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Abstract

In this paper, we obtain a collection of existence results of almost automorphic

mild solutions to several stochastic functional differential equations in a real separable

Hilbert space. The main technique is based upon some appropriate composition the-

orems combined with the fixed point method. Moreover, an example is also given to

justify the practical usefulness of the established general theorems.
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1 Introduction

In this paper, we are mainly concerned with the existence of square-mean almost auto-

morphic mild solutions to the following stochastic functional differential equations with a

constant delay

dx(t) = Ax(t)dt+ f (t, x(t− r)) dt+g (t, x(t− r))dW(t), t ∈ R, (1.1)

dx(t) = Ax(t)dt+ f (t,B1x(t), x(t− r)) dt+g (t,B2x(t), x(t− r)) dW(t), t ∈ R, (1.2)
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where r ≥ 0 is a fixed constant, and A is the infinitesimal generator of a C0-semigroup

{T (t)}t≥0 on L2(P,H), and Bi, i = 1,2, are bounded linear operators, and W(t) is a two-

sided standard one-dimensional Brownian motion defined on the filtered probability space

(Ω,F ,P,Ft), where Ft = σ{W(u)−W(v);u,v ≤ t}. Here f and g are appropriate functions

to be specified later.

The concept of almost automorphy is an important generalization of the classical almost

periodicity. It was introduced by S. Bochner [8, 9], for more details about this topics we

refer the reader to [19, 21, 23]. In recent years, the existence of almost periodic and almost

automorphic solutions on different kinds of deterministic differential equations have been

considerably investigated in lots of publications [1, 2, 3, 4, 7, 12, 15, 17, 18, 22, 29, 30,

31] because of their significance and applications in physics, mechanics and mathematical

biology.

Since noise or stochastic perturbation is unavoidable in real world, it is of great impor-

tance to consider the stochastic effects in the investigation of differential systems [24, 25,

26, 27, 28]. Recently, the existence of almost periodic or pseudo almost periodic solutions

to some stochastic differential equations have been considered such as [5, 11, 10] and ref-

erences therein. Especially, Bezandry and Diagana systematically studied the fundamental

properties of almost periodic stochastic processes and investigated almost periodic solutions

to different kinds of stochastic differential equations in a recent monograph [6]. In Ref.

[20], Fu and Liu introduced a new concept of square-mean almost automorphic stochas-

tic processes, and established some basic properties including a composition theorem, and

then they investigated the existence and uniqueness of square-mean almost automorphic

mild solutions to some linear and nonlinear stochastic differential equations. Chang et al.

[13, 14, 16, 32] extended further some basic properties of square-mean almost automor-

phic process, from another perspective. Specifically, in [13], a new concept of S 2-almost

automorphy for stochastic processes including a composition theorem was studied. And

more recently, in [16], Chen and Lin presented the concept of square-mean pseudo almost

automorphic process and investigated the existence and uniqueness of square-mean pseudo

almost automorphic solutions for some stochastic differential equations, and Zhao et al.

introduced the notation of square-mean asymptotically almost automorphy for stochastic

processes with some properties of such stochastic processes in [32].

Motivated by the above mentioned works [11, 13, 14, 20], we investigate in this paper

the existence of square-mean almost automorphic mild solutions to the problems (1.1)-(1.2).

Our main results are established by means of the fixed point method. The obtained results

can be seen as a contribution to this emerging field.

The rest of this paper is organized as follows. In section 2, we recall some basic defini-

tions and notations. We also present and prove some preliminary facts which will be used

throughout this paper. In section 3, we prove the existence of square-mean almost automor-

phic mild solutions to (1.1)-(1.2). An example is given in Section 4 to illustrate the results

obtained.

2 Preliminaries and a new composition theorem

In this section, we introduce some basic definitions, notations, lemmas and technical results

which will be used in the sequel. For more details on this section, we refer the reader to
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[13, 14, 20].

Throughout the paper, we assume that (H,‖ · ‖,〈·, ·〉) and (K,‖ · ‖K,〈·, ·〉K ) are two real

separable Hilbert spaces. Let (Ω,F ,P) be a complete probability space. The notation

L2(P,H) stands for the space of all H-valued random variables x such that

E‖x‖2 =
∫

Ω

‖x‖2dP <∞.

For x ∈ L2(P,H), let

‖x‖2 =
(∫

Ω

‖x‖2dP

) 1
2

.

Then it is routine to check that L2(P,H) is a Hilbert space equipped with the norm ‖ · ‖2.

The notations C
(
R; L2(P,H)

)
and BC

(
R; L2(P,H)

)
stand for the collection of all continuous

stochastic processes from R into L2(P,H) and the space of all bounded continuous stochastic

processes x : R→ L2(P,H), respectively. It is then easy to check that BC
(
R; L2(P,H)

)
is a

Banach space when it is endowed with the norm ‖x‖BC(R;L2 (P,H)) := supt∈R ‖x(t)‖2. We let

L(K,H) denote the space of all linear bounded operators from K into H, equipped with the

usual operator norm ‖ · ‖L(K,H) ; in particular, this is simply denoted by L(H) when K = H.

In addition, W(t) is a two-sided standard one-dimensional Brownian motion defined on the

filtered probability space (Ω,F ,P,Ft), where Ft = σ{W(u)−W(v);u,v ≤ t}.

Definition 2.1. ([20]) A stochastic process x : R → L2(P,H) is said to be stochastically

continuous if

lim
t→s

E‖x(t)− x(s)‖2 = 0.

Definition 2.2. ([13, 20]) A stochastically continuous stochastic process x : R→ L2(P,H)

is said to be square-mean almost automorphic if for every sequence of real numbers there

exist a subsequence {sn}n∈N and a stochastic process y : R→ L2(P,H) such that

lim
n→∞

E‖x(t+ sn)− y(t)‖2 = 0 and lim
n→∞

E‖y(t− sn)− x(t)‖2 = 0

hold for each t ∈ R. The collection of all square-mean almost automorphic stochastic pro-

cesses x : R→ L2(P,H) is denoted by AA
(
R; L2(P,H)

)
.

