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Abstract

We show that (S 2×S 2,ω0⊕λω0), with λ > 1, is an example of symplectic manifold

(X,ω) such that the π1Ham(X ×X,ω⊕−ω) contains extra elements than those from

π1Ham(X,ω)×π1Ham(X,−ω).
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1 Introduction

Let (X,ω) be a compact symplectic manifold with dimRX = 2n and Ham(X,ω) the group of

Hamiltonian diffeomorphisms. It’s natural to ask how Ham(X,ω)×Ham(X,−ω) compares

with Ham(X×X,ω⊕−ω). Firstly, there is a natural injection:

m : Ham(X,ω)×Ham(X,−ω) ↪→ Ham(X×X,ω⊕−ω) : m(φ,ψ) = (φ,ψ)

Secondly, since a neighbourhood of the diagonal4 ⊂ X×X is symplectomorphic to a neigh-

bourhood of the zero section in T ∗X, it is clear that the injection m can’t be surjective. On

the other hand, it is not as clear how they compare homotopically. It is well known that for

(X,ω) = (S 2,ω0), the standard 2-sphere, the two sides of m are weakly homotopic. In this

article we consider the first homotopy group, and will use m to denote the induced map on

π1 as well. To save notations, we use X to denote (X,ω) and X to denote (X,−ω).

Seidel constructed for each γ ∈ π1Ham(X) an automorphismΦX
γ of the quantum homol-

ogy ring QH∗(X) as a module over itself. Let 11 = [X] ∈ QH∗(X) be the unit, then the Seidel
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element ΨX
γ = Φ

X
γ (11) ∈ QH×∗ (X) is an invertible element.1 The map ΨX : π1Ham(X)→

QH×∗ (X) :ΨX(γ) = ΨX
γ is the Seidel homomorphism, where QH×∗ is a group under quantum

multiplication.

In this article, we consider the example (X,ω) = (S 2 × S 2,ω0 ⊕λω0), where ω0 is the

standard volume form on S 2 and λ > 1. We prove the following statement, using explicit

computation of the Seidel elements.

Theorem 1.1. m is not surjective on π1 for (X,ω) = (S 2×S 2,ω0 ⊕λω0) with λ > 1.

Remark 1.2. We note that, in fact, π1Ham(X,ω) already has an element S which does not

come from π1Ham of either of its factors. On the other hand, the factors are not sym-

plectomorphic (after reversing one of the structures). Indeed, Gromov [1] showed that

Ham(X,ω0 ⊕ω0) is weakly homotopic to S O(3)× S O(3), which in turn is weakly homo-

topic to Ham(S 2,ω0)×Ham(S 2,ω0).

Let’s start by fixing some notations. Let Γω = π2(M)/ ∼ where β ∼ β′ ⇐⇒ ω(β−β′) =

c1(T X)(β− β′) = 0. As a group, the quantum homology QH∗(X,ω) � H∗(X,ω)⊗Λω where

Λω is the Novikov ring

Λω =
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graded by degeβ = 2c1(T X)(β). The quantum (intersection) product on QH∗(X) is given by

a∗b =
∑

β∈Γω,c∈H∗(X,ω)

〈a,b, ĉ〉βe
−βc

where ĉ ∈ H∗(X) is the Poincaré dual of c under the ordinary intersection product and

〈a,b, ĉ〉β is the genus 0 Gromov-Witten invariant counting the number of J-holomorphic

rational curves in X passing through representatives of the classes a, b and ĉ, representing

the class β.

Next recall the effect of reversing the symplectic structure on QH∗(X) and the Seidel

elements. It leaves Γω unchanged. Let τ : π2(X)→ π2(X) : β 7→ −β, it induces the ring

isomorphism

τ : Λω→ Λ−ω :
∑

β∈Γω

aβe
β 7→
∑

β∈Γω

aβτ
(

eβ
)

=

∑

β∈Γω

(−1)c1(T X)(β)aβe
−β

The quantum homology QH∗(X) and QH∗(X) are isomorphic as rings via

τ : QH∗(X)→ QH∗(X) : τ(a⊗ eβ) = (−1)n+c1(T X)(β)a⊗ e−β

where a ∈ H∗(X). Let γ = [g] ∈ π1Ham(X) where g ∈ Ω0Ham(X,ω) is a loop in Ham(X)

based at id and define τ : π1Ham(X)→ π1Ham(X) by τ(γ) = [g−], where g−(t) = g(1− t),

then the Seidel elements are related by

τ(ΨX
γ ) = ΨX

τ(γ) (1.1)

