{u \in K}\right\| f(t+\cdot, u)\| \|_{q} \tag{3.8}
\end{equation*}
$$

for all $t \in \mathbb{R}$.
Proof. We make extensive use of ideas of [8, Lemma 2.3]. Using the fact that $K \subset \mathbb{Y}$ is a compact subset, for any $\varepsilon>0$, there exists $x_{1}, x_{2}, \ldots, x_{k}$ such that

$$
K \subseteq \bigcup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)
$$

Using this argument along with the fact that $f \in \operatorname{Lip}^{q}(\mathbb{Y}, \mathbb{X})$, for all $u \in K$, there exists $x_{i(u)} \in\left\{x_{1}, x_{2}, \ldots ., x_{k}\right\}$ such that

$$
\|f(t+s, u)\| \leq\left\|f(t+s, u)-f\left(t+s, x_{i(u)}\right)\right\|+\left\|f\left(t+s, x_{i(u)}\right)\right\| \leq L_{f}(t+s) \varepsilon+\left\|f\left(t+s, x_{i(u)}\right)\right\|
$$

for each $t \in \mathbb{R}$ and $s \in[0,1]$. Thus, we have

$$
\sup _{u \in K}\|f(t+s, u)\| \leq L_{f}(t+s) \varepsilon+\sum_{i=1}^{k}\left\|f\left(t+s, x_{i(u)}\right)\right\|, \quad \forall t \in \mathbb{R}, \quad \forall s \in[0,1]
$$

which yields

$$
\begin{equation*}
\widetilde{f}(t)=\left\|\sup _{u \in K}\right\| f(t+\cdot, u)\| \|_{q} \leq\left\|L_{f}\right\|_{S^{q}} \cdot \varepsilon+\sum_{i=1}^{k}\left\|f\left(t, x_{i(u)}\right)\right\|_{q}, \quad \forall t \in \mathbb{R} \tag{3.9}
\end{equation*}
$$

Now using the fact that $f^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q}((0,1), \mathbb{X}), \mu\right)$, for the above $\varepsilon>0$, there exists $r_{0}>0$ such that, for all $r>r_{0}$,

$$
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|f\left(t+s, x_{i}\right)\right\|^{q} d \tau\right)^{\frac{1}{q}} d \mu(t)<\frac{\varepsilon}{k}, \quad i=1,2, \ldots, k
$$

This along with Eq. (3.9) yield

$$
\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}} \widetilde{f}(t) d \mu(t) \leq\left(\left\|L_{f}\right\|_{S^{q}}+1\right) \cdot \varepsilon
$$

and hence $\widetilde{f} \in \mathcal{E}(\mathbb{X}, \mu)$.
Theorem 3.26. Let $p, q>1$ be constants such that $p \leq q$ and $\mu \in \mathcal{M}$. Suppose that the following conditions hold:
(a) $f=g+h \in S_{\text {pap }}^{p, q}(\mathbb{Y}, \mathbb{X}, \mu)$ with $g^{b} \in A P\left(\mathbb{Y}, L^{p}((0,1), \mathbb{X})\right)$ and $h^{b} \in \mathcal{E}\left(\mathbb{Y}, L^{q}((0,1), \mathbb{X}), \mu\right)$. Further, $f, g \in \operatorname{Lip}^{r}(\mathbb{Y}, \mathbb{X})$ with $r \geq \max \left\{q, \frac{p}{p-1}\right\}$.
(b) $\phi=\alpha+\beta \in S_{p a p}^{p, q}(\mathbb{Y})$ with $\alpha^{b} \in A P\left(L^{p}((0,1), \mathbb{Y})\right)$ and $\beta^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{Y}), \mu\right)$, and there exists a set $E \subset \mathbb{R}$ with mes $(E)=0$ such that

$$
K:=\overline{\{\alpha(t): t \in \mathbb{R} \backslash E\}}
$$

is compact in \mathbb{Y}.
Then there exists $m \in[1, p)$ such that $f(\cdot, \phi(\cdot)) \in S_{p a p}^{m, m}(\mathbb{Y}, \mathbb{X}, \mu)$.
Proof. We will make use of ideas of [8, Theorem 2.4]. Indeed, decompose f^{b} as follows:

$$
f^{b}\left(\cdot, \phi^{b}(\cdot)\right)=g^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)+h^{b}\left(\cdot, \alpha^{b}(\cdot)\right) .
$$

Using Theorem 3.24, it easily follows that there exists $m \in[1, p)$ with $\frac{1}{m}=\frac{1}{p}+\frac{1}{r}$ such that $g^{b}\left(\cdot, \alpha^{b}(\cdot)\right) \in A P\left(\mathbb{R} \times L^{m}((0,1), \mathbb{X})\right)$.