Definition 2.3. ([13, 20]) A function f : R× L2(P,H)→ L2(P,H), (t, x) → f (t, x), which

is jointly continuous, is said to be square-mean almost automorphic in t ∈ R for each x ∈
L2(P,H) if for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N
such that for some function f̃

lim
n→∞

E‖ f (t+ sn, x)− f̃ (t, x)‖2 = 0 and lim
n→∞

E‖ f̃ (t− sn, x)− f (t, x)‖2 = 0

for each t ∈ R and each x ∈ L2(P,H).

The next definition is a little different from the definition 2.3. We will use the new

definition of square-mean almost automorphic functions to study the existence of square-

mean almost automorphic mild solutions of Eqs. (1.1)-(1.2) when the perturbation f and g

are not Lipschitz continuous.
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Definition 2.4. ([13, 20]) A function f : R× L2(P,H)→ L2(P,H), (t, x)→ f (t, x), which is

jointly continuous, is said to be square-mean almost automorphic if f (t, x) is square-mean

almost automorphic in t ∈ R uniformly for all x ∈ K, where K is any bounded subset of

L2(P,H). That is to say, for every sequence of real numbers {s′n}n∈N, there exist a subse-

quence {sn}n∈N and a function f̃ : R×L2(P,H)→ L2(P,H) such that

lim
n→∞

E‖ f (t+ sn, x)− f̃ (t, x)‖2 = 0 and lim
n→∞

E‖ f̃ (t− sn, x)− f (t, x)‖2 = 0

for each t ∈ R and each x ∈ K.

Lemma 2.5. ([20]) If x, x1 and x2 are all square-mean almost automorphic stochastic pro-

cesses, then the following hold true:

(i) x1+ x2 is square-mean almost automorphic.

(ii) λx is square-mean almost automorphic for every scalar λ.

(iii) There exists a constant M > 0 such that supt∈R ‖x(t)‖2 ≤ M. That is, x is bounded in

L2(P,H).

Lemma 2.6. ([20])
(
AA

(
R; L2(P,H)

)
,‖ · ‖∞

)
is a Banach space when it is equipped with the

norm

‖x‖∞ := sup
t∈R
‖x(t)‖2 = sup

t∈R
(E‖x(t)‖2)

1
2 ,

for x ∈ AA
(
R; L2(P,H)

)
.

Lemma 2.7. [14] Let f ∈ AA(R; L2(P,H)). Then we have

(I) h(t) := f (−t) ∈ AA(R; L2(P,H)).

(II) fa(t) := f (t+a) ∈ AA(R; L2(P,H)), a ∈ R being fixed.

Lemma 2.8. [14] Let B ∈ L(L2(P,H)) and assume that f ∈ AA(R; L2(P,H)). Then B f ∈
AA(R; L2(P,H)).

Lemma 2.9. [14] Let f : R× L2(P,H)→ L2(P,H), (t, x)→ f (t, x) be square-mean almost

automorphic, and assume that f (t, ·) is uniformly continuous on each bounded subset K ⊂
L2(P,H) uniformly for t ∈ R, that is for all ε > 0, there exists δ > 0 such that x,y ∈ K and

E‖x − y‖2 < δ imply that E‖ f (t, x) − f (t,y)‖2 < ε for all t ∈ R. Then for any square-mean

almost automorphic process x : R→ L2(P,H), the stochastic process F :R→ L2(P,H) given

by F(·) := f (·, x(·)) is square-mean almost automorphic.

Now, we introduce a few preliminary and important results.

Theorem 2.10. Let f : R× L2(P,H)× L2(P,H)→ L2(P,H), (t, x,y) → f (t, x,y) be square-

mean almost automorphic in t ∈R uniformly for all (x,y) ∈ K, where K is any bounded sub-

set of L2(P,H)×L2(P,H), and assume that f (t, ·, ·) is uniformly continuous on each bounded

subset K ⊂ L2(P,H)×L2(P,H) uniformly for t ∈ R. Then for any square-mean almost auto-

morphic stochastic process ϕ : R→ L2(P,H), the stochastic process Ψ : R→ L2(P,H) given

by Ψ(t) := f (t,ϕ(t),ϕ(t− r)) is square-mean almost automorphic.

Proof. Combining Lemma 2.5 with Lemma 2.7, we can establish this result by using the

same argument as in [14, Theorem 2.1], and we omit the details here. �
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Theorem 2.11. Let f : R×L2(P,H)→ L2(P,H), (t, x)→ f (t, x) be square-mean almost au-

tomorphic in t ∈ R for each x ∈ L2(P,H), and assume that there exists a bounded continuous

function L : R→ R+ such that

E‖ f (t, x)− f (t,y)‖2 ≤ L(t)E‖x− y‖2

for all x,y ∈ L2(P,H) and for each t ∈ R. Then for any x ∈ AA(R; L2(P,H)), the stochastic

process F : R→ L2(P,H) given by F(·) := f (·, x(·)) is square-mean almost automorphic.

Proof. Let {s′n}n∈N be an arbitrary sequence of real numbers. Since x ∈ AA
(
R; L2(P,H)

)
,

there exit a subsequence {sn}n∈N of {s′n}n∈N and a stochastic process y : R→ L2(P,H) such

that

lim
n→∞

E‖x(t+ sn)− y(t)‖2 = 0 and lim
n→∞

E‖y(t− sn)− x(t)‖2 = 0 (2.1)

hold for each t ∈ R. On the other hand, since (t, x)→ f (t, x) is square-mean almost auto-

morphic in t ∈ R for each x ∈ L2(P,H), we can extract a subsequence {sn}n∈N of {s′n}n∈N (for

convenience, we also denote it by {sn}n∈N) and a function f̃ such that

lim
n→∞

E‖ f (t+ sn, x)− f̃ (t, x)‖2 = 0 and lim
n→∞

E‖ f̃ (t− sn, x)− f (t, x)‖2 = 0 (2.2)

for each t ∈ R and each x ∈ L2(P,H).

Now, let us consider the function F̃ : R→ L2(P,H) defined by F̃(t) := f̃ (t,y(t)), t ∈ R.

Note that

F(t+ sn)− F̃(t) = f (t+ sn, x(t+ sn))− f (t+ sn,y(t))+ f (t+ sn,y(t))− f̃ (t,y(t)) .

Then, we have

E‖F(t+ sn)− F̃(t)‖2

≤ 2E‖ f (t+ sn, x(t+ sn))− f (t+ sn,y(t)) ‖2+2E‖ f (t+ sn,y(t))− f̃ (t,y(t))‖2

≤ 2L(t+ sn)E‖x(t+ sn)− y(t)‖2+2E‖ f (t+ sn,y(t))− f̃ (t,y(t))‖2.

