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Abstract

Here we present a necessary anflisient conditions for the exact and approximate
observability of the following linear dierence equation

y(n) = CAn),

whereA € I®°(N, L(Z)), C € L(Z,U), Z, U are Hilbert spaces and* = NU {0}. We
apply these results to a flow-discretization of the wave equation and the heat equation.

{ Z(n+1)= A(N)z(n), neN*, z0)=2z€Z
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1 Introduction

Observability is an important property of a control system, and this governs the existence
of an optimal control solution. Roughly speaking, observability means that it is possible to
determine the internal states of a system by measuring only the external outputs. Hence it
is useful in solving the problem of reconstructing unmeasurable state variables from mea-
surable ones. Formally, a system is said to be observable if, for any possible sequence of
state and control vectors, the current state can be determined in finite time using only the
outputs.

The observability problem has been studied by many authors, one can see, [2], [4], [5],
but in their works they only deal with continuous systems. With respect to discrete systems,
there are a few works where the study of the observability is considered for systems like
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(1.1), we can cite [3], [6], [12], [13], but some of these works are in finite dimension
spaces and only the exact observability is characterized. In others words, the approximate
observability is not studied in those works, and their techniques are based on the concept of
detectability or admissibility.

In this work we present necessary andfisient conditions for the exact and approxi-
mate observability of the following linearfiierence equation

{ Zn+1)=A(nzn), neN*, 20)=2¢€Z (1.1)

y(n) = CAn).

wherethe state ¢) e Z, Z is a Hilbert spaceN* = NU {0}, A€ I®(N,L(Z)), C € L(Z V),
whereU is another Hilbert space.

Consider the seA={(m,n) € NxN: m2> n} and let®d={®(m,n)}mneca be the evolution
operator associated &y i.e.,

o(mn) :{ A(m-1)---A(n), m>n,
l, m=n,
wherel is the identity operator in the Hilbert spage
Then the state(:) of (1.1) is given by
z(n) = ®(n,0)z(0), neN, (1.2)

and theoutput ¥-) given by (1.1) takes the form
y(n) = C®(n,0)z(0).

Here we will employ the notation used in [2] and [10].

In this paper we exhibit results that characterize both the exact and approximate observ-
ability of (1.1). In Section 2, present some results needed to characterize both the exact and
approximate observability of system (1.1), showing its duality with the controlled system

zZ(n+1)= A"(N)z(n) + C*u(n), z(0) = z, (1.3)

where theinput un) € U. In order to reach our goals we use the concepts of exact and

approximate controllability and follow the techniques used in [10]. In Section 3, we present
new characterizations of the exact and approximate observabiiigretit than used in [3],

[6], [12] and [13]. Finally, in Section 4, we will apply these results to a discrete version of

the wave and heat equations.

2 Preliminaries

In this section we give the definition of observability for the system (1.1) and present some
results needed to characterize both the exact and approximate observability in the next sec-
tion.

Definition 2.1. (see [2]) For the system (1.1) we define the following concepts:
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a) Theobservability map (for n € N) is define as followg" : Z —s 12(IN, U) by

anz{ Co(n,k)z k<n,

0, k>n. (2.1)

b) Theobservability grammian map (for n € N) is define byLcn = C™C".

c) The system (1.1) isxactly observableif for eachz, € Z, there existp € N such
thatz(0) = z5 can be uniquely and continuously constructed from the knowledge of
the outputs (observationg0),y(1),...,y(ng—1), i.e., ifC™ is injective and its inverse
is bounded on the range 6f®.

d) The system (1.1) iapproximately observableif for eachzy € Z, there existsp € N
such that the knowledge of the outpy(®),y(1),...,y(ng — 1) determine the initial
statez(0) = zy uniquely, i.e., ifKer(C™) = {0}.

Proposition 2.2. The adjointC™* of the operatoiC™ is given by
Cc* : 12(N,U) — Z
No
(CPu)(k-1)= Y @*(no,k)C"u. (2.2)
k=1
and
No
Leoz= )" (o, KIC"C(no,K)z, z€ Z. (2.3)
k=1
Proof

2 (Co(no. Kz u(k- 1)y
k=1

= > (Co(no, Kz uk—1)uu+ > Ouk-1)uy
k=1

k=n+1

(C™Z U2 2

= Z(Cq)(no, K)z u(k—-1))uu
k=1

= Z(z, ®*(no, IC u(k—1))zz
k=1

No
<Z,Zd>*(no, K)C*u(k— 1)>
k=1
= (zC"u)zz
which prove (2.2). Clearly, (2.3) follows immediately from definition B)land (2.2).

