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Abstract

In this paper we study the Massera problem for the existence of a periodic mild so-
lution of a class of non-densely non-autonomous semilinggardntial equations with
delay. We assume that the linear part satisfies the conditions introduced by Tanaka.
First, we prove that the existence of a periodic solution for non-autonomous inho-
mogeneous linear fierential equations with delay is equivalent to the existence of a
bounded solution on the right half real line. Next, we undertake the analysis of the
existence of periodic solutions in the semilinear case. To this end, we use a fixed point
Theorem concerning set-valued maps. To illustrate the obtained results, we consider a
periodic reaction dfusion equation with delay.
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1 Introduction

This work is concerned with the non-autonomousaiiential equation with delay

dt
ut) =e¢t—s), s-r<t<s

{d_“ =AQu) +LOuw+F(tw), t>s (1.1)

in a Banach space(||-|). The family of closed linear operatofg-) is r-periodic satisfying
the hyperbolic conditiongAl)-(A3) in Section2 and with non necessarily dense domain.
We taker to be a non negative real constant. We der@te= C([-r,0], X) the space of
continuous functions from-r, 0] to X endowed with the sup-norify|| = gel?’l?.)glntp(@)ﬂ.
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The history functiony; is defined byu(6) := u(t + 6) for 8 € [-r,0]. L(-) is a family of
bounded linear operators #(C,, X) which is r-periodic and strongly continuous: is a
T-periodic continuous function fro x C, into X with respect to the first variable. In the
autonomous case whe#g¢t) = A, Equation (1.1) has been the subject of various quantitative
and qualitative studies, among others, we cite [1, 4, 5, 6, 12, 14, 16, 32]. The present pa-
per is devoted to deal with the well-posedness and the existence of periodic mild solutions
to the non-autonomous equation (1.1). This work is a continuation of the works done in
[2, 6, 29].

In [17] the author initiated a study on the evolution family solutionhgperboliclinear
evolution equations of the form

du
rril At)u(t), t=s 1.2)
u(s) =us,

in a Banach spack. Some fundamental and basic results about the well posedness and dy-
namical behavior of equation (1.2) were established under the so stdleitity condition

((A2) in Section 2), introduced by Kato in [17]. This has been followed by various attempts

to extend the Kato’s stability condition to a more generic context. Tanaka, in [29], proposed
an explicit stability condition with finite dierence approximations in a non-dense domain
case. Other attempts, see [6, 22, 23, 25, 28, 29], have analysed the well posedness of non-
autonomous evolution equations inffdrent contexts. Whek = 0, [6, 21] investigated

the well-posedness of the linear part of equation (1.1). Moreover, a variation of constants
formula is established for densely inhomogeneous linear delaykstatitial equations of

the form q
d_ltj = A()U(t) + Lt)ug + F(t), t=s

ut) =¢(t—9), s-r<t<s

(1.3)

Among the important questions in the qualitative study of dynamical systems are on the
existence of bounded solutions and the existence of periodic solutions. The periodicity in
evolution equations has a great theoretical and practical significance, see e.g [2, 4, 7, 12,
13, 15, 19, 31, 32]. Under the exponential dichotomy hypothesis and using a variation of
constants formula, the authors in [6, 21] proved the existence and uniqueness of bounded
(respectively periodic) solution provided thhis bounded (respectively periodic). When

the exponential dichotomy assumption fails, the problem becomes complicated. To rem-
edy this defect, we consider other alternatives such as the so bédleskra problenji20].