1Seidel’s original construction [4] gives for each choice of a reference section an automorphism as well as

an element. Here, we follow McDuff [2], choosing a canonical reference section and refer to the result as the

Seidel morphism and element. Both will appear in the main text.
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Let (X,ωX ) and (Y,ωY ) be compact monotone symplectic manifolds, then we have the

ring isomorphism extending the Künneth isomorphism for ordinary homology:

QH∗(X×Y,ωX ⊕ωY ) � QH∗(X,ωX )⊗QH∗(Y,ωY ) (1.2)

For the case under consideration, although (X,ω) = (S 2 × S 2,ω0 ⊕ λω0) is not monotone,

neither is (X,−ω), the manifold (X ×X,ω⊕−ω) can be written as a product of monotone

manifolds:

(X ×X,ω⊕−ω) = (X1×X1,ω1 ⊕λω1)

where ω1 = ω0⊕−ω0 on X1 = S 2×S 2. Since

QH∗(X1,ω1)⊗QH∗(X1,λω1)�QH∗(S
2,ω0)⊗QH∗(S

2,−ω0)⊗QH∗(S
2,λω0)⊗QH∗(S

2,−λω0)

it follows still that

QH∗(X ×X,ω⊕−ω) � QH∗(X,ω)⊗QH∗(X,−ω)

The Hamiltonian groups are similarly related:

m : Ham(X,ωX )×Ham(Y,ωY ) ↪→ Ham(X×Y,ωX ⊕ωY )

Moreover, let γX ∈ π1Ham(X,ωX ) and γY ∈ π1Ham(Y,ωY ) then γX×Y :=m(γX,γY) ∈ π1Ham(X×

Y,ωX ⊕ωY). Suppose that the ring isomorphism (1.2) holds, then the respective Seidel ele-

ments are related by

Ψ
X×Y(γX×Y ) = ΨX(γX)⊗ΨY(γY)
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2 Example: (X,ω) = (S 2×S 2,ω0⊕λω0)

Let (S 2,ω0) be the sphere with the standard symplectic structure, X = (S 2 × S 2,ω0 ⊕λω0)

for some λ > 0, and (M,Ω) = X ×X. Denote the factors as P j for j = 1, . . . ,4. Let

(X′,ω′) = P1 ×P4 and (M′,Ω′) = X′×X
′
,

then M′ and M are isomorphic symplectic manifolds, by switching the factors; while X′

and X are isomorphic via an anti-symplectic involution on the second factor.

When λ ∈ (1,2], it’s known (see for example McDuff-Tolman [3]) that π1Ham(X) is

generated by 3 elements: r1 and r2 of order 2 rotating the respective factors and an element

s of infinite degree. X admits another structure of S 2 fibration over S 2 and s defines an

S 1action on X rotating the fibers. The diagonal and the anti-diagonal are the two sections

of the fibration fixed by this S 1-action, and the weight of the action on the normal bundle

of the section with bigger area is −1.

In order to write down the Seidel elements in QH∗(X) and for later convenience, we

introduce a system of notations for the elements in H∗ of the various spaces involved. The
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homology H∗(S
2) = Z⊕ 0⊕Z, as graded by the degree. We write (1) ∈ H2(S 2) and (0) ∈

H0(S 2) as the respective (positive) generators (with respect to the volume form ω0). For

a (positive) basis of H∗(S
2) with respect to the reverse form −ω0, we write (1) := −(1) ∈

H2(S 2) and (0) := −(0) ∈ H0(S 2). The homology H∗(X) is then generated by (11) ∈ H4(X),

(10), (01) ∈ H2(X) and (00) ∈ H0(X), where, for example, (10) denotes the tensor (1)⊗ (0).

We use similar notations for the generators of H∗(M), e.g. (0101) ∈ H4(M).