Set

$$
\varphi^{b}(\cdot)=f^{b}\left(\cdot, \phi^{b}(\cdot)\right)-f^{b}\left(\cdot, \alpha^{b}(\cdot)\right)
$$

Clearly, $\varphi^{b} \in \mathcal{E}\left(L^{m}((0,1), \mathbb{X}), \mu\right)$. Indeed, there exists $r_{0}>0$ such that, for all $r>r_{0}$,

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\varphi^{b}(t+s)\right\|^{m} d s\right)^{\frac{1}{m}} d \mu(t) \\
&=\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|f^{b}\left(t+s, \phi^{b}(t+s)\right)-f^{b}\left(t+s, \alpha^{b}(t+s)\right)\right\|^{m} d s\right)^{\frac{1}{m}} d \mu(t) \\
& \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left(L_{f}^{b}(t+s) \cdot\left\|\beta^{b}(t+s)\right\|^{m} d s\right)^{\frac{1}{m}} d \mu(t)\right. \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r}} \cdot\left[\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\beta^{b}(t+s)\right\|^{p} d s\right)^{\frac{1}{p}} d \mu(t)\right] \\
& \leq\left\|L_{f}^{b}\right\|_{S^{r} \cdot}\left[\frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|\beta^{b}(t+s)\right\|^{q} d s\right)^{\frac{1}{q}} d \mu(t)\right]
\end{aligned}
$$

Using the fact that $\beta^{b} \in \mathcal{E}\left(L^{q}((0,1), \mathbb{X}), \mu\right)$, it follows that $\varphi^{b} \in \mathcal{E}\left(L^{m}((0,1), \mathbb{X}), \mu\right)$.
Now using the fact that $h=f-g \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X}) \subset \operatorname{Lip}^{q}(\mathbb{R}, \mathbb{X})$, it follows by Lemma 3.25 that

$$
\lim _{r \rightarrow+\infty} \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left\|\sup _{u \in K}\right\| h(t+\cdot, u)\| \|_{q} d \mu(t)=0
$$

which yields

$$
\begin{aligned}
& \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|h^{b}\left(t+s, \alpha^{b}(t+s)\right)\right\|^{m} d s\right)^{\frac{1}{m}} d \mu(t) \\
& \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left\|h^{b}\left(t+s, \alpha^{b}(t+s)\right)\right\|^{q} d s\right)^{\frac{1}{q}} d \mu(t) \\
& \leq \frac{1}{\mu\left(Q_{r}\right)} \int_{Q_{r}}\left(\int_{0}^{1}\left(\sup _{u \in K}\left\|h^{b}(t+s, u)\right\|\right)^{q} d s\right)^{\frac{1}{q}} d \mu(t) \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty
\end{aligned}
$$

which means that $h^{b}\left(\cdot, \alpha^{b}(\cdot)\right) \in \mathcal{E}\left(\left(L^{m}(0,1) ; \mathbb{X}\right), \mu\right)$. This completes the proof.
Remark 3.27. A general composition theorem in $S_{p a p}^{p, q(x)}(\mathbb{R} \times \mathbb{X})$ is unlikely as compositions of elements of $S_{p a p}^{p, q(x)}(\mathbb{R} \times \mathbb{X}, \mu)$ may not be well-defined unless $q(\cdot)$ is the constant function.

4 Exsitecne Results for Evolution Equations

Let $p, q>1$ be constants such that $p \leq q, \vartheta \in C_{+}(\mathbb{R})$ and $\mu \in \mathcal{N}_{1}$. This section is devoted to the search of a μ-pseudo-almost periodic solutions to the abstract nonautonomous differential equations Eq. (1.1) and Eq. (1.2).