Initially, it consists to prove the existence of periodic solutions of the ordindfgréntial

equation%J = Qu(t) + f(t), provided that it has a bounded solution. Laterlassera prob-

lemhas been widely investigated in general cases and in various directions. For instance, in
[4,8,9,10,12, 13, 14, 18, 19, 24], the authors proved the existence of periodic solutions for
different evolution equations through the existence of a bounded solution. The method used
in these works is based on the existence of a fixed point of the associated Eagirajar

In [12], by using Horn’s fixed point Theorem, the authors derived the existence of periodic
solutions in the case of the existence of bounded and the ultimate bounded solutions.
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In this paper, we will extend the Massera problem for equation (1.3) and then for the equa-
tion (1.1). We assume that the common domRif A(t) is not necessarily dense K

Using similar techniques as in [22, 29], we give a variation constant formula for Equation
(1.1). Next, we construct the PoinéamapP for equation (1.3) given by

Py :=u.(:, ¢, f),

whereu(, ¢, f) is the uniqgue mild solution of (1.3) through the initial conditign Using
Chow-Hale fixed point Theorem, we prove tlahas a fixed point in the phase spdge

which generates &periodic mild solution of (1.3). Afterwards, basing on the established
results and using a fixed point Theorem for set-valued maps, we analyze the existence of
a r-periodic mild solution for the semilinear equation (1.1). At the end, we discuss an
example as an illustration to the given theoretical results. The obtained results extend the
resultsin [4, 8, 12, 14, 18, 20].

2 Preliminary results

Let (A(t), D(A(t)))O<t<T be a family of linear operators on a Banach sp&catisfying the

following assumptions :

(A1) There exists a Banach spabe:= D(A(t)) independent of and there are positive
constantg; andc, such that

ciliXlo < IXI+IIAMXI < coliXlp, x€D, 0<t<T.

(A2) The family (A(t))o<t<T IS Stable that means there are constats 1 andw € R such
that @, «) c p(A(t)) fort€[0,T] and

k
I [RAAEG)I < M2 -w)™
i=1

for 1> w and every finite sequen«{:r;}'j‘zl withO<t;<th <..<ty<Tandk=12---.
(A3) The mapping — A(t)x is continuously dierentiable inX for all x € D.

There are several conditions implying the well-posedness of the evolution equation (1.2).
In most cases, the authors assumeg.r D(A(t)) to be dense irX. Among others, we
recall here a "classical” result, which is referred to Kato [17] and Tanabe [30].

Theorem 2.1. Let (A(t), D(A(t)))0<t<T be a family of linear operators on a Banach space
X satisfying(A1) — (A3) such that D is dense in X. Then, the equatidr®) is well-posed
and the family of operators(A generates an evolution fami(J (t, 9))o<s<t<T- Moreover,
for x e D, the map > U(t, s)x is the unique continuous function which solyeR).

In [27], Tanaka showed that the density of the domBirnis not needed for the well-
posedness of the equation (1.2).
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Theorem 2.2.[27] Let (A('[),D(A(t)))0<t<T be a family of linear operators on a Banach
space X satisfying the conditio(1)-(A3). Then, there exists an evolution fan(y(t, S))o<s<t<T

on D satisfying :
a) U(t,s)D(s) c D(t) forall 0<s<t<T, where 0Or) is defined by
D(t) := {xe D : A(t)x € D},
b) for all xe D(s) and t> s, the function t» U(t, s)x is continuously dferentiable,
d
aU(t, s)x=AM)U(t, 9X,

and o
d_sU (t,9)x = -U(t, 9)A(S)X.

Assuming the three condition81)-(A3), Da Prato et al. [26] and Tanaka [29] have studied
the well-posedness of the following equation

du
{a = Au(t) + f(t), t=0 2.1)
u(0) =uo.

They gave an explicit formula for the evolution family t, S))o<s<t<T defined orD. Indeed,
they introduced the following family of operators definedXby

[4]
Uit9= || 0-2a00)
i=[2]+1
for(t,9) e Q:={(t,s):0<s<t<T}h
Lemma 2.3. [22, 29] Under the notation above, the following properties hold.

i) ForxeD,A>0and0<s<r<t<T,onehas

U, (t,t)x = x and U(t, s)x = U, (t, U (r, 9.

ii) For x € D, the limit
U(t,s)x= ﬂlin& U,(t, 9)x

exists in X uniformly fo(t, s) € Q.

i) Forx eDand0O<s<r<t<T,onehas

U(t,t)x=xand Ut,s)x = U(t,r)U(r, s)x.

iv) For every xe D, the mappindt, s) — U(t, s)x is continuous fronf into X.
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vi) There exist constants M 1, w € R such that for xe D and (t,s) € Q, one has
IU(t, 9xI| < Me*=9)x].

