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Volume 15, Number 1, pp. 25–42 (2013)

Periodic Solutions of Non-densely Non-autonomous
Differential Equations with Delay

Thami Akrid ∗, Lahcen Maniar †, Aziz Ouhinou ‡

Laboratory of Mathematics and Population Dynamics
UMMISCO (IRD-UPMC),

Cadi Ayyad University, Faculty of Sciences Semlalia,
Marrakesh 40000, Morocco

Abstract

In this paper we study the Massera problem for the existence of a periodic mild so-
lution of a class of non-densely non-autonomous semilinear differential equations with
delay. We assume that the linear part satisfies the conditions introduced by Tanaka.
First, we prove that the existence of a periodic solution for non-autonomous inho-
mogeneous linear differential equations with delay is equivalent to the existence of a
bounded solution on the right half real line. Next, we undertake the analysis of the
existence of periodic solutions in the semilinear case. To this end, we use a fixed point
Theorem concerning set-valued maps. To illustrate the obtained results, we consider a
periodic reaction diffusion equation with delay.
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1 Introduction

This work is concerned with the non-autonomous differential equation with delay





du
dt

= A(t)u(t)+L(t)ut +F(t,ut), t ≥ s

u(t) = ϕ(t− s), s− r ≤ t ≤ s,
(1.1)

in a Banach space (X,‖ ∙‖). The family of closed linear operatorsA(∙) is τ-periodic satisfying
thehyperbolic conditions(A1)-(A3) in Section2 and with non necessarily dense domain.
We taker to be a non negative real constant. We denoteCr := C([−r,0], X) the space of
continuous functions from [−r, 0] to X endowed with the sup-norm‖ϕ‖ = max

θ∈[−r, 0]
‖ϕ(θ)‖.
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The history functionut is defined byut(θ) := u(t + θ) for θ ∈ [−r,0]. L(∙) is a family of
bounded linear operators inL(Cr ,X) which is τ-periodic and strongly continuous.F is a
τ-periodic continuous function fromR×Cr into X with respect to the first variable. In the
autonomous case whereA(t)= A, Equation (1.1) has been the subject of various quantitative
and qualitative studies, among others, we cite [1, 4, 5, 6, 12, 14, 16, 32]. The present pa-
per is devoted to deal with the well-posedness and the existence of periodic mild solutions
to the non-autonomous equation (1.1). This work is a continuation of the works done in
[2, 6, 29].

In [17] the author initiated a study on the evolution family solution ofhyperbolic linear
evolution equations of the form





du
dt

= A(t)u(t), t ≥ s

u(s) = us,
(1.2)

in a Banach spaceX. Some fundamental and basic results about the well posedness and dy-
namical behavior of equation (1.2) were established under the so calledstability condition,
((A2) in Section 2), introduced by Kato in [17]. This has been followed by various attempts
to extend the Kato’s stability condition to a more generic context. Tanaka, in [29], proposed
an explicit stability condition with finite difference approximations in a non-dense domain
case. Other attempts, see [6, 22, 23, 25, 28, 29], have analysed the well posedness of non-
autonomous evolution equations in different contexts. WhenF = 0, [6, 21] investigated
the well-posedness of the linear part of equation (1.1). Moreover, a variation of constants
formula is established for densely inhomogeneous linear delayed differential equations of
the form 




du
dt

= A(t)u(t)+L(t)ut + f (t), t ≥ s

u(t) = ϕ(t− s), s− r ≤ t ≤ s.
(1.3)

Among the important questions in the qualitative study of dynamical systems are on the
existence of bounded solutions and the existence of periodic solutions. The periodicity in
evolution equations has a great theoretical and practical significance, see e.g [2, 4, 7, 12,
13, 15, 19, 31, 32]. Under the exponential dichotomy hypothesis and using a variation of
constants formula, the authors in [6, 21] proved the existence and uniqueness of bounded
(respectively periodic) solution provided thatf is bounded (respectively periodic). When
the exponential dichotomy assumption fails, the problem becomes complicated. To rem-
edy this defect, we consider other alternatives such as the so calledMassera problem[20].
Initially, it consists to prove the existence of periodic solutions of the ordinary differential

equation
du
dt

= Qu(t)+ f (t), provided that it has a bounded solution. Later on,Massera prob-

lemhas been widely investigated in general cases and in various directions. For instance, in
[4, 8, 9, 10, 12, 13, 14, 18, 19, 24], the authors proved the existence of periodic solutions for
different evolution equations through the existence of a bounded solution. The method used
in these works is based on the existence of a fixed point of the associated Poincaré map.
In [12], by using Horn’s fixed point Theorem, the authors derived the existence of periodic
solutions in the case of the existence of bounded and the ultimate bounded solutions.
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In this paper, we will extend the Massera problem for equation (1.3) and then for the equa-
tion (1.1). We assume that the common domainD of A(t) is not necessarily dense inX.
Using similar techniques as in [22, 29], we give a variation constant formula for Equation
(1.1). Next, we construct the Poincaré mapP for equation (1.3) given by

Pϕ := uτ(∙,ϕ, f ),

whereu(∙,ϕ, f ) is the unique mild solution of (1.3) through the initial conditionϕ. Using
Chow-Hale fixed point Theorem, we prove thatP has a fixed point in the phase spaceCr

which generates aτ-periodic mild solution of (1.3). Afterwards, basing on the established
results and using a fixed point Theorem for set-valued maps, we analyze the existence of
a τ-periodic mild solution for the semilinear equation (1.1). At the end, we discuss an
example as an illustration to the given theoretical results. The obtained results extend the
results in [4, 8, 12, 14, 18, 20].