Throughout the rest of the paper we suppose that the following assumptiona hold:
(A.1) The family of closed linear operators $A(t)$, for $t \in \mathbb{R}$, on \mathbb{X} with domain $D(A(t))$ (possibly not densely defined) satisfy the so-called Acquistapace-Terreni conditions;
namely, there exist constants $\lambda_{0} \geq 0, \theta \in\left(\frac{\pi}{2}, \pi\right), M_{1}, M_{2} \geq 0$, and $\alpha, \beta \in(0,1]$ with $\alpha+\beta>1$ such that

$$
\Sigma_{\theta} \cup\{0\} \subset \rho\left(A(t)-\lambda_{0}\right), \quad\left\|R\left(\lambda, A(t)-\lambda_{0}\right)\right\|_{B(\mathbb{X})} \leq \frac{M_{1}}{1+|\lambda|}
$$

and

$$
\left\|\left(A(t)-\lambda_{0}\right) R\left(\lambda, A(t)-\lambda_{0}\right)\left[R\left(\lambda_{0}, A(t)\right)-R\left(\lambda_{0}, A(s)\right)\right]\right\|_{B(\mathbb{X})} \leq M_{2}|t-s|^{\alpha}|\lambda|^{-\beta}
$$

for $t, s \in \mathbb{R}, \lambda \in \Sigma_{\theta}:=\{\lambda \in \mathbb{C}-\{0\}:|\arg \lambda| \leq \theta\}$
(A.2) The evolution family $U(t, s)$ is exponentially stable. Namely, there exist some constants $M, \delta>0$ such that

$$
\|U(t, s)\|_{B(\mathbb{X})} \leq M e^{-\delta(t-s)}
$$

for all $s, t \in \mathbb{R}$ with $t \geq s$. In addition, $R\left(\lambda_{0}, A(\cdot)\right) \in A P(\mathbb{R}, B(\mathbb{X}))$.
(A.3) $F=G+H \in S_{p a p}^{p, q}(\mathbb{R} \times \mathbb{X}, \mu) \cap C(\mathbb{R} \times \mathbb{X})$ with $G^{b} \in A P(\mathbb{R} \times L((0,1), \mathbb{X}))$ and $H^{b} \in \mathcal{E}(\mathbb{R} \times$ $\left.L^{q}((0,1), \mathbb{X}), \mu\right)$. Moreover; $F, G \in \operatorname{Lip}^{r}(\mathbb{R}, \mathbb{X})$ with

$$
r \geq \max \left\{q, \frac{p}{p-1}\right\}
$$

Definition 4.1. Under (A.1)-(A.2), if $f: \mathbb{R} \rightarrow \mathbb{X}$ is a bounded continuous function, then a mild solution to Eq.(1.1) is a continuous function $u: \mathbb{R} \rightarrow \mathbb{X}$ satisfying

$$
\begin{equation*}
u(t)=U(t, s) u(s)+\int_{s}^{t} U(t, \sigma) f(\sigma) d \sigma \tag{4.1}
\end{equation*}
$$

for all $t, s \in \mathbb{R}$ and $t \geq s$.
Definition 4.2. Suppose (A.1)-(A.2) hold. If $F: \mathbb{R} \times \mathbb{X} \rightarrow \mathbb{X}$ is a bounded continuous function, then a mild solution to Eq.(1.2) is a continuous function $u: \mathbb{R} \rightarrow \mathbb{X}$ satisfying

$$
\begin{equation*}
u(t)=U(t, s) u(s)+\int_{s}^{t} U(t, \sigma) F(\sigma, u(\sigma)) d \sigma \tag{4.2}
\end{equation*}
$$

for all $t, s \in \mathbb{R}$ and $t \geq s$.
Lemma 4.3. Under assumptions (A.1)-(A.2), if $h \in S_{p a a}^{p, \vartheta(x)}(\mathbb{X}, \mu) \cap C(\mathbb{R}, \mathbb{X})$, then the operator Λ defined by

$$
(\Lambda u)(t):=\int_{-\infty}^{t} U(t, \sigma) h(\sigma) d \sigma, \quad t \in \mathbb{R}
$$

maps $\operatorname{PAP}(\mathbb{X}, \mu)$ into itself.
Proof. Clearly, Λ is well defined. Moreover, let $u \in \operatorname{PAP}(\mathbb{X}, \mu)$. Since $h \in S_{p a a}^{p, \vartheta(x)}(\mathbb{X}, \mu) \cap$ $C(\mathbb{R}, \mathbb{X})$, then $h=g+\varphi$, where $g^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$ and $\varphi^{b} \in \mathcal{E}\left(L^{g^{b}(x)}((0,1), \mathbb{X}), \mu\right)$. Then Λ can be decomposed as

$$
(\Lambda u)(t)=X(t)+Y(t)
$$

where

$$
X(t)=\int_{-\infty}^{t} U(t, s) g(s) d s, \text { and } Y(t)=\int_{-\infty}^{t} U(t, s) \varphi(s) d s .
$$