In [29], the mild solutions of the evolution equation (2.1) is given by a "generalized” varia-
tion of constants formula.

Theorem 2.4.[29] For every fe L1([0,T], X), the limit

v(D) = lim_ jo‘tU,l(t,(r)f(O')dO'

exists uniformly for € [0,T] and v is a continuous function d0,T]. Furthermore, for
every i € D the function given by the following formula

t
u(t) == U(t.Ojuo+ lim fo Ua(t, o) f(o)dor (2.2)

is well defined, and is known as the mild solution of equatibh)on [0, T].

3 Well-posedness of the non-densely non-autonomoudfeiren-
tial equation with delay

The "generalized” variation of constants formula (2.2) enables us to extend the results of
[29] to the equation (1.1). For this, we adopt the following definition.

Definition 3.1. A continuous functioru : [-r,+o0) — X is called a mild solution of the
equation (1.1) if it satisfies the following

t
U(t,0)¢(0)+ ﬂli_m}(yﬁ U, (t,0)[L(o)us + F(o,uy)]do,  t>0,

ey, -r<t<oO.

u(t) == (3.1)

For the existence of mild solutions of equation (1.1), we impose the Lipschitz continuous
assumption:

(A4) there existdVl > 0 such that for, ¢ € C; andt > 0 we have

IF (L) - F(t,¢)ll < Mllg - &ll.

By using a well known extension of the Banach contraction principle, we show the follow-
ing result.

Theorem 3.2. Assume thafA1)-(A4) hold andg e C; such thatp(0) € D. Then there exists
a unique mild solution {4, ¢, f) onR* for the equation(1.1). Moreover, the mild solution
depends continuously on the initial data

Proof. Let T > 0 and the spacB, = {ue C([-r,T], X) : up = ¢} endowed with the sup-
norm||-||. Itis clear thatS, is closed inC([-r, T], X).
Let the mappind defined orS, by

U(t,0)p(0)+ lim ft Ut o0)[L(0)us + F(o,uUy)]do, 0<t<T,
1—0* Jo

), -r<t<o0.

(Ku)(t) := (3.2)
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We haveKu e C([-r,T], X). For the simplicity, we seiti(-,¢) := L(-)¢ + F(-,¢). Hence, for
—-r<t<T,c=MMe’T andu,veS,

t
GO O < im0l - v

t
< cf lUy — Vr||do
0

<ctlu—v.

Hence, it follows that -

c
IK"u-K"V|| < lu—v. (3.3)

n!

For n large enough-‘(%”) < 1 and by a well known extension of the Banach contraction
principle, K has a unique fixed pointe C([-r,T], X). This fixed point is a mild solution

of the equation (1.1).

The uniqueness of the solution and its dependance continuity on the initial data are deduced
from the following argument. Lai(-,i/) be a mild solution of (1.1) with the initial daia

Then, for0<t < T andM; = Me*T, one has

It )~ ut )l < 1U (L 04(0)~ U . O O)
t
im0 ) - )k

t
< M1II¢—wII+0f0 lUs- (-, ) — Uy (-40) | do,
Hence,

llu(t +6,0) —u(t+6,y)ll
lot+0)—y(t+06)]|, -r<t+6<0,

t
Mallo— il + C fo o (+¢) = U ()ldor,  O<t+0<T.

Thus, by the Gronwall’s inequality we deduce that

lIue(-, ) — U (-, )l < max(L M)l -y (3.9

which yields both the uniquenesswhnd the continuity of the map— u(-,) uniformly
forte[0,T]. O

4 Periodic solutions of the inhomogeneous linear equation

In what follows, we assume tha{-), L(-) and f (-) arer-periodic, and the assumptionsl)-
(A3) hold for T = 7. As an immediate consequenti(, s) is ar-periodic evolution family
defined fort > sin R. A functionu defined orR is said to be a mild solution of equation

dt
ut) =et), -r<t<o.