7z

Consider the dual control system of (1.1).

zZ(n+1)= A" (N)z(n) + C*u(n), z(0) = z, (2.4)

where thdanputs yn) € U.
Then, for this control system we have the usual definitions of exact and approximate
controllability.
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Definition 2.3. The system (2.4) is said to lexactly controlableif there isng € N such
that for everyzy, z; € Z there existai € I?(IN, U) such thatz(0) = zy andz(ng) = z.

Definition 2.4. The system (2.4) is said to lapproximately controlable if there isng €
N such that for everyy, z € Z, € > 0 there existau € 12(IN,U) such thatz(0) = z and
llZ(no) — z1ll < .

Definition 2.5. (see [2], [10]) For the system (2.4) we introduce the following concepts:

a) Thecontrollability map , 8" : 12(N,U) —s Z (for n e N), is define as follows by

B = Z @*(n,K)Bu(k — 1), (2.5)
k=1

whereB = C*.
b) Thegrammian map (for n € N) is define byLgn = 8"8™.

The following theorem is a discrete version of Theorem 4.1.7 of [2] and its proof may be
seen in [10].

Theorem 2.6. (a) The system (2.4) is exactly controllable for soneMif, and only if,
one of the following statements holds:

() RangeB")=Z
(ii) There existsy > 0 such that
(Lgnz.2) 29|25, VzeZ,
(iii) There existgy > 0 such that
1B* Ay = N, V2ZEZ

(b) The system (2.4) is approximately controllable for soreeé\nif, and only if, one of
the following statements holds:

(i) Ker(8™)={0} andB™ has close range.
(i) (Lgnzzy>0,z#0inZ.
(i) B*®*(n,k)z=0=2z=0, k> n.
(iv) RangeB") =Z.
The following lemma establishes a duality between controllability and observability.

Lemma 2.7. For the system (1.1) we have the following duality results:

(&) The system (1.1) is approximately observable &ivif, and only if, the dual system
(2.4) is approximately controllable inaNN.

(b) The system (1.1) is exactly observable i if, and only if, the dual system (2.4) is
exactly controllable in re N.
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Proof Let us denote the controllability map of (2.4) B} (see [10]), then, from definition
of the controllability map, we know th&™ = 8" andC" = 8™.

(@) (1.1) is approximately observabléf Ker(C") = {0}, iff Ker(8™) = {0}, iff (2.4) is
approximately controllable (see Theorem 2.6).

(b) Letus suppose that (1.1) is exactly observable. Then there eXi3t$ 6n RangeC™)
and it is bounded. ThusC{)*C"z= 1z ¥ze Z and

IC™tyll < Mlyll, ¥y e RangeC").
Then we have that

Iz = (€M) ~*C"2l < MIIC"Z)| = MIIB™ 2.

1
Bn* > .
1872 > MIIZII

Therefore, by Theorem 2.6, we have that (2.4) is exactly controllable.

Now, let us suppose that (2.4) is exactly controllable, then, by Theorem 2.6, we have
that 8™ is injective and has closed range. In conseque@tes injective and has
closed range, which implies that (1.1) is exactly observable. 0

The following corollary is immediately consequence of Theorem 2.6 and Lemma 2.7.

Corollary 2.8. (a) The system (1.1) is exactly observable, for som&inif, and only if,
one of the following statements holds:

() Ker(C") ={0} andC" has close range.
(i) There existgy > 0 such that

(Lenz2) 2 yl1213, VzeZ
(iii) There existsy > 0 such that

IC"ZP > yllzl?, VzezZ

(b) The system (1.1) is approximately observable for som&lnf, and only if, one of
the following statements holds:
() Ker(C") ={0}.
(i) (Legnz,2)>0,z#0in Z.
(i) Co(n,k)z=0=2z=0,k=n.
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3 Characterizations of the Observability

In this section we present new characterizations of the exact and approximate observability
different than the one mentioned in the foregoing sections.

Lemma 3.1. The system (1.1) is exactly observable for sopeN if, and only if, Lo €s
invertible.