By (2.1) and the bounded continuity of L(t), we have

lim
n→∞

L(t+ sn)E‖x(t+ sn)− y(t)‖2 = 0. (2.3)

Moreover, by (2.2), we get that

lim
n→∞

E‖ f (t+ sn,y(t))− f̃ (t,y(t))‖2 = 0. (2.4)

Therefore, we can deduce from (2.3), (2.4) and the above inequality that

lim
n→∞

E‖F(t+ sn)− F̃(t)‖2 = 0 for each t ∈ R.

Similarly, using the same argument as above, we obtain limn→∞E‖F̃(t− sn)−F(t)‖2 =
0 for each t ∈ R. That is, F(t) is square-mean almost automorphic. The proof is now

complete. �
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Theorem 2.12. Suppose that f : R× L2(P,H)× L2(P,H)→ L2(P,H), (t, x,y)→ f (t, x,y) be

square-mean almost automorphic in t ∈R for each (x,y) ∈ L2(P,H)×L2(P,H), and that there

exists a bounded continuous function L : R→ R+ such that

E‖ f (t, x,y)− f (t, x,y)‖2 ≤ L(t)
(
E‖x− x‖2+E‖y− y‖2

)
,

for all t ∈ R and each (x,y), (x,y) ∈ L2(P,H)× L2(P,H). Then for any square-mean almost

automorphic stochastic process φ : R→ L2(P,H), the stochastic process Φ : R→ L2(P,H)

given by Φ(t) := f (t,φ(t),φ(t− r)) is square-mean almost automorphic.

Proof. The proof is similar to the proof of Theorem 2.11. For the reader’s convenience,

we offer the proof here. Since φ : R→ L2(P,H) is square-mean almost automorphic, it

follows from Lemma 2.7 that the function t→ φ(t− r) ∈ AA
(
R; L2(P,H)

)
. Let {s′n}n∈N be

an arbitrary sequence of real numbers. By square-mean almost automorphy of φ, we can

extract a subsequence {sn}n∈N of {s′n}n∈N and a stochastic process φ such that for each t ∈ R,

lim
n→∞

E‖φ(t+ sn)−φ(t)‖2 = 0, lim
n→∞

E‖φ(t− sn)−φ(t)‖2 = 0, (2.5)

and

lim
n→∞

E‖φ(t+ sn − r)−φ(t− r)‖2 = 0, lim
n→∞

E‖φ(t− sn− r)−φ(t− r)‖2 = 0. (2.6)

On the other hand, since (t, x,y)→ f (t, x,y) is square-mean almost automorphic in t ∈ R for

each (x,y) ∈ L2(P,H)× L2(P,H), there exist a subsequence {sn}n∈N of {s′n}n∈N (for conve-

nience, we also denote it by {sn}n∈N) and a stochastic process f̃ such that

lim
n→∞

E‖ f (t+ sn, x,y)− f̃ (t, x,y)‖2 = 0 and lim
n→∞

E‖ f̃ (t− sn, x,y)− f (t, x,y)‖2 = 0 (2.7)

for each t ∈ R and each (x,y) ∈ L2(P,H)×L2(P,H).

Now, let us consider the function Φ̃ : R→ L2(P,H) defined by Φ̃(t) := f̃
(
t,φ(t),φ(t− r)

)
,

t ∈ R.

We can see that

Φ(t+ sn)− Φ̃(t) = f (t+ sn,φ(t+ sn),φ(t+ sn− r))− f̃
(
t,φ(t),φ(t− r)

)

= f (t+ sn,φ(t+ sn),φ(t+ sn− r))− f
(
t+ sn,φ(t),φ(t− r)

)

+ f
(
t+ sn,φ(t),φ(t− r)

)
− f̃

(
t,φ(t),φ(t− r)

)
.

Then, we have

E‖Φ(t+ sn)− Φ̃(t)‖2 ≤ 2E‖ f (t+ sn,φ(t+ sn),φ(t+ sn − r))− f
(
t+ sn,φ(t),φ(t− r)

)
‖2

+2E‖ f
(
t+ sn,φ(t),φ(t− r)

)
− f̃

(
t,φ(t),φ(t− r)

)
‖2

≤ 2L(t+ sn)
(
E‖φ(t+ sn)−φ(t)‖2+E‖φ(t+ sn − r)−φ(t− r)‖2

)

+2E‖ f
(
t+ sn,φ(t),φ(t− r)

)
− f̃

(
t,φ(t),φ(t− r)

)
‖2.

By (2.5)-(2.6) and the bounded continuity of L(t), we know that

lim
n→∞

L(t+ sn)
(
E‖φ(t+ sn)−φ(t)‖2+E‖φ(t+ sn − r)−φ(t− r)‖2

)
= 0. (2.8)
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Moreover, by (2.7), we get that

lim
n→∞

E‖ f
(
t+ sn,φ(t),φ(t− r)

)
− f̃

(
t,φ(t),φ(t− r)

)
‖2 = 0,

which combines with (2.8) yields that

lim
n→∞

E‖Φ(t+ sn)− Φ̃(t)‖2 = 0 for each t ∈ R.

Similarly, we can prove that

lim
n→∞

E‖Φ̃(t− sn)−Φ(t)‖2 = 0 for each t ∈ R.

Hence Φ(t) := f (t,φ(t),φ(t− r)) ∈ AA
(
R; L2(P,H)

)
, which ends the proof. �

Definition 2.13. An Ft-progressively measurable stochastic process {x(t)}t∈R is called a

mild solution of problem (1.1) on R if it satisfies the corresponding stochastic integral equa-

tion

x(t) = T (t−a)x(a)+

∫ t

a

T (t− s) f (s, x(s− r)) ds+

∫ t

a

T (t− s)g (s, x(s− r)) dW(s)

for all t ≥ a and for each a ∈ R.

Definition 2.14. An Ft-progressively measurable stochastic process {x(t)}t∈R is called a

mild solution of problem (1.2) on R if it satisfies the corresponding stochastic integral equa-

tion

x(t) = T (t−a)x(a)+

∫ t

a

T (t− s) f (s,B1x(s), x(s− r)) ds+

∫ t

a

T (t− s)g (s,B2x(s), x(s− r)) dW(s)

for all t ≥ a and a ∈ R.