{d_” = A()u(t) + L(t)u + f(t), t>0 (4.1)
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if it satisfies the following formula

t
u(t) = U(t, s)u(s)+llin}) f U (t,0) [L(0)us + f(0)]do, t>s
—0t s
We state now the following result which connects bounded and periodic solutions for the
equation (4.1).

Theorem 4.1. Assume tha{A1)-(A3) hold and Ut,s) is a compact operator ol for
t > s> 0. Then, the following assertions are equivalent:

i) The equatior(4.1) has a bounded mild solution d&i*.
ii) The equation(4.1) has ar-periodic mild solution.

For the proof of Theorem 4.1, we use Chow-Hale fixed point Theorem for linfGaea
maps, presented in the following lemma.

Lemma 4.2. [9] Let X be a Banach space,gP X — X be a continuous linear operator
and ye X. Consider the operator PX — X defined by Px Pox+Y.

Suppose that there existg & X such thaf{P"xp, ne N} is a relatively compact set in X.
Then P has a fixed point in X.

We need first to prove the following lemma.

Lemma 4.3. Let v be a bounded mild solution of equati@hl). Then, v is a uniformly
continuous function with relatively compact rangt), t > 0} in X. Furthermore, the set
{wv, t > 0} is relatively compact in €

Proof. Lete > 0, one has
{v(t), t>0} ={v(t), 0<t<elufvt), t>¢}.
Sincev is continuous, then the first set on the right hand side is relatively compXct in

For simplicity, we seG(t,¢) = L(t)p + f(t). Fort > g, we have

V() = Ut OMO) + lim f Ut 9G(s vo)ds
— 0
=U(L0(0)+ lim f t_EU/l(t,S)G(s,vs)ds+llim0+ f t
— 0 —

Ua(t. 5)G(s vs)ds

t—&
:U(t,t—s)[U(t—s,O)v(0)+AIi_rQ)+f(; U,(t—g,9G(s vs)ds

t
+ lim f U,(t, 9)G(s,vs)ds
A1—0* t

—e t
=U(Lt-2Ut-2)+ lim f U, (t, 9G(s vo)ds
—0" Jt-e

Firstly, we show that the sé€ := {U(t,t—&)v(t—¢), t > &} is relatively compact irk. To
this end, let ¥)n be a sequence i, then there exists a sequent@{ with valuest, > &
such that

Yn = U(th, th — e)v(th — &).
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So, there exits a uniqug, € N such that :t, = g,7+r,+ e with 0 <r, < 7. Using the
r-periodicity of (U(t, 9))s, We get

yn = U(rn + 8, rn)V(an+ rn)

Since (n)n is a bounded sequence in {J) then there exists a subsequencg) which
converges tap € [0,7]. Since the evolution family(t, s)) <0 iS compact, we get that
(U(t, 9)=s is continuous with respect to the operator norm. Hence,

I(Iim IU(rnk+&,rn) —U(ro+&,ro)l = 0. (4.2)

Sincev is a bounded mild solution of (4.1) atdlrg + £,rg) is compact, then there exists a
subsequence of{ )x which we denote similarlyrg, )« such that the sequen@é(ro + &, o) V(O™ + I'nk))x
converges ty* in X, and we write

I(Iim U(ro+&,ro)V(Qnet + k) = Y- (4.3)
Now, we show that
kli—r>noo U(rnk+ & MidV(Qnk7 + ) = Y.
We have,
U (Fok + &, M V(Onk + k) = Y Il S U (i + &€, i) V(Ong T + k) = U (Fo + &, 1o) V(O T + I'nk)
+||U(ro + &, ro)V(Qnkt + i) = Y'll

<|IU(rnk + &, k) — U(ro+ &, 1) l1IV(Qni + Ml
+[|U(ro+ &, ro)V(Qnkt + nk) = Y'lI-

From (4.2), (4.3) and the boundedness of the mild solutiowe conclude that the set
{Ut,t—e)v(t—¢g), t> &} is relatively compact irK. Secondly, from the boundedness®f
there exists a positive constansuch that