Proof Suppose that the system (1.1) is exactly observable. Then, from Corollarg) 2.8 (
(i), there existy > 0 such that|C™Z| > y||Z|, for all ze Z, i.e.,

IC™Z? > y2IZ1%, zeZ

equivalently,
(C*Cz,2) > y?||2?, zeZ,

and,
(Lewz.2) 29727, zeZ (3.1)

This implies that_¢cn is injective. Now, we probe thdtcne es surjective. That is,
R(Leno) = Rangeleno) = Z

For the purpose of contradiction, suppose tRétco) ¢ Z. On the other hand, using the
Cauchy-Schwarz inequality and (3.1) we obtain

ILcroZllz > Y2l z€ Z,

which implies thatR(L¢cmo) is closed. From here, applying the Hahn Banach Theorem, we
can prove that Rangkegn) = Z. In consequencé.cn is a bijection and from Open Mapping
Theorem/ 7, is a bounded linear operator.

Now we suppose thadicn, = C"*C™ is invertible. Then, from Theorem 2.6 and Lemma 2.7
we have that the system (1.1) is exactly observable. 0

Lemma 3.2. The system (1.1) is exactly observable for sogeN if, and only if,

sup [|(a! + Leno) 7Yl < 0. (3.2)
ag(0,1]

Proof Suppose that (1.1) is exactly observable. Then, from Corollary@8(fi), there
existsy > 0 such that
(Lewz2) 2 yll2lz, YzeZ

Then, for allze Z anda > 0, we have

(Z(al +Lew)2) = (Z.a2) +(z Lewo2) = alld? + (2 Levo2) 2 (o + )12,

(Z (el +Lew)2) > (a+7)lIZ%
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Using the Cauchy-Schwarz inequality, we obtain
ll(@! +Lcwo)zl = (o +y)liZl.

So,
(@ +Y)li(al + L)yl < IV,

in consequence, for all > 0,

1

CL’+’y

(! + Leno) 7Y < <

R e

Therefore||(al + Lew) Y| is bounded as function @f > 0 and we have (3.2).
Reciprocally, suppose that (3.2) is true. This implies that there exists

lim (@l + L)t
lim (a1 +Lew)

and it is finite.
In fact, we know that¢l + Low) ™! = R(el, —Lew) the resolvent of-Len, and the identity
for the resolvent,

R(al,—Lcno) — R8I, —Leno) = (B— @)R(al, —Leno)R(BI, —Lcno),

together with (3.2), show théR(al,—L¢nw)} is a Cauchy sequence of bounded linear oper-
ators. Therefore,
S= lim R(al,~Lcw) = lim (al + Leno) L.

Then,
Lcno( Ilrra (al + LCno)_l) = LCnoS.
a—0*
So,
lim (a1 +Lew —al)(al + Leno) ™t = LenoS,
a—0*
i.e.,

| — Iin8+ a(al +Leno) ™t = Len S.
But the condition (3.2) implies that

lim a(al +Lew) ™ = 0.
a—0t

Therefore, for alz € Z, we have that
zZ=L¢enoSz= chorCs z

So,C™ is injective and the proof follows from Corollary 2.8. 0
With respect to approximate observability of the system (1.1), we have the following
characterizations.

Lemma 3.3. The system (1.1) is approximately observable for sogreMif, and only if,
Rangel¢n) = Z.
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Proof Suppose the system (1.1) is approximately observable for sgm&™. Then, from
Corollary 2.8 p) — (ii) we have that
(Lenoz2) >0, YzeZ, z+0. (3.3)
For the purpose of contradiction, let us assume that
Rangel¢w) c Z
Then, from Hanh-Banach's Theorem there exasts 0 such that
(Leoz,29) =0, Yze Z

In particular, if we putz = zy, then{L¢n 29, Zp) = 0, which contradicts (3.3).
Now, suppose th&angel¢cv) = Z, i.e.,Range(Cno*CM) = Z, thenRangeC™*) = Z. Then,
from Theorem 2.6 and Lemma 2.7 we have that (1.1) is approximately observablep
Lemma 3.4. The system (1.1) is approximately observable for sogreeMif, and only if,
for each z= Z,

lim a(al +Leo)tz=0. (3.4)

a—0*
Proof Suppose that the system (1.1) is approximately observable for spmi. Then,
from Corollary 2.8 b) — (ii), we have that, foe# 0inZ
(Lenoz 2) > 0. (3.5)
Suppose that there exigse Z such that

lim_a(el + Leo) Y29 =yo # 0.

Then,
lim aLgro(al +Leo) ™20 = Lenoyo,

a—0*
and
lim azo-ofa(al + Leno)120] = Lenoyo.