2 Preliminary results

Let
(
A(t),D(A(t))

)

0≤t≤T
be a family of linear operators on a Banach spaceX satisfying the

following assumptions :

(A1) There exists a Banach spaceD := D(A(t)) independent oft and there are positive
constantsc1 andc2 such that

c1‖x‖D ≤ ‖x‖+ ‖A(t)x‖ ≤ c2‖x‖D, x ∈ D, 0≤ t ≤ T.

(A2) The family (A(t))0≤t≤T is stable that means there are constantsM ≥ 1 andω ∈ R such
that (ω,∞) ⊂ ρ(A(t)) for t ∈ [0,T] and

‖
k∏

i=1

R(λ,A(t j))‖ ≤ M(λ−ω)−k

for λ>ω and every finite sequence{t j}kj=1 with 0≤ t1≤ t2≤ ...≤ tk≤T andk= 1,2, ∙ ∙ ∙ .

(A3) The mappingt 7−→ A(t)x is continuously differentiable inX for all x ∈ D.

There are several conditions implying the well-posedness of the evolution equation (1.2).
In most cases, the authors assumed

⋂
0≤t≤T D(A(t)) to be dense inX. Among others, we

recall here a ”classical” result, which is referred to Kato [17] and Tanabe [30].

Theorem 2.1. Let
(
A(t),D(A(t))

)

0≤t≤T
be a family of linear operators on a Banach space

X satisfying(A1)− (A3) such that D is dense in X. Then, the equation(1.2) is well-posed
and the family of operators A(∙) generates an evolution family(U(t, s))0≤s≤t≤T. Moreover,
for x ∈ D, the map t7→ U(t, s)x is the unique continuous function which solves(1.2).

In [27], Tanaka showed that the density of the domainD is not needed for the well-
posedness of the equation (1.2).
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Theorem 2.2. [27] Let
(
A(t),D(A(t))

)

0≤t≤T
be a family of linear operators on a Banach

space X satisfying the conditions(A1)-(A3). Then, there exists an evolution family(U(t, s))0≤s≤t≤T

on D satisfying :

a) U(t, s)D(s) ⊂ D(t) for all 0≤ s≤ t ≤ T, where D(r) is defined by

D(t) := {x ∈ D : A(t)x ∈ D},

b) for all x ∈ D(s) and t≥ s, the function t7→ U(t, s)x is continuously differentiable,

d
dt

U(t, s)x= A(t)U(t, s)x,

and
d+

ds
U(t, s)x= −U(t, s)A(s)x.

Assuming the three conditions (A1)-(A3), Da Prato et al. [26] and Tanaka [29] have studied
the well-posedness of the following equation





du
dt

= A(t)u(t)+ f (t), t ≥ 0

u(0) = u0.
(2.1)

They gave an explicit formula for the evolution family (U(t, s))0≤s≤t≤T defined onD. Indeed,
they introduced the following family of operators defined onX by

Uλ(t, s) =
[ t
λ ]∏

i=[ s
λ ]+1

(I −λA(iλ))−1

for (t, s) ∈ Ω := {(t, s) : 0≤ s≤ t ≤ T}.

Lemma 2.3. [22, 29] Under the notation above, the following properties hold.

i) For x ∈ D,λ > 0 and0≤ s≤ r ≤ t ≤ T, one has

Uλ(t, t)x= x and Uλ(t, s)x= Uλ(t, r)Uλ(r, s)x.

ii) For x ∈ D, the limit
U(t, s)x= lim

λ→0+
Uλ(t, s)x

exists in X uniformly for(t, s) ∈ Ω.

iii) For x ∈ D and0≤ s≤ r ≤ t ≤ T, one has

U(t, t)x= x and U(t, s)x= U(t, r)U(r, s)x.

iv) For every x∈ D, the mapping(t, s) 7−→ U(t, s)x is continuous fromΩ into X.
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vi) There exist constants M≥ 1, ω ∈ R such that for x∈ D and (t, s) ∈ Ω, one has
‖U(t, s)x‖ ≤ Meω(t−s)‖x‖.

In [29], the mild solutions of the evolution equation (2.1) is given by a ”generalized” varia-
tion of constants formula.