< cae.

t
Jm [ s)G(svs)d%

—&
Hence{v(t), t > ¢} is relatively compact irX. Consequently, the sgi(t), t > 0} is relatively
compact inX. To show the uniform continuity of the mild solutianLett > s> 0, one has

v(t) = v(s) = (U(t,0)-U(s,0))v(0)+ lim ft U, (t,0)G(o, Vy)do
1—0" Jo
- Jim [ Ui 6 v
= (U(t,9) - NU(s0(0)+ (U(t,9)—1) lim fSU,l(S, 0)G(o,Vy)do
1—0*" Jo
t
+ /lirpm j; U, (t, 0)G(o, v, )do

=(U(t, 9 -v(s) + Ali_r)nm L t U,(t,0)G(o, v, )do.
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Since the sefv(t), t > 0} is relatively compact irX, then

im (Ut s)-Dv(s)ll =0.

I
t—

Using the boundednesswand the boundedness@f there exists a positive constant 0
such that

Hﬁli_rgﬁ fs tU A(t,0)G(0, vy )do|| < c(t—9).
Then,

t—lisgoll/lm+ Lt U,(t,0)F (o, v, )dol| = 0.
Therefore,

lim ||v(t)—v(s)|| = 0.
t—ts;O

Similarly, we show
mOIIV(t) -Vv(9)ll=0.

li
t-s—
t<s

Thus, v is uniformly continuous. In particular, the set of history function t > 0} is
equicontinuous. Together with the relative compactness of the rangbypfrzeka-Ascoli
Theorem, we obtain that;, t > 0} is relatively compact ir,. o

Proof of Theorem 4.1We define the Poincarmap on the phase spaCg:= {¢ € C; :
¢(0) € D} by

P(‘p) =Ur ("90’ f)’
whereu(., ¢, f) refers to the mild solution of (4.1) through The variation of constants
formula (3.1) allows to decompogemap as
Py =u.(-,¢,0)+ U, (-,0, f) := Pop + ¢,

whereu; (-, ¢, 0) is the mild solution of (4.1) withf = 0 andu, (-,0, f) is the mild solution
of (4.1) with o = 0. Letv be a bounded solution of (4.1) @& with vo = ¢. Then the
uniqueness of the solution of (4.1) implies that

P"% = Vn(,, f) for neN.

By Lemma 4.3, the set
{P"@, ne N} = {Vn (., f), ne N}

is relatively compact irfC,. From Lemma 4.2, we conclude that the mappilgas a fixed
point inC;. Hence, the equation (4.1) has-@eriodic mild solutiono
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5 Periodic solutions of the semilinear equation

We consider the semilinear equation with delay

du_

o = ADUO + LOU+FLu). t20. (5.1)

We denote byB, the space of-periodic continuous functions froi into X endowed with
the uniform norm topology. To get the aim of this section, we give some definitions and a
fixed point Theorem for set-valued maps.

Definition 5.1. [33] Let ' : M — 2M be a multivalued map, wherél is a subset of a
Banach spackg and 2/ is the power set o/.

i) ForD c M, the inverseI' (D) is the set of allk € M such thal(x) N D # 0.
i) The maprI is called upper semi continuouslif(D) is closed for all close® c M.

Theorem 5.2.[33] LetT": M — 2M be a multivalued map, where M is a nonempty convex
set in a Banach space E such that:

i) the sefl'(x) is nonempty, closed and convex for al ¥,
ii) the setl’'(M) is relatively compactin E,
iii) the mapI is upper semi continuous.

ThenI has a fixed point in the sense that there existak such that » I'(x).
Then, we come to the aim of this section,

Theorem 5.3. Assume thafA1)-(A4) hold, U(t, s) is a compact operator ob fort > s> 0
and there exists a positive constarguch that for every functiongS,, :={v € B : |Iv|| < p},
the equation
du
i
has ar-periodic mild solutionin §. Then, the equatiofb.1) has ar-periodic mild solution.