That is,Lcoyo = 0, and this contradicts (3.5). Therefore, (3.4) is true.
Reciprocally, suppose that

lim ool + Leno) tz=0,¥ze Z
a—0*

We want to probe thaRangelcv) = Z.
For allze Z, let us define
Uy = (] + Lew) 1z,

then
LeoU, = (el +Leo —al)(al +Lew) ™1z
Z—oz(al + Lcno)_lZ.

From that and (3.4) it follows that
lim Lenou, =2
a—0

In consequence, the system (1.1) is approximately observable. 0
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4 Applications

Now, as an application of the main results of this research we shall consider two important
examples, a flow-discretization of the wave equation and the heat equation.

Example 4.1. Wave Equation

Consider the wave equation

W(t,0) = w(t, 1) = O, (4.1)

Wit = Wy + U(t, X),
w(0, X) = wo, W;(0, X) = w1 (X),

with observation in derivative, i.ey(t, X) = w(t, X).
The system (4.1) can be written as an abstract second order equation in the Hilbert space
X = L?[0, 1] as follows:

w(0) = wp, W (0) = wy, (4.2)
y=w,

where the operatoA is given by A¢ = —¢yx with domainD(A) = H2n H%, and has the
following spectral decomposition.
For all x e D(A) we have

{ w’ = —Aw+ u(t),

AXx= Zl/lj<x,¢j>¢j = Zl/lejX
= =

wherelj = 222, $j(X) = V2sin(jzx), (-,-) is the inner product ixX andE;x = (X, ¢;)¢;.

So,{Ej} is a family of complete orthogonal projectionsXnandx = Z Ejx xeX.
=1
Using the change of variablgs= v, the second order equation (4.2) can be written as
a first order system of ordinaryfierential equations in the Hilbert spage= X2 x X as

{ Z = Az+BUt), z20)=2, zeZ (4.3)

y=Cz
where
Y, | -A O

A is an unbounded linear operator with dom&iA) = D(A) x X andue L?(0,7,X) = U.
The proof of the following theorem follows from Theorem 3.1 (see [9]) by puttirg0
andd = 1.

z=[W], B:[O],?{:[ 0 I],C:B*:[O 11, (4.4)

Theorem 4.2. The operatorA given by (4.4), is the infinitesimal generator of a strongly
continuous semigrouf (t)}icr given by

(9]

T(t)Z=ZeAjtPjZ9 zeZ t>0, (4.5)

=1
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where{Pj};>1 is a complete family of orthogonal projections in the Hilbert space Z given
by

P; = diagEj,Ej],j > 1, (4.6)
and
— — 0 l] .
A =BP., B = =1 (4.7)
j = BjFj j [ -1 0

Now, the discretization of (4.3) on flow is given by

{ zZ(n+1)=T(N)z(n), z0)=12, z€Z, 4.8)
y(n) = CZn). '
Proposition 4.3. The system (4.8) is approximately observable for ajy .
Proof Consider the operator
C:Z— IP(N,U), CYz= { CT(OM0.K)z k<o,
0, K> ng.
Then
No
C'u= ) T*(O(no,K)C"u,
k=1
and
Leo:Z— 2, Lewo= Cho* oo
Since
.~ _| 00
o3 9]
we obtain that
EiC'C=C'CEj, j=123,.... (4.9)

On the other hand, we have th&t(t) = T(-t). Then

n,

Legwz = T*(®(no, K))C*CT(O(np,K))z

o

=~
Sl

1
= > ) ehomlpicey” N,
1j=1 i=1

0
e—Aj@(ﬂo,k)c*Cer O(no.k) Pj z
k=1

=~
1

jm}

Me

1l
i

r

1l
=

LCTO P]Z,

Mo
WhereLCTOy = C?O*C?Oy = Z e_Aj®(no,k)C*C€Ai®(no,k)y, y € R(Pj).
k=1

(o)

Hence,Lcno = Z LC?O'
j=1



OBSERVABILITY OF LINEAR DIFFERENCE EQUATIONS 11

Letz=[z1,2]" in Z. Since
= sen(4/4;S) —
e%i® = [cog /1;9)]! +r(7\/—1)8j,j > 1,
j
we can see that
e MO CN MNP,z = B 00K >+ BN K) P,z

[O,Ej22]T, j > 1

So,
No
LoroPjz= D [0.Ejz]" =no[0,Ejz] "
k=1
Then

(LemPiz Pj2) = (no[0, Ej22] ", [Ej1, Ej22] ") = nol Ejzl|* > 0, V.
Hence, using (4.9), we get farz 0 in Z that
(Lewz2) = <;LCJ¢0P,-LZ;P,-Z>

I

o0

= D (LgoPizPi2 =10 ) Ejzal* = nolizel/* > 0.
=1 '

j=1
In consequence, by Corollary 2.8 pdnj £ (ii), the equation (4.8) is approximately observ-
able. 0

Example 4.4. Heat Equation

Consider the heat equation

¥(0.X) = yo(x), (4.10)
yx(t,0) = yx(t,1) = 0.