Theorem 2.4. [29] For every f ∈ L1([0,T], X), the limit

v(t) := lim
λ−→0+

∫ t

0
Uλ(t,σ) f (σ)dσ

exists uniformly for t∈ [0,T] and v is a continuous function on[0,T]. Furthermore, for
every u0 ∈ D the function given by the following formula

u(t) := U(t,0)u0+ lim
λ−→0+

∫ t

0
Uλ(t,σ) f (σ)dσ (2.2)

is well defined, and is known as the mild solution of equation(2.1)on [0,T].

3 Well-posedness of the non-densely non-autonomous differen-
tial equation with delay

The ”generalized” variation of constants formula (2.2) enables us to extend the results of
[29] to the equation (1.1). For this, we adopt the following definition.

Definition 3.1. A continuous functionu : [−r,+∞) −→ X is called a mild solution of the
equation (1.1) if it satisfies the following

u(t) :=





U(t,0)ϕ(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)[L(σ)uσ+F(σ,uσ)]dσ, t ≥ 0,

ϕ(t) , −r ≤ t ≤ 0.
(3.1)

For the existence of mild solutions of equation (1.1), we impose the Lipschitz continuous
assumption:

(A4) there exists̃M > 0 such that forϕ,φ ∈Cr andt ≥ 0 we have

‖F(t,ϕ)−F(t,φ)‖ ≤ M̃‖ϕ−φ‖.

By using a well known extension of the Banach contraction principle, we show the follow-
ing result.

Theorem 3.2. Assume that(A1)-(A4) hold andϕ ∈Cr such thatϕ(0)∈ D. Then there exists
a unique mild solution u(∙,ϕ, f ) onR+ for the equation(1.1). Moreover, the mild solution
depends continuously on the initial dataϕ.

Proof. Let T > 0 and the spaceSϕ = {u ∈C([−r,T], X) : u0 = ϕ} endowed with the sup-
norm‖ ∙ ‖. It is clear thatSϕ is closed inC([−r,T], X).
Let the mappingK defined onSϕ by

(Ku)(t) :=





U(t,0)ϕ(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)[L(σ)uσ+F(σ,uσ)]dσ, 0≤ t ≤ T,

ϕ(t) , −r ≤ t ≤ 0.
(3.2)
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We have,Ku∈C([−r,T], X). For the simplicity, we setH(∙,φ) := L(∙)φ+F(∙,φ). Hence, for
−r ≤ t ≤ T, c= MM̃eωT andu,v ∈ Sϕ

‖(Ku)(t)− (Kv)(t)‖ ≤ lim
λ−→0+

∫ t

0
‖Uλ(t,σ)‖‖H(σ,uσ)−H(σ,vσ)‖dσ

≤ c
∫ t

0
‖uσ−vσ‖dσ

≤ c t‖u−v‖.

Hence, it follows that

‖Knu−Knv‖ ≤
cn Tn

n!
‖u−v‖. (3.3)

For n large enough (c
n Tn

n! ) < 1 and by a well known extension of the Banach contraction
principle,K has a unique fixed pointu ∈ C([−r,T], X). This fixed point is a mild solution
of the equation (1.1).
The uniqueness of the solution and its dependance continuity on the initial data are deduced
from the following argument. Letu(∙,ψ) be a mild solution of (1.1) with the initial dataψ.
Then, for 0≤ t ≤ T andM1 = MeωT , one has

‖u(t,ϕ)−u(t,ψ)‖ ≤ ‖U(t,0)ϕ(0)−U(t,0)ψ(0)‖

+ lim
λ−→0+

∫ t

0
‖Uλ(t,σ)‖‖H(σ,uσ(∙,ϕ))−H(σ,uσ(∙,ψ))‖dσ

≤ M1‖ϕ−ψ‖+c
∫ t

0
‖uσ(∙,ϕ)−uσ(∙.ψ)‖dσ,

Hence,

‖u(t+ θ,ϕ)−u(t+ θ,ψ)‖

≤





‖ϕ(t+ θ)−ψ(t+ θ)‖ , −r ≤ t+ θ ≤ 0,

M1‖ϕ−ψ‖+c
∫ t

0
‖uσ(∙,ϕ)−uσ(∙,ψ)‖dσ, 0≤ t+ θ ≤ T.

Thus, by the Gronwall’s inequality we deduce that

‖ut(∙,ϕ)−ut(∙,ψ)‖ ≤max(1,M1ecT)‖ϕ−ψ‖ (3.4)

which yields both the uniqueness ofu and the continuity of the mapϕ 7→ ut(∙,ϕ) uniformly
for t ∈ [0,T]. �

4 Periodic solutions of the inhomogeneous linear equation

In what follows, we assume thatA(∙),L(∙) and f (∙) areτ-periodic, and the assumptions (A1)-
(A3) hold forT = τ. As an immediate consequence,U(t, s) is aτ-periodic evolution family
defined fort ≥ s in R. A functionu defined onR is said to be a mild solution of equation





du
dt

= A(t)u(t)+L(t)ut + f (t), t ≥ 0

u(t) = ϕ(t), −r ≤ t ≤ 0.
(4.1)
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if it satisfies the following formula

u(t) = U(t, s)u(s)+ lim
λ−→0+

∫ t

s
Uλ(t,σ)

[
L(σ)uσ+ f (σ)

]
dσ, t ≥ s.