Aut) + Lu + F(t,yy), t=0 (5.2)

Proof. Letl': S, — 2% be the mapping defined fgre S, by

I(y) = {u €S, u(t) = U(tO)u(0)+ lim fo t Ua(t,o)[L(0)uo + F (0, Yo)]dor, t> o}.

We show that the mappirgsatisfies the condition$, ii) andiii) of Theorem 5.2.
i) By assumption]'(y) is nonempty for aly € S,. Letye S,,uz, up e I'(y) anda € [0, 1].
Thenaup + (1 - a)up € T'(y), which implies thaf'(y) is convex. From the boundedness of
the linear operatok and @4) we deduce thdt(y) is a closed set.
i) Using Arzeb-Ascoli Theorem, we show th&(S,) is relatively compact irB,. To this
end, consider the functions I(S,) on [0, 7] with length the periodr. Let 0<t <7 and
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&> 0 such that > &. We prove that the sgti(t), ue I'(S,)} is relatively compact irX. For
ueI(S,), there existy € S, such that

t—&
u(t) = U(tL.0u(0) + lim_ fo U, (t, o) [L(0) Uy + F(0, Yy )do]

t
+ lim ft Ua(t, ) [L(@) e + F (0, Yo)]dor

= U(t,0)u(0) + U(t,t—.s)/llil’rg)+ ft_EU/l(t—E,O')[L((T)UG--F F(o,y,)]do
- 0

t
+ lim_ ft U, (6 o)L (@)U + F (0 y,)]dor

—&

From the compactness of the operaidt, 0) for 0< t < 7, we deduce that the sgd (t,0)u(0), ue
I'(S,)} is relatively compact inX. Moreover, sincel(t,t — &) is a compact operatot,

is a bounded linear operator and the oper&matisfies A4), in particularF transforms
bounded sets into bounded sets, then we deduce that the subset

t—&
{U(t,t ) Llirrz) f U,(t—¢,0)[L(0)us + F(O’,yo-)]dO'] ,ue F(Sp)}
—0* 0
is relatively compact irX. On the other hand, there exists a positive constasuch that

< ae.

{
lim f U.(t, o)[L(o)us + F(o,Ys)]do
t

A—0" Ji_g

sup
uer(s,)

Thus{u(t), ue F(Sp)} is relatively compact irX for t € (0,7]. Now, from the periodicity
of u(-), the subse{u(O), ue I“(Sp)} is also relatively compact iiX. Consequently, the set

{u(t), ue F(Sp)} is relatively compact iX for t € [0, 7]. To conclude, we prove the equicon-
tinuity of I'(S,,). Lettg € [0,7) andtp <t < 7. Then,
(U(t.to)-1)

to
U0 - u(toll < Utto,000)+ fim | “Uatto. L+ F(cf,ya)]dff”‘

+

t
/l”—r]>10+ft; U/l(t’a')[L(O-)ua' + F(O’, ya')]do-H

t
<UL - Dutol + | im [ uﬁ(t,cr)[L(cr)uﬁF(ay@-)]daH.

Since{u(to), ueT(S,)} is relatively compact irX, then

lim sup)||(U(t,t0) — Du(to)ll = 0.

t—t
o Ouel'(S,

Using the boundedness affto) in I'(y) independently frony € S, the assumptionA4) and
the boundedness &f there exists a positive constarguch that

t
H)Iim0 f U.a(t,o)[L(0)us + F(o,Ys)]do|| < c(t—to) uniformly ony € S,,.
—0t to
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So,

lim sup |Ju(t) —u(to)l| = 0.

t—t
o uer(s,)

Similarly, forty € (0,7], we can prove that

im SUD)IIU('[) —U(to)ll = 0.

I
t—t
t<t00 uel’(S,

We deduce then th&i(S,) is relatively compact irB..

iii) To prove thaf" is upper semi continuous, we show firstly tias closed.