3 Main results

In this section, we investigate the existence of a square-mean almost automorphic mild

solutions for the problems (1.1)-(1.2). We first list the following basic assumptions.

(H1) The operator A : D(A) ⊂ L2(P,H)→ L2(P,H) is the infinitesimal generator of an ex-

ponentially stable C0-semigroup {T (t)}t≥0 on L2(P,H); that is, there exist constants M > 0,

δ > 0 such that ‖T (t)‖ ≤ Me−δt for all t ≥ 0.

(H2) The function f ∈ AA
(
R×L2(P,H); L2(P,H)

)
and there exists a bounded continuous

function L f : R→ R+ such that

E‖ f (t, x)− f (t,y)‖2 ≤ L f (t)E‖x− y‖2

for all t ∈ R and x,y ∈ L2(P,H).

(H3) The function g ∈ AA
(
R×L2(P,H); L2(P,H)

)
and there exists a bounded continuous

function Lg : R→ R+ such that

E‖g(t, x)−g(t,y)‖2 ≤ Lg(t)E‖x− y‖2

for all t ∈ R and x,y ∈ L2(P,H).

Now, we are ready to state our first main result.
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Theorem 3.1. Assume the conditions (H1)-(H3) hold. Then Eq. (1.1) has a unique square-

mean almost automorphic mild solution on R whenever
√

L0 < 1, where

L0 = M2

[
2

δ2
sup
t∈R

L f (t)+
1

δ
sup
t∈R

Lg(t)

]
. (3.1)

Proof. We define the operator Λ : AA
(
R; L2(P,H)

)
→ AA

(
R; L2(P,H)

)
by

Λx(t) =

∫ t

−∞
T (t− s) f (s, x(s− r)) ds+

∫ t

−∞
T (t− s)g (s, x(s− r)) dW(s), t ∈ R.

First, let us check thatΛ
(
AA

(
R; L2(P,H)

))
⊂ AA

(
R; L2(P,H)

)
. Take x ∈ AA

(
R; L2(P,H)

)
,

by Lemma 2.7 and Theorem 2.11, we infer that both F(·)= f (·, x(·− r)) and G(·)= g (·, x(·− r)) ∈
AA

(
R; L2(P,H)

)
. Then, the similar reasoning as in the proof of [15, Theorem 3.1] proves

that Λx(·) ∈ AA
(
R; L2(P,H)

)
. Thus,Λ maps AA

(
R; L2(P,H)

)
into itself.

Next, we prove that Λ is a strict contraction mapping on AA
(
R; L2(P,H)

)
. To this end,

for each t ∈ R, x,y ∈ AA
(
R; L2(P,H)

)
, we have

E‖Λx(t)−Λy(t)‖2 = E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s, x(s− r))− f (s,y(s− r))]ds

+

∫ t

−∞
T (t− s)[g (s, x(s− r))−g (s,y(s− r))]dW(s)

∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s, x(s− r))− f (s,y(s− r))]ds

∥∥∥∥∥∥
2

+2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[g (s, x(s− r))−g (s,y(s− r))]dW(s)

∥∥∥∥∥∥
2

.

We first evaluate the first term of the right-hand side as follows:

2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s, x(s− r))− f (s,y(s− r))]ds

∥∥∥∥∥∥
2

≤ 2M2E

(∫ t

−∞
e−δ(t−s)‖ f (s, x(s− r))− f (s,y(s− r)) ‖ds

)2

≤ 2M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E‖ f (s, x(s− r))− f (s,y(s− r)) ‖2ds

)

≤ 2M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)L f (s)E‖x(s− r)− y(s− r)‖2 ds

)

≤ 2M2 sup
t∈R

L f (t)

(∫ t

−∞
e−δ(t−s)ds

)2

sup
t∈R

E‖x(t− r)− y(t− r)‖2

≤ 2M2

δ2
sup
t∈R

L f (t)sup
t∈R

E‖x(t− r)− y(t− r)‖2 ,

by using the Cauchy-Schwarz inequality.
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As to the second term, by the Ito integral, we get

2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[g (s, x(s− r))−g (s,y(s− r))]dW(s)

∥∥∥∥∥∥
2

≤ 2E

(∫ t

−∞
‖T (t− s)[g (s, x(s− r))−g (s,y(s− r))]‖2ds

)

≤ 2M2

∫ t

−∞
e−2δ(t−s)E‖g (s, x(s− r))−g (s,y(s− r)) ‖2ds

≤ 2M2

∫ t

−∞
e−2δ(t−s)Lg(s)E‖x(s− r)− y(s− r)‖2 ds

≤ 2M2 sup
t∈R

Lg(t)

(∫ t

−∞
e−2δ(t−s)ds

)
sup
t∈R

E‖x(t− r)− y(t− r)‖2

≤ M2

δ
sup
t∈R

Lg(t)sup
t∈R

E‖x(t− r)− y(t− r)‖2 .

Thus, by combining the above inequality together, we obtain that, for each t ∈ R,

E‖Λx(t)−Λy(t)‖2 ≤ M2

[
2

δ2
sup
t∈R

L f (t)+
1

δ
sup
t∈R

Lg(t)

]
sup
t∈R

E‖x(t− r)− y(t− r)‖2 ,

that is,

‖Λx(t)−Λy(t)‖22 ≤ L0 sup
t∈R
‖x(t− r)− y(t− r)‖22. (3.2)

Note that

sup
t∈R
‖x(t− r)− y(t− r)‖22 ≤

(
sup
t∈R
‖x(t− r)− y(t− r)‖2

)2

, (3.3)

and (3.2) together with (3.3) gives, for each t ∈ R,

‖Λx(t)−Λy(t)‖2 ≤
√

L0‖x− y‖∞ .

Hence, we obtain

‖Λx−Λy‖∞ = sup
t∈R
‖Λx(t)−Λy(t)‖2 ≤

√
L0‖x− y‖∞ ,

which implies that Λ is a contraction by (3.1). So by the Banach contraction principle,

we conclude that there exists a unique fixed point x(·) for Λ in AA
(
R; L2(P,H)

)
, such that

Λx = x. After these, using the same lines as in the proof of [15, Theorem 3.1], we conclude

that x(t) is a unique square-mean almost automorphic mild solution of Eq. (1.1), which

completes the proof. �

We next study the existence of square-mean almost automorphic mild solutions of Eq.