Define for all $n=1,2, \ldots$, the sequence of integral operators

$$
X_{n}(t):=\int_{n-1}^{n} U(t, t-s) g(t-s) d s=\int_{t-n}^{t-n+1} U(t, s) g(s) d s,
$$

and

$$
Y_{n}(t):=\int_{n-1}^{n} U(t, t-s) \varphi(t-s) d s=\int_{t-n}^{t-n+1} U(t, s) \varphi(s) d s
$$

for each $t \in \mathbb{R}$.
Let us show that $X_{n} \in A P(\mathbb{X})$. Let $p^{\prime}>1$ such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Using the Hölder's inequality, it follows that

$$
\begin{aligned}
\left\|X_{n}(t)\right\| & \leq M \int_{t-n}^{t-n+1} e^{-\delta(t-\sigma)}\|g(\sigma)\| d \sigma \\
& \leq M\left(\int_{t-n}^{t-n+1} e^{-p^{\prime} \delta(t-\sigma)} d \sigma\right)^{\frac{1}{p^{\prime}}}\left(\int_{t-n}^{t-n+1}\|g(\sigma)\|^{p} d \sigma\right)^{\frac{1}{p}} \\
& \leq \frac{M}{\sqrt[p^{\prime}]{p^{\prime} \delta}}\left(e^{-p^{\prime}(n-1) \delta}-e^{-p^{\prime} n \delta}\right)^{\frac{1}{q}}\|g\|_{S^{p}} \\
& \leq M e^{-n \delta} \sqrt[p^{\prime}]{\frac{1+e^{p^{\prime} \delta}}{p^{\prime} \delta}}\|g\|_{S^{p}} \\
& :=K_{1} e^{-n \delta}\|g\| \|_{S^{p}} .
\end{aligned}
$$

Since the series

$$
K_{1} \sum_{n=1}^{\infty} e^{-n \delta}
$$

is convergent, we deduce from the well-known Weierstrass test that the sequence of functions $\sum_{n=1}^{\infty} X_{n}(t)$ is uniformly convergent on \mathbb{R}.

Using the fact that

$$
X(t)=\sum_{n=1}^{\infty} X_{n}(t),
$$

it follows that $X \in C(\mathbb{R}, \mathbb{X})$. Moreover, for any $t \in \mathbb{R}$, we have

$$
\|X(t)\| \leq \sum_{n=1}^{\infty}\left\|X_{n}(t)\right\| \leq C_{p^{\prime}}(M, \delta)\|g\|_{S^{p}},
$$

where $C_{p^{\prime}}(M, \delta)$ depends only on the fixed constants p^{\prime}, M and δ.
Since $g^{b} \in A P\left(L^{p}((0,1), \mathbb{X})\right)$, for each $\varepsilon>0$, there exists $l(\varepsilon)>0$ such that every interval of length $l(\varepsilon)$ contains a number τ with the property that

$$
\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\|g(s+\tau)-g(s)\|^{p} d s\right)^{\frac{1}{p}}<\frac{\varepsilon}{C_{p^{\prime}}(M, \delta)} .
$$

Using triangle inequality, Hölder inequality and [10, Proposition 4.4], we obtain

$$
\begin{aligned}
\|X(t+\tau)-X(t)\| & \leq\left\|\int_{-\infty}^{t} U(t+\tau, s+\tau) g(s+\tau) d s-\int_{-\infty}^{t} U(t, s) g(s) d s\right\| \\
& \leq\left\|\int_{-\infty}^{t} U(t+\tau, s+\tau)[g(s+\tau)-g(s)] d s\right\| \\
& +\left\|\int_{-\infty}^{t}[U(t+\tau, s+\tau)-U(t, s)] g(s) d s\right\| \\
& \leq M \sum_{n=1}^{\infty} \int_{n-1}^{n} e^{-\delta s}\|g(t-s+\tau)-g(t-s)\| d s \\
& +\int_{-\infty}^{t}\|U(t+\tau, s+\tau)-U(t, s)\|_{B(\mathbb{X})}\|g(t-s)\| d s \\
& \leq C_{p^{\prime}}(M, \delta)\|g(t+\tau)-g(t)\|_{s p} \\
& +\int_{-\infty}^{t} \varepsilon e^{-\frac{\delta}{2}(t-s)}\|g(t-s)\| d s \\
& \leq \varepsilon+\varepsilon \cdot C_{p^{\prime}}(\delta) \cdot\|g\|_{S^{p}} \\
& =\left(1+C_{p^{\prime}}(\delta) \cdot\|g\|_{S^{p}}\right) \varepsilon
\end{aligned}
$$