Let (y")n=0 and €")n-0 be sequences respectively ®y andI'(S,) such that fom > O,
2" eI'(y") with y" — yand z' — zasn — +. Then,

2(t) = U(t.0)2(0)+ lim f Ut o)L0)2, + F(oy!)]der t2 0.
1—0* Jo

Using the Lipschitz assumption &¢f, the boundedness af(-) and the boundedness of
(U(t,9) independently oft, we obtain by lettingn — +oo, that

t
2t) = U(t.0)2(0)+ lim fo Ui(t, ) [L(0)zr + F (o, Yo)]dor, t> 0.

Hencez € I'(y) which implies thafl" is closed. Now, leD be a closed set i§,, and take

a sequenceuf)nso in I (D) such thatu, — u, asn — +co. Then there existy, € D
such thaty, € I'(un). SinceI(S,) is relatively compact, thus there exists a subsequence
(Ynk Of (Yn)n such thaty, — y, ask — +oo. SinceT is closed, thery e I'(u) andu €
I'-1(D). Consequently is upper semi continuous.

All assumptions of Theorem 5.2 are satisfied. Hence, there exisg, such thau e I'(u).
Which implies the existence ofmaperiodic mild solution of equation (5.1). From Theorem
4.1, to prove that (5.2) hasraperiodic mild solution irS,, it suffices to show that (5.2) has

a mild solution which is bounded hy

Corollary 5.4. Assume thafA1)-(A4) hold and Ut,s) is a compact operator ol for
t> s> 0. If there exists a positive constgmsuch that for any ¥ S, = {v € B : || < p},
the equation(5.2) has a mild solution that is bounded pythen the equatiorf5.1) has a
7-periodic mild solution orR*.

Proof. Lety € S, andv be a bounded mild solution of (5.2) witty = ¢. Following
the proof of [15T heoren®.5], the Poincag mapP has a fixed point which belongs to
Co{P"g, n> 0}, whereCo denotes the closure of the convex hull. kebe the fixed point
of Pandv(.,y,F(.,y.)) be the associated mild solution of (5.2) throughBYy virtue of the
linearity of (U(t, 9))w=s-0 and ((t))0 together with the continuity dependance on the initial
data, we deduce that the mild solutief ¢, F(-,y.)) is also bounded by.
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6 Application

In order to illustrate the previous results, we consider the non-autonomous pdféiegiah
tial equation with delay

2
Z—\t/ (t,x) = 6(t)§7\2/(t, X) + B(E)V(t, X) + b ()v(t —r, X) + ba(t)h(v(t -1, X))

+0(t,x), t>0,xe [0,n], (6.1)
v(t,0)=v(t,7)=0, t>0,
v(0,X) = ¢(0,X),0 € [-r,0],x € [0, 7],

with 6(-) is ar-periodic andC1-positive function inR*, with 6g := tir}g 6(t) > 0, the functions
(= +
B,b1,bp i R — R arer- periodic continuoud) : R — R is continuous such that

lh(x)| < kx|, xeR. (6.2)

g:R* x[0,7] — R is a continuous functiong-periodic int. The functiong : [-r,0] x
[0,7] — R is continuous. LeK := C([0,n],R) andA be the Laplacien operator on,|f]
with domain

D :={ze C%([0,],R) : Z0) = z(r) = O}.

By [25], A satisfies the following conditions :
(0.4) < p(A), IRA A <7, 450 (6.3)

Let (A(t))i=0 be the family of operators defined B\t)z = §(t)A with domainD(A(t)) = D.
It is known that 1 A
50 a0’

Using (6.3), we deduce that for evety- 0, A € p(A(t)) and||R(1, A(D))|| < % Then,

R(1,A(t)) = A).