(1.1) when the functions f and g are not Lipschitz continuous. We need to assume that

f and g satisfy appropriate compactness conditions. To establish the result, we begin by

introducing the following assumptions.

(H4) The semigroup {T (t)}t≥0 is compact for t > 0.

(H5) The function f : R×L2(P,H)→ L2(P,H) satisfies the following conditions:



16 Z. H. Zhao, Y. K. Chang and J. J. Nieto

(i) f is square-mean almost automorphic and f (t, ·) is uniformly continuous in every

bounded subset K ⊂ L2(P,H) uniformly for t ∈ R.

(ii) There exist an integrable function m f : R→ [0,∞) and a continuous nondecreasing

function W f : [0,∞)→ (0,∞) such that

E‖ f (t,ϕ)‖2 ≤ m f (t)W f (E‖ϕ‖2), for all (t,ϕ) ∈ R×K.

(iii) Let {xn} ⊂ AA
(
R; L2(P,H)

)
be uniformly bounded in R and uniformly convergent

in each compact subset of R. Then { f (·, xn(·− r))} is relatively compact in BC
(
R; L2(P,H)

)
.

(H6) The function g : R×L2(P,H)→ L2(P,H) satisfies the following conditions:

(i) g is square-mean almost automorphic and g(t, ·) is uniformly continuous in every

bounded subset K′ ⊂ L2(P,H) uniformly for t ∈ R.

(ii) There exist an integrable function mg : R→ [0,∞) and a continuous nondecreasing

function Wg : [0,∞)→ (0,∞) such that

E‖g(t,ϕ)‖2 ≤ mg(t)Wg(E‖ϕ‖2), for all (t,ϕ) ∈ R×K′ .

(iii) Let {xn} ⊂ AA
(
R; L2(P,H)

)
be uniformly bounded in R and uniformly convergent

in each compact subset of R. Then {g (·, xn(·− r))} is relatively compact in BC
(
R; L2(P,H)

)
.

Theorem 3.2. Let (H1), (H4), (H5) and (H6) be satisfied. Then Eq. (1.1) admits at least

one square-mean almost automorphic mild solution on R provided that

L f = sup
t∈R

∫ t

−∞
e−δ(t−s)m f (s)ds <∞, Lg = sup

t∈R

∫ t

−∞
e−2δ(t−s)mg(s)ds <∞

and

2M2L f

δ
liminf

r→∞

W f (r)

r
+2M2Lg liminf

r→∞

Wg(r)

r
< 1.

Proof. Let the operator Λ be defined the same as in Theorem 3.1. Now, from Lemmas 2.7

and 2.9, it is clear that both F(·) = f (·, x(·− r)) and G(·) = g (·, x(·− r)) ∈ AA
(
R; L2(P,H)

)

whenever x ∈ AA
(
R; L2(P,H)

)
. Moreover, by Lemmas 3.1 and 3.2 in [14], we deduce that

Λ is continuous and maps AA
(
R; L2(P,H)

)
into itself. So Λ is well defined and continuous.

Next, we shall use the Schauder fixed point theorem to prove that Λ has a fixed point.

For the sake of convenience, we break the proof into several steps.

Step 1. Let Br = {x ∈ AA
(
R; L2(P,H)

)
: ‖x‖∞ ≤ r} for each r > 0. We prove that there

exists a number r such that Λ(Br) ⊆ Br.

Step 2. This step consists of showing that the operator Λ is completely continuous on

Br. It suffices to prove that the following statements are true.

(i) V(t) = {Λx(t) : x ∈ Br} is relatively compact in L2(P,H) for each t ∈ R.

(ii) {Λx : x ∈ Br} ⊂ AA
(
R; L2(P,H)

)
is a family of equicontinuous functions.

It follows from Step 1 and Step 2 in [14, Theorem 3.1] that the above assertions hold.

After these, we follow the same reasoning as in the proof of Theorem 3.1 in [14]. We

denote the closed convex hull of ΛBr by convΛBr. Since ΛBr ⊂ Br and Br is closed convex,

convΛBr ⊂ Br. Thus, Λ(convΛBr) ⊂ ΛBr ⊂ convΛBr. This implies that Λ is a continuous
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mapping from convΛBr to convΛBr. It is easy to verify that convΛBr has the properties

(i) and (ii). More explicitly, x(t) : x ∈ convΛBr is relatively compact in L2(P,H) for each

t ∈ R, and convΛBr ⊂ BC
(
R; L2(P,H)

)
is uniformly bounded and equicontinuous. By the

Ascoli-Arzelà theorem, the restriction of convΛBr to every compact subset K′′ ofR, namely

{x(t) : x ∈ convΛBr}x∈K′′ is relatively compact in C
(
K′′; L2(P,H)

)
. Thus, by the conditions

(H5)(iii) and (H6)(iii) we deduce that Λ : convΛBr→ convΛBr is a compact operator. So

by Schauder’s fixed point theorem, we conclude that there is a fixed point x(·) for Λ in

convΛBr. That is Eq. (1.1) has at least one square-mean almost automorphic mild solutions

x ∈ Br. This completes the proof. �

In order to investigate the solution to (1.2), we need the following assumptions:

(H7) The operators Bi : L2(P,H)→ L2(P,H) for i = 1,2, are bounded linear operators and

$ :=maxi=1,2

{
‖Bi‖L(L2(P,H))

}
.

(H8) The function f ∈ AA
(
R×L2(P,H)×L2(P,H); L2(P,H)

)
and there exists a bounded con-

tinuous function L̃ f : R→ R+ such that

E‖ f (t,ϕ,ψ)− f (t,ϕ,ψ)‖2 ≤ L̃ f (t)
(
E‖ϕ−ϕ‖2+E‖ψ−ψ‖2

)

for all t ∈ R and (ϕ,ψ), (ϕ,ψ) ∈ L2(P,H)×L2(P,H).

(H9) The function g ∈ AA
(
R×L2(P,H)×L2(P,H); L2(P,H)

)
and there exists a bounded con-

tinuous function L̃g : R→ R+ such that

E‖g(t,ϕ,ψ)−g(t,ϕ,ψ)‖2 ≤ L̃g(t)
(
E‖ϕ−ϕ‖2+E‖ψ−ψ‖2

)

for all t ∈ R and (ϕ,ψ), (ϕ,ψ) ∈ L2(P,H)×L2(P,H).