and therefore, $X \in A P(\mathbb{X})$.
Now, let us show that $Y_{n} \in \mathcal{E}(\mathbb{X}, \mu)$. Indeed, let $d \in m(\mathbb{R})$ such that $d^{-1}(x)+\vartheta^{-1}(x)=1$. From $\mu(\mathbb{R})=\infty$, we deduce the existence of $r_{0} \geq 0$ such that $\mu([-r, r])>0$ for all $r \geq r_{0}$. By using the Hölder inequality (Theorem 3.3), it follows that

$$
\begin{aligned}
\left\|Y_{n}(t)\right\| & \leq M \int_{t-n}^{t-n+1} e^{-\omega(t-s)}\|\varphi(s)\| d s \\
& \leq M\left(\frac{1}{d^{-}}+\frac{1}{\vartheta^{-}}\right)\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\omega(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}\right] \\
& \times\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left\|\frac{\varphi(s)}{\lambda}\right\|^{\vartheta(s)} d s \leq 1\right\}\right] .
\end{aligned}
$$

Now since

$$
\begin{aligned}
\int_{t-n}^{t-n+1}\left[\frac{e^{-\omega(t-s)}}{e^{-\omega(n-1)}}\right]^{d(s)} d s & =\int_{t-n}^{t-n+1}\left[e^{\omega(s-t+n-1)}\right]^{d(s)} d s \\
& \leq \int_{t-n}^{t-n+1}[1]^{d(s)} d s \\
& \leq 1
\end{aligned}
$$

it follows that $e^{-\omega(n-1)} \in\left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\omega(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}$, which shows that

$$
\left[\inf \left\{\lambda>0: \int_{t-n}^{t-n+1}\left(\frac{e^{-\omega(t-s)}}{\lambda}\right)^{d(s)} d s \leq 1\right\}\right] \leq e^{-\omega(n-1)}
$$

Consequently,

$$
\left\|Y_{n}(t)\right\| \leq M\left(\frac{1}{d^{-}}+\frac{1}{q^{-}}\right) e^{-\omega(n-1)}\|\varphi\|_{S^{\vartheta(x)}}
$$

Since the series

$$
\sum_{n=1}^{\infty} e^{-\omega(n-1)}
$$

is convergent, we deduce from the well-known Weierstrass test that the series

$$
\sum_{k=1}^{\infty} Y_{n}(t)
$$

is uniformly convergent on \mathbb{R}. Furthermore, from

$$
Y(t)=\sum_{n=1}^{\infty} Y_{n}(t),
$$

we deduce that $Y \in C(\mathbb{R}, \mathbb{X})$, and

$$
\|Y(t)\| \leq \sum_{n=1}^{\infty}\left\|Y_{n}(t)\right\| \leq K_{1}\|\varphi\|_{S^{\vartheta(x)}},
$$

where $K_{1}=M\left(\frac{1}{d^{-}}+\frac{1}{\vartheta^{-}}\right) \sum_{n=1}^{\infty} e^{-\omega(n-1)}$.
By using the following inequality

$$
\begin{aligned}
\frac{1}{\mu([-r, r])} \int_{[-r, r]}\|Y(t)\| d \mu(t) & \leq \frac{1}{\mu([-r, r])} \int_{[-r, r]}\left\|Y(t)-\sum_{n=1}^{\infty} Y_{n}(t)\right\| d \mu(t) \\
& +\sum_{n=1}^{\infty} \frac{1}{\mu([-r, r])} \int_{[-r, r]}\left\|Y_{n}(t)\right\| d \mu(t)
\end{aligned}
$$

we deduce that the uniform limit $Y(t)=\sum_{n=1}^{\infty} Y_{n}(t) \in \mathcal{E}(\mathbb{X}, \mu)$. Therefore, $(\Lambda u) \in P A P(\mathbb{X}, \mu)$.