We state now the following result which connects bounded and periodic solutions for the
equation (4.1).

Theorem 4.1. Assume that(A1)-(A3) hold and U(t, s) is a compact operator onD for
t > s≥ 0. Then, the following assertions are equivalent:

i) The equation(4.1)has a bounded mild solution onR+.

ii) The equation(4.1)has aτ-periodic mild solution.

For the proof of Theorem 4.1, we use Chow-Hale fixed point Theorem for linear affine
maps, presented in the following lemma.

Lemma 4.2. [9] Let X be a Banach space, P0 : X −→ X be a continuous linear operator
and y∈ X. Consider the operator P: X −→ X defined by Px= P0x+y.
Suppose that there exists x0 ∈ X such that{Pnx0, n ∈ N} is a relatively compact set in X.
Then P has a fixed point in X.

We need first to prove the following lemma.

Lemma 4.3. Let v be a bounded mild solution of equation(4.1). Then, v is a uniformly
continuous function with relatively compact range{v(t), t ≥ 0} in X. Furthermore, the set
{vt, t ≥ 0} is relatively compact in Cr .

Proof. Let ε > 0, one has

{v(t), t ≥ 0} = {v(t), 0≤ t ≤ ε}∪ {v(t), t ≥ ε} .

Sincev is continuous, then the first set on the right hand side is relatively compact inX.
For simplicity, we setG(t,ϕ) = L(t)ϕ+ f (t). For t > ε, we have

v(t) = U(t,0)v(0)+ lim
λ−→0+

∫ t

0
Uλ(t, s)G(s,vs)ds

= U(t,0)v(0)+ lim
λ−→0+

∫ t−ε

0
Uλ(t, s)G(s,vs)ds+ lim

λ−→0+

∫ t

t−ε
Uλ(t, s)G(s,vs)ds

= U(t, t−ε)

[

U(t−ε,0)v(0)+ lim
λ−→0+

∫ t−ε

0
Uλ(t−ε, s)G(s,vs)ds

]

+ lim
λ−→0+

∫ t

t−ε
Uλ(t, s)G(s,vs)ds

= U(t, t−ε)v(t−ε)+ lim
λ−→0+

∫ t

t−ε
Uλ(t, s)G(s,vs)ds.

Firstly, we show that the setK := {U(t, t−ε)v(t−ε), t > ε} is relatively compact inX. To
this end, let (yn)n be a sequence inK, then there exists a sequence (tn)n with valuestn > ε
such that

yn = U(tn, tn−ε)v(tn−ε).
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So, there exits a uniqueqn ∈ N such that : tn = qnτ+ rn + ε with 0 ≤ rn < τ. Using the
τ-periodicity of(U(t, s))t≥s, we get

yn = U(rn+ε, rn)v(qnτ+ rn).

Since (rn)n is a bounded sequence in [0, τ], then there exists a subsequence (rnk)k which
converges tor0 ∈ [0, τ]. Since the evolution family (U(t, s))t>s≥0 is compact, we get that
(U(t, s))t≥s is continuous with respect to the operator norm. Hence,

lim
k−→∞

‖U(rnk+ε, rnk)−U(r0+ε, r0)‖ = 0. (4.2)

Sincev is a bounded mild solution of (4.1) andU(r0+ ε, r0) is compact, then there exists a
subsequence of (rnk)k which we denote similarly (rnk)k such that the sequence

(
U(r0+ε, r0)v(qnkτ+ rnk)

)
k

converges toy∗ in X, and we write

lim
k−→∞

U(r0+ε, r0)v(qnkτ+ rnk) = y∗. (4.3)

Now, we show that
lim

k−→∞
U(rnk+ε, rnk)v(qnkτ+ rnk) = y∗.

We have,

‖U(rnk+ε, rnk)v(qnkτ+ rnk)−y∗‖ ≤ ‖U(rnk+ε, rnk)v(qnkτ+ rnk)−U(r0+ε, r0)v(qnkτ+ rnk)‖

+ ‖U(r0+ε, r0)v(qnkτ+ rnk)−y∗‖

≤ ‖U(rnk+ε, rnk)−U(r0+ε, r0)‖‖v(qnkτ+ rnk)‖

+ ‖U(r0+ε, r0)v(qnkτ+ rnk)−y∗‖.

From (4.2), (4.3) and the boundedness of the mild solutionv, we conclude that the set
{U(t, t−ε)v(t−ε), t > ε} is relatively compact inX. Secondly, from the boundedness ofG
there exists a positive constantα such that

∥∥∥∥∥∥ lim
λ−→0+

∫ t

t−ε
Uλ(t, s)G(s,vs)ds

∥∥∥∥∥∥ ≤ αε.