Now, we present another main result.

Theorem 3.3. Let (H1), (H7), (H8) and (H9) be satisfied. Then the problem (1.2) has a

unique square-mean almost automorphic mild solution on R whenever
√

L1($2+1) < 1,

where

L1 = M2

[
2

δ2
sup
t∈R

L̃ f (t)+
1

δ
sup
t∈R

L̃g(t)

]
. (3.4)

Proof. Let Λ : AA
(
R; L2(P,H)

)
→ AA

(
R; L2(P,H)

)
be the operator defined by

Λx(t) =

∫ t

−∞
T (t− s) f (s,B1x(s), x(s− r)) ds+

∫ t

−∞
T (t− s)g (s,B2x(s), x(s− r)) dW(s)

= Λ1x(t)+Λ2x(t),

where

Λ1x(t) =

∫ t

−∞
T (t− s) f (s,B1x(s), x(s− r)) ds,

and

Λ2x(t) =

∫ t

−∞
T (t− s)g (s,B2x(s), x(s− r)) dW(s)

for each t ∈ R.
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Now, let us prove thatΛx is well defined. First, we will show thatΛ1x(·) ∈ AA
(
R; L2(P,H)

)
.

Indeed, let x ∈ AA
(
R; L2(P,H)

)
, then s→ Bix(s) is in AA

(
R; L2(P,H)

)
as Bi ∈ L

(
L2(P,H)

)
,

i = 1,2 by Lemma 2.8. And hence, by Lemma 2.7, one can easily see that s→ x(s− r) ∈
AA

(
R; L2(P,H)

)
. In view of (H8)-(H9) and Theorem 2.12, the function s→ f (s,B1x(s), x(s− r))

is in AA
(
R; L2(P,H)

)
. Let {s′n}n∈N be an arbitrary sequence of real numbers. Since F(·) =

f (·,B1x(·), x(·− r)) ∈ AA
(
R; L2(P,H)

)
, there exists a subsequence {sn}n∈N of {s′n}n∈N and a

stochastic process F̃ such that

lim
n→∞

E‖F(t+ sn)− F̃(t)‖2 = 0 and lim
n→∞

E‖F̃(t− sn)−F(t)‖2 = 0 (3.5)

hold for each t ∈ R. Moreover, if we let (Λ̃1x)(t) =
∫ t

−∞T (t − s)F̃(s)ds, by using Cauchy-

Schwarz inequality, we have

E‖Λ1 x(t+ sn)− Λ̃1x(t)‖2

= E

∥∥∥∥∥∥

∫ t+sn

−∞
T (t+ sn − s) f (s,B1x(s), x(s− r)) ds−

∫ t

−∞
T (t− s)F̃(s)ds

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥

∫ t

−∞
T (t− s) f (s+ sn,B1x(s+ sn), x(s+ sn − r))ds−

∫ t

−∞
T (t− s)F̃(s)ds

∥∥∥∥∥∥
2

≤ E

(∫ t

−∞
‖T (t− s)[F(s+ sn)− F̃(s)]‖ds

)2

≤ M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E‖F(s+ sn )− F̃(s)‖2ds

)

≤ M2

(∫ t

−∞
e−δ(t−s)ds

)2

sup
t∈R

E‖F(t+ sn)− F̃(t)‖2

≤ M2

δ2
sup
t∈R

E‖F(t+ sn)− F̃(t)‖2.

Thus, by (3.5), we immediately obtain that

lim
n→∞

E‖Λ1x(t+ sn)− Λ̃1x(t)‖2 = 0,

for each t ∈ R. And we can show in a similar way that

lim
n→∞

E‖Λ̃1x(t− sn)−Λ1x(t)‖2 = 0,

for each t ∈ R. Thus we conclude that Λ1x(t) ∈ AA
(
R; L2(P,H)

)
.

Next, we show that Λ2x(·) is square-mean almost automorphic whenever x is square-

mean almost automorphic. Let x ∈ AA
(
R; L2(P,H)

)
, then s→ B2x(s) is in AA

(
R; L2(P,H)

)

as B2 ∈ L
(
L2(P,H)

)
. And hence, by Lemma 2.7 and Theorem 2.12, one can easily see that

s→ g (s,B2x(s), x(s− r)) is in AA
(
R; L2(P,H)

)
. Since G(·)= g (·,B2x(·), x(·− r)) ∈ AA

(
R; L2(P,H)

)
,

then for every sequence of real numbers {s′n}n∈N there exists a subsequence {sn}n∈N ⊂ {s′n}n∈N
such that for a certain stochastic process G̃

lim
n→∞

E‖G(t+ sn)− G̃(t)‖2 = 0 and lim
n→∞

E‖G̃(t− sn)−G(t)‖2 = 0 (3.6)
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hold for each t ∈ R. The next step consists of showing that Λ2x(t) ∈ AA
(
R; L2(P,H)

)
. Let

W̃(σ) :=W(σ+ sn)−W(sn) for each σ ∈ R. Note that W̃ is also a Brownian motion and has

the same distribution as W. Moreover, if we let Λ̃2x(t) =
∫ t

−∞ T (t− s)G̃(s)dW(s), then by

making a change of variables σ = s− sn to get

E‖Λ2 x(t+ sn)− Λ̃2x(t)‖2

= E

∥∥∥∥∥∥

∫ t+sn

−∞
T (t+ sn − s)g (s,B2x(s), x(s− r)) dW(s)−

∫ t

−∞
T (t− s)G̃(s)dW(s)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥

∫ t

−∞
T (t−σ)[G(σ+ sn)− G̃(σ)]dW̃(σ)

∥∥∥∥∥∥
2

.

Thus using the Ito’s isometry property of stochastic integral, we obtain that

E‖Λ2 x(t+ sn)− Λ̃2x(t)‖2

≤ E

(∫ t

−∞
‖T (t−σ)[G(σ+ sn)− G̃(σ)]‖2dσ

)

≤ M2

∫ t

−∞
e−2δ(t−σ)E‖G(σ+ sn )− G̃(σ)‖2dσ

≤ M2

2δ
sup
t∈R

E‖G(t+ sn)− G̃(t)‖2.