1
SF ,h << <t

| [RaLAG)
i=1

Hence, the operatdX(-) satisfies the assumptionsX)-(A3).
Moreover,

D ={ze C([0,n],R) : 2(0) = z(n) = 0} # X.
By [3] the partAq of A in D given by

{D(AO):{zeD:AzeB} (6.4)

AoZ= Az,
generates an immediately compact semigraift)):=o on D such that

ITo®) <€, t>0. (6.5)
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Thus, the parfg(-) of A() in D generates an evolution familY(t, s))=s>0 on D which is
given by

t
U(t,s) = To(f §(r)dr), t>s>0,
S
Therefore, the evolution familfU (t, s)) s is immediately compact. By (6.5), one has
Ut 9) < et t>s>0. (6.6)

LetL, F:RxC([-r,0],X) — X be defined, fot € R* andy € C([—r,0], X), by

(LOY)(X) =BOY(0)(X) + b1 (t)y(-r)(x), x€[0,7] (6.7)
(F(t.¥)(X) = b2(t)h(¥(-r)(x¥) +9(t. x), x € [0, 7], (6.8)
e((¥) = ¢(t.x), xe[0,7]. (6.9)

(L(") is a family of bounded linear operators frd@{[-r,0], X) to X, andF satisfies the
assumption A4). Using the above notations and s&t)(x) := v(t, x), the equation (6.1)
takes the abstract form

du
i Au®) + L)ug + F(t,u), t=0 (6.10)
ut) =), -r<t<o.
Proposition 6.1. Assume that there existssqmax0, 1 - o}, 1) such that
IB()]+ by (t)] + |b2(t)k < 1-d, fort € [0, 7]. (6.11)
Then, (6.10) has a-periodic mild solution.
m+d
Proof. Let m:=max|g(t,X)|; X< [0,x], t € [0,7]} andp := ————. Hence,
50 -1+d
m-—p(d—1) = pdo—d. (6.12)

We claim that ify is ar-periodic continuous function such thpt| < p, then for ally with
llgll < p, the solutioru of

du
i Au®) + LOu + F(t,yy), t=>0 (6.13)
ut) =e¢), -r<t<o,
satisfiegu(t)|| < p, for allt > 0. Indeed, let
to = inf{t > 0 : [lu(t)]| > p}. (6.14)

If to < o0, by continuity, we geliu(to)|| = p. By using the generalized variation of constants
formula, we have

o
u(to) = U(to, 0)p(0)+ lim f U,(to,9)[L(Jus+ F(s,ys)]ds t=>0.
1—0*" Jo
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Using (6.5) and the integral representation of the resolvent [11], we deduce that

(=1 +00) € p(Ao). IR A0l < —. A>-1, (6.15)

and

R(A, Ao(t)ll < t>0. 6.16

[ (’AO())”_/1+60’ > (6.16)
For A > 0 andx € D, we have

[9] [9] 1
_ _ H -1, _ -1/~ : -1
UA(to,s)x_.l_[ (I - AAGD) x__]_[ A4 = Ag(i)
i=[3]+1 i=[3]+1
Using (6.16), one has
(9] 1
Va9l =11 [ | 275 - Aot
i=[3]+1
1\
<
_(l+/150)
1 tL;S+l
<
_(l+/l5o)
In(L+ SoA)
< —5o(tg — ) ————~].
_1+/160eXp[ o(to—9) 5ol ]

Hence,

o

to
| .
Iim, [ Uit 9dsi< fim [ 71,0 9lds

o 1 IN(1+ o)
< lim exp[-do(to— )————]ds
_a—>o+j(; 1+ 60 Pl=d0(to—9) ol |
Thus, by Lebesgue’s Theorem we deduce that

o 1
lim lUa(to, S)llds< —(1— e o) (6.17)
1—0* Jo 0

50
By (6.6)-(6.8) and (6.17), we get that

oot L L .
IuCto)l < p&™ + =<(B1 + Ibal +Ibglko + m(1.- €7°°%).
From (6.11) and (6.12), we obtain

1
luto)l| < pe™0% + 5 (L -d)p+mi(1- g 0olo)
0
1
< pe—éoto + 6_(p60 _ d)(l— e—50t0)
0

d
<p-5 (1-e™),
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which gives thatju(to)|| < p. This contradicts the fact thég < co. Consequentlyju(t)|| < p
for all t > 0, and by Corollary 5.4 the equation (6.10) haseriodic mild solution inS,.
We deduce that Equation (6.1) has-periodic mild solution. |
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