Hence{v(t), t > ε} is relatively compact inX. Consequently, the set{v(t), t ≥ 0} is relatively
compact inX. To show the uniform continuity of the mild solutionv. Let t > s≥ 0, one has

v(t)−v(s) = (U(t,0)−U(s,0))v(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)G(σ,vσ)dσ

− lim
λ−→0+

∫ s

0
Uλ(s,σ)G(σ,vσ)dσ

= (U(t, s)− I )U(s,0)v(0)+ (U(t, s)− I ) lim
λ−→0+

∫ s

0
Uλ(s,σ)G(σ,vσ)dσ

+ lim
λ−→0+

∫ t

s
Uλ(t,σ)G(σ,vσ)dσ

= (U(t, s)− I )v(s)+ lim
λ−→0+

∫ t

s
Uλ(t,σ)G(σ,vσ)dσ.
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Since the set{v(t), t ≥ 0} is relatively compact inX, then

lim
t−s→0

t>s

‖(U(t, s)− I )v(s)‖ = 0.

Using the boundedness ofv and the boundedness ofG, there exists a positive constantc> 0
such that ∥∥∥∥∥∥ lim

λ−→0+

∫ t

s
Uλ(t,σ)G(σ,vσ)dσ

∥∥∥∥∥∥ ≤ c(t− s).

Then,

lim
t−s→0

t>s

‖ lim
λ−→0+

∫ t

s
Uλ(t,σ)F(σ,vσ)dσ‖ = 0.

Therefore,

lim
t−s→0

t>s

‖v(t)−v(s)‖ = 0.

Similarly, we show

lim
t−s→0

t<s

‖v(t)−v(s)‖ = 0.

Thus, v is uniformly continuous. In particular, the set of history function{vt, t ≥ 0} is
equicontinuous. Together with the relative compactness of the range ofv, by Arzel̀a-Ascoli
Theorem, we obtain that{vt, t ≥ 0} is relatively compact inCr . �

Proof of Theorem 4.1.We define the Poincaré map on the phase spaceC0 := {ϕ ∈ Cr :
ϕ(0) ∈ D} by

P(ϕ) = uτ (∙,ϕ, f ) ,

whereu(∙,ϕ, f ) refers to the mild solution of (4.1) throughϕ. The variation of constants
formula (3.1) allows to decomposeP map as

Pϕ = uτ (∙,ϕ,0)+uτ (∙,0, f ) := P0ϕ+ψ,

whereuτ (∙,ϕ,0) is the mild solution of (4.1) withf = 0 anduτ (∙,0, f ) is the mild solution
of (4.1) with ϕ = 0. Let v be a bounded solution of (4.1) onR+ with v0 = ϕ̃. Then the
uniqueness of the solution of (4.1) implies that

Pnϕ̃ = vnτ(∙, ϕ̃, f ) for n ∈ N.

By Lemma 4.3, the set
{
Pnϕ̃, n ∈ N

}
= {vnτ(∙, ϕ̃, f ), n ∈ N}

is relatively compact inCr . From Lemma 4.2, we conclude that the mappingP has a fixed
point inCr . Hence, the equation (4.1) has aτ-periodic mild solution.�
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5 Periodic solutions of the semilinear equation

We consider the semilinear equation with delay

du
dt

= A(t)u(t)+L(t)ut +F(t,ut), t ≥ 0. (5.1)

We denote byBτ the space ofτ-periodic continuous functions fromR into X endowed with
the uniform norm topology. To get the aim of this section, we give some definitions and a
fixed point Theorem for set-valued maps.

Definition 5.1. [33] Let Γ : M −→ 2M be a multivalued map, whereM is a subset of a
Banach spaceE and 2M is the power set ofM.

i) For D ⊂ M , the inverseΓ−1(D) is the set of allx ∈ M such thatΓ(x)∩D , ∅.

ii) The mapΓ is called upper semi continuous ifΓ−1(D) is closed for all closedD ⊂ M.

Theorem 5.2. [33] Let Γ : M −→ 2M be a multivalued map, where M is a nonempty convex
set in a Banach space E such that:

i) the setΓ(x) is nonempty, closed and convex for all x∈ M,

ii) the setΓ(M) is relatively compact in E,

iii) the mapΓ is upper semi continuous.

ThenΓ has a fixed point in the sense that there exists x∈ M such that x∈ Γ(x).

Then, we come to the aim of this section,

Theorem 5.3. Assume that(A1)-(A4) hold, U(t, s) is a compact operator onD for t > s≥ 0
and there exists a positive constantρ such that for every function y∈Sρ := {ν ∈ Bτ : ‖ν‖ ≤ ρ},
the equation

du
dt

= A(t)u(t)+L(t)ut +F(t,yt), t ≥ 0 (5.2)

has aτ-periodic mild solution in Sρ. Then, the equation(5.1)has aτ-periodic mild solution.

Proof. Let Γ : Sρ −→ 2Sρ be the mapping defined fory ∈ Sρ by

Γ(y) =

{

u ∈ Sρ : u(t) = U(t,0)u(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ, t ≥ 0

}

.