Thus, by (3.6), it leads to

lim
n→∞

E‖Λ2x(t+ sn)− Λ̃2x(t)‖2 = 0,

for each t ∈ R. Arguing in a similar way, we can obtain

lim
n→∞

E‖Λ̃2x(t− sn)−Λ2x(t)‖2 = 0,

for each t ∈R. Consequently,Λ2x(t) ∈ AA
(
R; L2(P,H)

)
. In view of the above, it is clear that

Λ maps AA
(
R; L2(P,H)

)
into itself.

Finally, we prove that Λ is a contraction mapping on AA
(
R; L2(P,H)

)
. To this end, for

each t ∈ R, x,y ∈ AA
(
R; L2(P,H)

)
, we see that

E‖Λx(t)−Λy(t)‖2

= E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s,B1x(s), x(s− r)) − f (s,B1y(s),y(s− r))]ds

+

∫ t

−∞
T (t− s)[g (s,B2x(s), x(s− r)) −g (s,B2y(s),y(s− r))]dW(s)

∥∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s,B1x(s), x(s− r)) − f (s,B1y(s),y(s− r))]ds

∥∥∥∥∥∥
2

+2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[g (s,B2x(s), x(s− r))−g (s,B2y(s),y(s− r))]dW(s)

∥∥∥∥∥∥
2

.
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We first evaluate the first term of the right-hand side as follows:

2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[ f (s,B1x(s), x(s− r))− f (s,B1y(s),y(s− r))]ds

∥∥∥∥∥∥
2

≤ 2M2E

(∫ t

−∞
e−δ(t−s)‖ f (s,B1x(s), x(s− r)) − f (s,B1y(s),y(s− r)) ‖ds

)2

≤ 2M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E‖ f (s,B1x(s), x(s− r)) − f (s,B1y(s),y(s− r)) ‖2ds

)

≤ 2M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s) L̃ f (s)

(
E‖B1x(s)−B1y(s)‖2 +E‖x(s− r)− y(s− r)‖2

)
ds

)

≤ 2M2 sup
t∈R

L̃ f (t)

(∫ t

−∞
e−δ(t−s)ds

)2

sup
t∈R

(
E‖B1x(t)−B1y(t)‖2+E‖x(t− r)− y(t− r)‖2

)

≤ 2M2

δ2
sup
t∈R

L̃ f (t)sup
t∈R

(
$2E‖x(t)− y(t)‖2 +E‖x(t− r)− y(t− r)‖2

)
,

by using the Cauchy-Schwarz inequality.

As to the second term, by the Ito integral, we get

2E

∥∥∥∥∥∥

∫ t

−∞
T (t− s)[g (s,B2x(s), x(s− r)) −g (s,B2y(s),y(s− r))]dW(s)

∥∥∥∥∥∥
2

≤ 2E

(∫ t

−∞
‖T (t− s)[g (s,B2x(s), x(s− r))−g (s,B2y(s),y(s− r))]‖2ds

)

≤ 2M2

∫ t

−∞
e−2δ(t−s)E‖g (s,B2x(s), x(s− r)) −g (s,B2y(s),y(s− r)) ‖2ds

≤ 2M2

∫ t

−∞
e−2δ(t−s)L̃g(s)

(
E‖B2x(s)−B2y(s)‖2 +E‖x(s− r)− y(s− r)‖2

)
ds

≤ 2M2 sup
t∈R

L̃g(t)

(∫ t

−∞
e−2δ(t−s)ds

)
sup
t∈R

(
$2E‖x(t)− y(t)‖2 +E‖x(t− r)− y(t− r)‖2

)

≤ M2

δ
sup
t∈R

L̃g(t)sup
t∈R

(
$2E‖x(t)− y(t)‖2 +E‖x(t− r)− y(t− r)‖2

)
.

Thus, by combining the above inequality together, we obtain that, for each t ∈ R,

E‖Λx(t)−Λy(t)‖2 ≤M2

[
2

δ2
sup
t∈R

L̃ f (t)+
1

δ
sup
t∈R

L̃g(t)

]
sup
t∈R

(
$2E‖x(t)− y(t)‖2 +E‖x(t− r)− y(t− r)‖2

)
,

that is,

‖Λx(t)−Λy(t)‖22 ≤ L1 sup
t∈R

(
$2E‖x(t)− y(t)‖2 +E‖x(t− r)− y(t− r)‖2

)
. (3.7)

Note that

sup
t∈R
‖x(t)− y(t)‖22 ≤

(
sup
t∈R
‖x(t)− y(t)‖2

)2

, (3.8)



Almost Automorphic Solutions to Stochastic Differential Equations 21

and (3.7) together with (3.8) gives, for each t ∈ R,

‖Λx(t)−Λy(t)‖2 ≤
√

L1($2 +1)‖x− y‖∞ .

Hence, we obtain

‖Λx−Λy‖∞ = sup
t∈R
‖Λx(t)−Λy(t)‖2 ≤

√
L1($2 +1)‖x− y‖∞ ,

which implies that Λ is a contraction by (3.4). So by the Banach contraction principle,

we conclude that there exists a unique fixed point x(·) for Λ in AA
(
R; L2(P,H)

)
, such that

Λx = x. Moreover, using the same argument as in [15, Theorem 3.1], we can see that x(t)

is the unique square-mean almost automorphic mild solution to Eq. (1.2). The proof is

complete. �

(H10) The function f :R×L2(P,H)×L2(P,H)→ L2(P,H) satisfies the following conditions:

(i) f is square-mean almost automorphic and f (t, ·, ·) is uniformly continuous in every

bounded subset K ⊂ L2(P,H)×L2(P,H) uniformly for t ∈ R.

(ii) There exist an integrable function m f : R→ [0,∞) and a continuous nondecreasing

function W f : [0,∞)→ (0,∞) such that

E‖ f (t,ϕ,ψ)‖2 ≤ m f (t)W f (E‖ϕ‖2 +E‖ψ‖2), for all (t,ϕ,ψ) ∈ R×K.

(iii) Let {xn} ⊂ AA
(
R; L2(P,H)

)
be uniformly bounded in R and uniformly conver-

gent in each compact subset of R. Then { f (·,B1xn(·), xn(·− r))} is relatively compact in

BC
(
R; L2(P,H)

)
.

(H11) The function g : R×L2(P,H)×L2(P,H)→ L2(P,H) satisfies the following conditions:

(i) g is square-mean almost automorphic and g(t, ·, ·) is uniformly continuous in every

bounded subset K′ ⊂ L2(P,H)×L2(P,H) uniformly for t ∈ R.