The system (4.10) can be written as an abstract equation in the HilbertZpalc#0, 1]

{ Yt = Yxx+ U(t, X),

{ Z = -Az+Bu(t), zeZ (4.11)

Z(0) = 2o,

whereB = |, the control functionu belong toL?[0,r,Z] and the operatoA is given by
Ap = —dyy With domainD(A) = H2N Hcl), and has the following spectral decomposition.

a) Forallze D(A) we have

AZsz2ﬂ2<Z¢j>¢j,

j=1

whereg;(x) = V2sin(jrXx).
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b) —Ais the infinitesimal generator of@Gy-semigroudT (t)}i>0 given by

T(t)z= ) e"'Ejz zeZ 20, (4.12)
=1

whereEjz = (¢j,2) and4; = j?r2.

So,{E;} is a family of complete orthogonal projections4rand

z:ZEjz, zeZ.
j=1

Now, the discretization of (4.11) on flow is given by

{ zZ(n+1)=T(N)z(n) + B(n)u(n), z€Z,
Z(0) = z.

In this caseT*(t) = T(t) andB = 1.
We proved in [10] the following result.

(4.13)

Proposition 4.5. The system (4.13) is exactly controllable for .

Therefore, if we consider the dual system with observation

z(n+1) =T(n)z(n),
{ y(n+1) = z(n), (4.14)

with C = B, we have that (4.14) is exactly observable. 0

References

[1] R. F. Curtain and A. J. Pritcharthfinite Dimensional Linear Systemsecture Notes
in Control and Information Science®, Berlin: Springer. 1978.

[2] R. F. Curtain and H. J. ZwarAn Introduction to Infinite Dimensional Linear Systems

Theory.Text in Applied Mathematic21. New York: Springer. 1995.

[3] V. Dragan and T. Mozoran, Observability and detectability of a class of discrete-time

stochastic linear systemi®JA Journal of Math. Control and Informatior23, No. 3,
(2006), 371-394.

[4] B. Jacob and H. Zwart, Exact Observability of diagonal systems with a one-

dimensional output operatdnt. J. Appl. Math. Comput. Scll, No. 6, (2001), 1277-
1283.

[5] B. Jacob and M. Baroun, Admissibility and observability of observation operators for

semilinear problemdntegral Equations Operator Theor§4, No. 1, (2009), 1-20.

[6] J. Karrakchou, M. Rachik and S. Gourari, Variation of domains and concept of maxi-

mal output admissible setBacta Univ. Ser. Math. Inforn1, (2006), 105-122.



OBSERVABILITY OF LINEAR DIFFERENCE EQUATIONS 13

[7]

[8]

[9]

[10]

[11]

[12]

[13]

V. Lakshmikantham and D. Trigiant&,heory of Diference Equations: Numerical
Methods and Applicationddathematics in Science and Engineerift§l Academic
Press. 1998.

H. Leiva, A Lemma onCyp-Semigroups and Applications PDEs Systef@aaestions
Mathematicae26, (2003), 247-265.

H. Leiva, Exact controllability of the suspension bridge model proposed by Lazer and
McKenna.J. Math. Anal. Appl309, (2005), 404-419.

H. Leiva and J. Uzcategui, Controllability of linearfidirence equations in Hilbert
Spaces and application84A Journal of Math. Control and Informatior25, (2008),
323-340.

M. Megan, A. L. Sasu and B. Sasu, Discrete Admissibility and Exponential Di-
chotomy for Evolution FamilieDiscrete and Continuous Dinamical Syste@sNo.
2, March, (2003), 383-397.

M. Rachik, M. Lhous and A. Tridane, Controllability and optimal control problem for
linear time-varying distributed systemSystems Analysis Model SimQD, (2002),
1-28.

E. Sontag,Mathematical Control Theory. Deterministic finite-dimensional systems.
Text in Applied Mathematicss. Second Edition. Springer Verlag. 1998.