Using Lemma 4.3 one can prove the following theorems
Theorem 4.4. Under assumptions (A.1)-(A.2), if $f \in S_{p a a}^{p, \vartheta(x)}(\mathbb{X}, \mu) \cap C(\mathbb{R}, \mathbb{X})$, then Eq.(1.1) has a unique μ-pseudo-almost periodic (mild) solution given by

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} U(t, \sigma) f(\sigma) d \sigma, \quad t \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

Proof. Define the function $u: \mathbb{R} \mapsto \mathbb{X}$ by

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} U(t, s) f(s) d s, t \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

It is easy to check that u given in Eq. (4.4) satisfies Eq. (4.1) and hence it is a mild solution.

Since $f \in S_{p a p}^{p, q(x)}(\mathbb{X}, \mu) \cap C(\mathbb{R}, \mathbb{X})$, from Lemma 4.3, we deduce that u given in Eq. (4.4) is in $P A P(\mathbb{X})$.

To complete the proof it remains to prove the uniqueness. By assumption there exist some constants $M, \delta>0$ such that

$$
\|U(t, s)\|_{B(\mathbb{X})} \leq M e^{-\delta(t-s)} \text { for all } s, t \in \mathbb{R} \text { with } t \geq s .
$$

Assume that $u: \mathbb{R} \rightarrow \mathbb{X}$ is bounded and satisfies the homogeneous equation

$$
\begin{equation*}
u^{\prime}(t)=A(t) u(t), \quad t \in \mathbb{R}, \tag{4.5}
\end{equation*}
$$

Then $u(t)=U(t, s) u(s)$, for any $t \geq s$. Thus $\|u(t)\| \leq M K e^{-\delta(t-s)}$, where $\|u(s)\| \leq K$. Take a sequence of real numbers $\left(s_{n}\right)$ such that $s_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. For any $t \in \mathbb{R}$ fixed, one can find a subsequence $\left(s_{n_{k}}\right) \subset\left(s_{n}\right)$ such that $s_{n_{k}}<t$ for all $k=1,2, \ldots$. By letting $k \rightarrow \infty$, we get $u(t)=0$. Now if u, v are bounded solutions to Eq.(1.1), then $w=u-v$ is a bounded solution to Eq.(4.5). In view of the above, $w=u-v=0$ that is $u=v$.

Theorem 4.5. Let $p, q>1$ be constants such that $p \leq q$ and $\mu \in \mathcal{N}$. Then under assumptions (A.1)-(A.3), Eq.(1.2) has a unique μ-pseudo-almost periodic solutions whenever $\left\|L_{F}\right\|_{S_{r} r}$ is small enough.

Proof. The proof is similar to that of [4, Theorem 6.4]. So, we omit it.

References

[1] J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications. Applicable Analysis: An International Journal. 92 (3) (2013), pp. 493-526.
[2] T. Diagana; Almost automorphic type and almost periodic type functions in abstract spaces. Springer, 2013, New York, 303 pages.
[3] T. Diagana, Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations. Nonlinear Anal. 69 (2008), pp. 4277-2485.
[4] T. Diagana and M. Zitane, Stepanov-like pseudo-almost periodic functions in Lebesgue space with variable exponents $L^{p(x)}$. (Submitted).
[5] T. Diagana and M. Zitane, Stepanov-like pseudo-almost automorphic functions in Lebesgue spaces with variable exponents $L^{p(x)}$, Electron. J. Diff. Equ. 2013 (2013), No. 188, pp. 1-20.
[6] T. Diagana, Weighted pseudo-almost periodic functions and applications. Comptes Rendus de l'Académie des Sciences. Paris. 343 (2006), no. 10, pp. 643-646.
[7] L. Diening, P. Harjulehto, P. Hästö, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics. Springer, Heidelberg, 2011.
[8] W. Long, H. S. Ding, Composition theorems of Stepanov almost periodic functions and Stepanov-like pseudo-almost periodic functions. Advance in Difference Equations (2011), Article ID 654695, 12 pages.
[9] X.L. Fan, D. Zhao, On the spaces $L^{p(x)}(O)$ and $W^{m, p(x)}(O)$. J. Math. Anal. Appl. 263 (2001), pp. 424-446.
[10] L. Maniar and S. Roland, Almost periodicity of inhomogeneous parabolic evolution equations, Lecture Notes in Pure and Appl. Math. 234 (2003), pp. 299-318.
[11] P. Q. H. Nguyen, On variable Lebesgue spaces. Thesis (Ph.D.) - Kansas State University. ProQuest LLC, Ann Arbor, MI, 2011. 63 pp.

[^0]: *E-mail address: tdiagana@howard.edu
 ${ }^{\dagger}$ E-mail address: zitanem@gmail.com