We show that the mappingΓ satisfies the conditionsi), ii ) andiii ) of Theorem 5.2.
i) By assumption,Γ(y) is nonempty for ally ∈ Sρ. Let y ∈ Sρ,u1, u2 ∈ Γ(y) andα ∈ [0,1].
Thenαu1+ (1−α)u2 ∈ Γ(y), which implies thatΓ(y) is convex. From the boundedness of
the linear operatorL and (A4) we deduce thatΓ(y) is a closed set.
ii ) Using Arzel̀a-Ascoli Theorem, we show thatΓ(Sρ) is relatively compact inBτ. To this
end, consider the functions inΓ(Sρ) on [0, τ] with length the periodτ. Let 0< t ≤ τ and
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ε > 0 such thatt > ε. We prove that the set
{
u(t), u ∈ Γ(Sρ)

}
is relatively compact inX. For

u ∈ Γ(Sρ), there existsy ∈ Sρ such that

u(t) = U(t,0)u(0)+ lim
λ−→0+

∫ t−ε

0
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)dσ]

+ lim
λ−→0+

∫ t

t−ε
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ

= U(t,0)u(0)+U(t, t−ε) lim
λ−→0+

∫ t−ε

0
Uλ(t−ε,σ)[L(σ)uσ+F(σ,yσ)]dσ

+ lim
λ−→0+

∫ t

t−ε
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ.

From the compactness of the operatorU(t,0) for 0< t≤ τ, we deduce that the set{U(t,0)u(0), u∈
Γ(Sρ)} is relatively compact inX. Moreover, sinceU(t, t − ε) is a compact operator,L
is a bounded linear operator and the operatorF satisfies (A4), in particularF transforms
bounded sets into bounded sets, then we deduce that the subset

{

U(t, t−ε)

[

lim
λ−→0+

∫ t−ε

0
Uλ(t−ε,σ)[L(σ)uσ+F(σ,yσ)]dσ

]

, u ∈ Γ(Sρ)

}

is relatively compact inX. On the other hand, there exists a positive constantα such that

sup
u∈Γ(Sρ)

∥∥∥∥∥∥ lim
λ−→0+

∫ t

t−ε
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ

∥∥∥∥∥∥ ≤ αε.

Thus
{
u(t), u ∈ Γ(Sρ)

}
is relatively compact inX for t ∈ (0, τ]. Now, from the periodicity

of u(∙), the subset
{
u(0), u ∈ Γ(Sρ)

}
is also relatively compact inX. Consequently, the set

{
u(t), u ∈ Γ(Sρ)

}
is relatively compact inX for t ∈ [0, τ]. To conclude, we prove the equicon-

tinuity of Γ(Sρ). Let t0 ∈ [0, τ) andt0 < t ≤ τ. Then,

‖u(t)−u(t0)‖ ≤

∥∥∥∥∥∥(U(t, t0)− I )

[

U(t0,0)u(0)+ lim
λ−→0+

∫ t0

0
Uλ(t0,σ)[L(σ)uσ+F(σ,yσ)]dσ

]∥∥∥∥∥∥

+

∥∥∥∥∥∥ lim
λ−→0+

∫ t

t0
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ

∥∥∥∥∥∥

≤‖(U(t, t0)− I )u(t0)‖ +

∥∥∥∥∥∥ lim
λ−→0+

∫ t

t0
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ

∥∥∥∥∥∥ .

Since{u(t0), u ∈ Γ(Sρ)} is relatively compact inX, then

lim
t−→t0

t>to

sup
u∈Γ(Sρ)

‖(U(t, t0)− I )u(t0)‖ = 0.

Using the boundedness ofu(t0) in Γ(y) independently fromy∈ Sρ, the assumption (A4) and
the boundedness ofL, there exists a positive constantc such that

∥∥∥∥∥∥ lim
λ−→0+

∫ t

t0
Uλ(t,σ)[L(σ)uσ+F(σ,yσ)]dσ

∥∥∥∥∥∥ ≤ c(t− t0) uniformly ony ∈ Sρ.
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So,

lim
t→t0
t>t0

sup
u∈Γ(Sρ)

‖u(t)−u(t0)‖ = 0.

Similarly, for t0 ∈ (0, τ], we can prove that

lim
t→t0
t<t0

sup
u∈Γ(Sρ)

‖u(t)−u(t0)‖ = 0.

We deduce then thatΓ(Sρ) is relatively compact inBτ.
iii ) To prove thatΓ is upper semi continuous, we show firstly thatΓ is closed.
Let (yn)n≥0 and (zn)n≥0 be sequences respectively inSρ andΓ(Sρ) such that forn ≥ 0,
zn ∈ Γ(yn) with yn −→ y and zn −→ z asn→ +∞. Then,

zn(t) = U(t,0)zn(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)[L(σ)zσ+F(σ,yn

σ)]dσ, t ≥ 0.