(ii) There exist an integrable function mg : R→ [0,∞) and a continuous nondecreasing

function Wg : [0,∞)→ (0,∞) such that

E‖g(t,ϕ,ψ)‖2 ≤ mg(t)Wg(E‖ϕ‖2 +E‖ψ‖2), for all (t,ϕ,ψ) ∈ R×K′ .

(iii) Let {xn} ⊂ AA
(
R; L2(P,H)

)
be uniformly bounded in R and uniformly conver-

gent in each compact subset of R. Then {g (·,B2xn(·), xn(·− r))} is relatively compact in

BC
(
R; L2(P,H)

)
.

Theorem 3.4. Assume that conditions (H1), (H4), (H7) and (H10)-(H11) hold. Then Eq.

(1.2) at least has a square-mean almost automorphic mild solution on R provided that

L̂ f = sup
t∈R

∫ t

−∞
e−δ(t−s)m f (s)ds <∞, L̂g = sup

t∈R

∫ t

−∞
e−2δ(t−s)mg(s)ds <∞

and

2M2L̂ f

δ
liminf

r→∞

W f [($
2
+1)r]

r
+2M2L̂g liminf

r→∞

Wg[($2
+1)r]

r
< 1.
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Proof. Let the operator Λ be defined the same as in Theorem 3.3. Then, from Lemmas

2.7-2.8 and Theorem 2.10, we can see that both F(·) = f (·,B1x(·), x(·− r)) and G(·) =
g (·,B2x(·), x(·− r)) ∈ AA

(
R; L2(P,H)

)
whenever x ∈ AA

(
R; L2(P,H)

)
. Moreover, by using

the same arguments of Lemmas 3.1 and 3.2 in [14], one can easily see that Λ is continuous

and maps AA
(
R; L2(P,H)

)
into itself. So Λ is well defined and continuous.

Next, by an argument similar to the proof of Theorem 3.1 in [14], we can obtain that

the following statements are true.

I. Let Br = {x ∈ AA
(
R; L2(P,H)

)
: ‖x‖∞ ≤ r} for each r > 0. Then there exists a number

r such that Λ(Br) ⊆ Br.

II. The operator Λ is completely continuous on Br, that is, the following statements

hold.

(i) V(t) = {Λx(t) : x ∈ Br} is relatively compact in L2(P,H) for each t ∈ R.

(ii) {Λx : x ∈ Br} ⊂ AA
(
R; L2(P,H)

)
is a family of equicontinuous functions.

Now we denote the closed convex hull of ΛBr by convΛBr. Since ΛBr ⊂ Br and Br is

closed convex, convΛBr ⊂ Br. Thus,Λ(convΛBr) ⊂ΛBr ⊂ convΛBr. This implies that Λ is

a continuous mapping from convΛBr to convΛBr. It is easy to verify that convΛBr has the

properties (i) and (ii). More explicitly, x(t) : x ∈ convΛBr is relatively compact in L2(P,H)

for each t ∈ R, and convΛBr ⊂ BC
(
R; L2(P,H)

)
is uniformly bounded and equicontinuous.

By the Ascoli-Arzelà theorem, the restriction of convΛBr to every compact subset K′′ of

R, namely {x(t) : x ∈ convΛBr}x∈K′′ is relatively compact in C
(
K′′; L2(P,H)

)
. Thus, by the

conditions (H10)(iii) and (H11)(iii) we deduce that Λ : convΛBr→ convΛBr is a compact

operator. So by Schauder’s fixed point theorem, we conclude that there is a fixed point x(·)
for Λ in convΛBr. That is Eq. (1.2) has at least one square-mean almost automorphic mild

solutions x ∈ Br. This completes the proof. �

4 Applications

In this section, we provide an example to illustrate the practical usefulness of our main

results established in the preceding section. We consider the following one-dimensional and

semilinear stochastic partial functional differential equations with the Dirichlet boundary

conditions:

du(t, x) =
∂2

∂x2
u(t, x)dt+ sin

1

2+ cos t+ cos
√

2t
[γu(t, x)+ sin(u(t, x(t−τ)))]dt

+sin
1

2+ cos t+ cos
√

3t
[ηu(t, x)+ sin (u(t, x(t−τ)))]dW(t), (4.1)

u(t,0) = u(t,1) = 0, t ∈ R, (4.2)

where (t, x) ∈ R× [0,1],τ ≥ 0 is a fixed constant, γ,β > 0, and W(t) is a two-sided standard

one-dimensional Brownian motion defined on the filtered probability space (Ω,F ,P,Ft).

Set X = L2
(
P,L2[0,1]

)
and define

D(A) := {u ∈C1[0,1] : u′′(ξ) ∈X,u′(ξ) ∈X is absolutely continuous on [0,1],u(0)= u(1)= 0},

Au = ∆u = u′′, ∀u ∈ D(A).
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Then, A generates a C0-semigroup {T (t)}t≥0 on X given by

(T (t)x)(ξ) =

∞∑

n=1

e−n2π2t〈x,en〉L2 en(ξ),

where en(ξ) =
√

2sin(nπξ) for n = 1,2, · · · . Moreover, ‖T (t)‖ ≤ e−π
2 t for all t ≥ 0.

It is easy to see that {T (t)}t≥0 satisfies (H1) with M = 1 and δ = π2. Let B1 = γId and

B2 = ηId. Under the previous conditions, we can define the functions f ,g : R×X×X→ X
by

f (t,B1ϕ,ϕt)(x) = sin
1

2+ cos t+ cos
√

2t
[γϕ(x)+ sin(ϕ(xt))],

g(t,B2ϕ,ϕt)(x) = sin
1

2+ cos t+ cos
√

3t
[ηϕ(x)+ sin(ϕ(xt))],

which permits to transform the system (4.1)-(4.2) into the abstract system (1.2). Clearly,

both f and g ∈ AA(R×X×X,X), and satisfy the Lipschitz conditions with L f = 2 and Lg = 4,

respectively. Hence, choosing γ and η such that

√
4

π4
(γ2+1)+

4

π2
(η2 +1) < 1

assumption of Theorem 3.2 is satisfied and the problem (4.1)-(4.2) has a unique mild solu-

tion in AA(X).
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