Using the Lipschitz assumption ofF, the boundedness ofL(∙) and the boundedness of
(Uλ(t, s)) independently ofλ, we obtain by lettingn−→ +∞, that

z(t) = U(t,0)z(0)+ lim
λ−→0+

∫ t

0
Uλ(t,σ)[L(σ)zσ+F(σ,yσ)]dσ, t ≥ 0.

Hencez∈ Γ(y) which implies thatΓ is closed. Now, letD be a closed set inSρ, and take
a sequence (un)n≥0 in Γ−1(D) such thatun −→ u, asn→ +∞. Then there existsyn ∈ D
such thatyn ∈ Γ(un). SinceΓ(Sρ) is relatively compact, thus there exists a subsequence
(ynk)k of (yn)n such thatynk −→ y, ask −→ +∞. SinceΓ is closed, theny ∈ Γ(u) andu ∈
Γ−1(D). Consequently,Γ is upper semi continuous.
All assumptions of Theorem 5.2 are satisfied. Hence, there existsu ∈ Sρ such thatu ∈ Γ(u).
Which implies the existence of aτ-periodic mild solution of equation (5.1). From Theorem
4.1, to prove that (5.2) has aτ-periodic mild solution inSρ it suffices to show that (5.2) has
a mild solution which is bounded byρ.

Corollary 5.4. Assume that(A1)-(A4) hold and U(t, s) is a compact operator onD for
t > s≥ 0. If there exists a positive constantρ such that for any y∈ Sρ = {ν ∈ Bτ : ‖ν‖ ≤ ρ},
the equation(5.2) has a mild solution that is bounded byρ then the equation(5.1) has a
τ-periodic mild solution onR+.

Proof. Let y ∈ Sρ and v be a bounded mild solution of (5.2) withv0 = ϕ̃. Following
the proof of [15,Theorem2.5], the Poincaŕe mapP has a fixed point which belongs to
Co{Pnϕ̃, n≥ 0}, whereCo denotes the closure of the convex hull. Letψ be the fixed point
of P andv(∙,ψ,F(∙,y∙)) be the associated mild solution of (5.2) throughψ. By virtue of the
linearity of (U(t, s))t≥s≥0 and (L(t))t≥0 together with the continuity dependance on the initial
data, we deduce that the mild solutionv(∙,ψ,F(∙,y∙)) is also bounded byρ.
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6 Application

In order to illustrate the previous results, we consider the non-autonomous partial differen-
tial equation with delay





∂v
∂t

(t, x) = δ(t)
∂2v

∂x2
(t, x)+β(t)v(t, x)+b1(t)v(t− r, x)+b2(t)h(v(t− r, x))

+g(t, x), t ≥ 0, x ∈ [0,π],
v(t,0)= v(t,π) = 0, t ≥ 0,
v(θ, x) = φ(θ, x), θ ∈ [−r,0], x ∈ [0,π],

(6.1)

with δ(∙) is aτ-periodic andC1-positive function inR+, with δ0 := inf
t∈R+

δ(t) > 0, the functions

β,b1,b2 : R+→ R areτ- periodic continuous,h : R −→ R is continuous such that

|h(x)| ≤ k|x|, x ∈ R. (6.2)

g : R+ × [0,π] −→ R is a continuous function,τ-periodic in t. The functionφ : [−r,0]×
[0,π] −→ R is continuous. LetX := C([0,π],R) andΔ be the Laplacien operator on [0,π]
with domain

D := {z∈C2([0,π],R) : z(0)= z(π) = 0}.

By [25], Δ satisfies the following conditions :

(0,+∞) ⊂ ρ(Δ), ‖R(λ,Δ)‖ ≤
1
λ
, λ > 0. (6.3)

Let (A(t))t≥0 be the family of operators defined byA(t)z= δ(t)Δ with domainD(A(t)) = D.
It is known that

R(λ,A(t)) =
1
δ(t)

R(
λ

δ(t)
,Δ).

Using (6.3), we deduce that for everyλ > 0, λ ∈ ρ(A(t)) and‖R(λ,A(t))‖ ≤ 1
λ . Then,

∥∥∥∥∥∥∥

n∏

i=1

R(λ,A(ti))

∥∥∥∥∥∥∥
≤

1
λn , t1 ≤ t2 ≤ ... ≤ tn.

Hence, the operatorA(∙) satisfies the assumptions (A1)-(A3).
Moreover,

D = {z∈C([0,π],R) : z(0)= z(π) = 0} , X.

By [3] the partΔ0 of Δ in D given by





D(Δ0) = {z∈ D : Δz∈ D}

Δ0z= Δz,
(6.4)

generates an immediately compact semigroup (T0(t))t≥0 on D such that

‖T0(t)‖ ≤ e−t, t ≥ 0. (6.5)
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Thus, the partA0(∙) of A(∙) in D generates an evolution family (U(t, s))t≥s≥0 on D which is
given by

U(t, s) = T0(
∫ t

s
δ(τ)dτ), t ≥ s≥ 0,

Therefore, the evolution family(U(t, s))t≥s is immediately compact. By (6.5), one has

‖U(t, s)‖ ≤ e−δ0(t−s), t ≥ s≥ 0. (6.6)

Let L, F : R×C([−r,0],X) −→ X be defined, fort ∈ R+ andψ ∈C([−r,0],X), by

(L(t)ψ)(x) = β(t)ψ(0)(x)+b1(t)ψ(−r)(x), x ∈ [0,π] (6.7)

(F(t,ψ))(x) = b2(t)h(ψ(−r)(x))+g(t, x), x ∈ [0,π], (6.8)

ϕ(t)(x) = φ(t, x), x ∈ [0,π]. (6.9)

(L(∙)) is a family of bounded linear operators fromC([−r,0],X) to X, andF satisfies the
assumption (A4). Using the above notations and setu(t)(x) := v(t, x), the equation (6.1)
takes the abstract form





du
dt

= A(t)u(t)+L(t)ut +F(t,ut), t ≥ 0

u(t) = ϕ(t), −r ≤ t ≤ 0.
(6.10)

Proposition 6.1. Assume that there exists d∈ (max{0,1− δ0},1) such that

|β(t)|+ |b1(t)|+ |b2(t)|k≤ 1−d, for t ∈ [0, τ]. (6.11)

Then, (6.10) has aτ-periodic mild solution.

Proof. Let m := max{|g(t, x)|; x ∈ [0,π], t ∈ [0, τ]} andρ :=
m+d

δ0−1+d
. Hence,

m−ρ(d−1)= ρδ0−d. (6.12)

We claim that ify is aτ-periodic continuous function such that‖y‖ ≤ ρ, then for allϕ with
‖ϕ‖ ≤ ρ, the solutionu of





du
dt

= A(t)u(t)+L(t)ut +F(t,yt), t ≥ 0

u(t) = ϕ(t), −r ≤ t ≤ 0,
(6.13)

satisfies‖u(t)‖ ≤ ρ, for all t ≥ 0. Indeed, let

t0 = inf {t > 0 : ‖u(t)‖ > ρ}. (6.14)

If t0 <∞, by continuity, we get‖u(t0)‖ = ρ. By using the generalized variation of constants
formula, we have

u(t0) = U(t0,0)ϕ(0)+ lim
λ−→0+

∫ t0

0
Uλ(t0, s)

[
L(s)us+F(s,ys)

]
ds, t ≥ 0.
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Using (6.5) and the integral representation of the resolvent [11], we deduce that

(−1,+∞) ⊂ ρ(Δ0), ‖R(λ,Δ0)‖ ≤
1

λ+1
, λ > −1, (6.15)

and

‖R(λ,A0(t))‖ ≤
1

λ+ δ0
, t ≥ 0. (6.16)

Forλ > 0 andx ∈ D, we have

Uλ(t0, s)x=
[

t0
λ ]∏

i=[ s
λ ]+1

(I −λA(iλ))−1x=

[
t0
λ ]∏

i=[ s
λ ]+1

λ−1(
1
λ
−A0(iλ))−1x.

Using (6.16), one has

‖Uλ(t0, s)‖ = ‖
[

t0
λ ]∏

i=[ s
λ ]+1

λ−1(
1
λ
−A0(iλ))‖

≤

(
1

1+λδ0

)[
t0
λ ]−[ s

λ ]

≤

(
1

1+λδ0

) t0−s
λ +1

≤
1

1+λδ0
exp[−δ0(t0− s)

ln(1+ δ0λ)
δ0λ

].

Hence,

‖ lim
λ−→0+

∫ t0

0
Uλ(t0, s)ds‖ ≤ lim

λ−→0+

∫ t0

0
‖Uλ(t0, s)‖ds

≤ lim
λ−→0+

∫ t0

0

1
1+λδ0

exp
[
−δ0(t0− s)

ln(1+ δ0λ)
δ0λ

]
ds.

Thus, by Lebesgue’s Theorem we deduce that

lim
λ−→0+

∫ t0

0
‖Uλ(t0, s)‖ds≤

1
δ0

(1−e−δ0t0) (6.17)

By (6.6)-(6.8) and (6.17), we get that

‖u(t0)‖ ≤ ρe−δ0t0 +
1
δ0

((|β|+ |b1|+ |b2|k)ρ+m)(1−e−δ0t0).

From (6.11) and (6.12), we obtain

‖u(t0)‖ ≤ ρe−δ0t0 +
1
δ0

[(1−d)ρ+m](1−e−δ0t0)

≤ ρe−δ0t0 +
1
δ0

(ρδ0−d)(1−e−δ0t0)

≤ ρ−
d
δ0

(1−e−δ0t0),
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which gives that‖u(t0)‖ < ρ. This contradicts the fact thatt0 <∞. Consequently,‖u(t)‖ ≤ ρ
for all t ≥ 0, and by Corollary 5.4 the equation (6.10) has aτ-periodic mild solution inSρ.
We deduce that Equation (6.1) has aτ-periodic mild solution. �
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