The quantum homology QH∗(S
2) is determined by the fact that (1) is the unit and

(0)∗ (0) = (1)e−(1)

For QH∗(S 2), we have the corresponding · -version:

(0)∗(0) = (1)e−(1)⇒ (0)∗(0) = −(1)e(1)

Note that the unit in the quantum homology QH∗(X), QH∗(X
′) and QH∗(M) are respectively

(11), (11) and (1111). We have for example

(01)∗ (10) = (00) and (0101)∗ (0011) = (1001)e−(1000)

Using these notations, let r denote the action of S 1 on S 2 fixing the poles andΨr ∈QH∗(S
2)

be the corresponding Seidel element, then

Ψ
S 2

r = (0)e
1
2 (1) and ΨS

2

τ(r) = τ(ΨS 2

r ) = (−1)c1(T S 2)( 1
2 (1))(0)e−

1
2 (1)
= −(0)e−

1
2 (1) ∈ QH∗(S

2)

We write down the Seidel elements for R1 and R2:

Ψ
X
r1
= Ψ

S 2

r ⊗Ψ
S 2

11 = (01)e
1
2

(10) and ΨX
r2
= Ψ

S 2

11 ⊗Ψ
S 2

r = (10)e
1
2

(01)

Following [3], we explicitly write down the Seidel element for s:

Ψ
X
s = [(01)+ (10)]e

1
2 (10)+h[(10)−(01)] where h =

1

6λ(λ−1)

where ω((10)) = 1, ω((01)) = λ and c1((01)) = c1((10)) = 2. Because

[(01)+ (10)]∗ [(01)− (10)] = (11)
(

e−(10)− e−(01)
)

we see that the reversed loop s− gives the Seidel element

Ψ
X
s− = (ΨX

s )−1
= [(01)− (10)]e

1
2 (10)−h[(10)−(01)]

(

1+ e(10)−(01)
+ e2[(10)−(01)]

+ . . .
)

The corresponding Seidel elements in QH∗(X) are:

Ψ
X
τ(r1) = −(01)e−

1
2

(10),ΨX
τ(r2) = −(10)e−

1
2

(01) and

Ψ
X
τ(s) = −[(01)+ (10)]e−

1
2 (10)−h[(10)−(01)].

Next we describe the Seidel elements in QH∗(X
′). Those for r′

1
and r′

2
are:

Ψ
X′

r′
1
= Ψ

S 2

r ⊗Ψ
S 2

τ(11) = (01)e
1
2 (10) and ΨX′

r′
2
= Ψ

S 2

11 ⊗Ψ
S 2

τ(r) = −(10)e−
1
2 (01).
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To describe the Seidel elements of infinite order, we notice that (X′,ω′) is symplectically

identified with (X,ω) by

(1,c) : CP1×CP1→ CP1×CP1,

where c is the antipodal map. It induces on H∗ the isomorphism given by

(1,c)∗ : ((00), (01), (10), (11)) 7→ ((00), (01), (10), (11))

from which can be recovered the expressions for ΨX′

r′
1

and ΨX′

r′
2

given above. Let s′ be the

loop conjugate to s by the map (1,c) then the corresponding Seidel element is

Ψ
X′

s′ = [(01)− (10)]e
1
2 (10)+h[(01)+(10)] ∈ QH∗(X

′,ω′).

The corresponding Seidel elements in QH∗(X
′
) are:

Ψ
X
′

τ(r′
1
) = −(01)e−

1
2

(10),ΨX
′

τ(r′
2
) = (10)e

1
2

(01) and

Ψ
X
′

τ(r′) = −[(01)− (10)]e−
1
2

(10)−h[(01)+(10)].

The image of the obvious map:

m : π1Ham(X)×π1Ham(X)→ π1Ham(M)

is generated by the image of {11,r1,r2, s}×{11,τ(r1),τ(r2),τ(s)} and the corresponding Seidel

elements are given by the respective tensor products. Let m′ be the corresponding map for

(X′,±ω′):

m′ : π1Ham(X′)×π1Ham(X
′
)→ π1Ham(M′) = π1Ham(M),

where the last identification is by switching the factors of M′. The image of m′ is generated

by the image of {11,r′
1
,r′

2
, s′} × {11,τ(r′

1
),τ(r′

2
),τ(s′)}. Simple algebraic observation together

with the explicit description of the Seidel elements given above lead to

Proposition 2.1. img(m) , img(m′) ⊂ π1Ham(M,Ω).

Proof: We first proceed as far as possible without using the exact form of the Seidel

elements computed above. Let S = m(s,11), T = m(11,τ(s)), R j = m(r j,11), R j = m(11,τ(r j))

for j = 1,2 and the corresponding ones with ′, be loops in Ham(M,Ω). Let Λ :=ΛΩ denote

the Novikov ring for (M,Ω). It’s evident that

Ψ
M
S ∈ SpanΛ((0111), (1011)), ΨM

T ∈ SpanΛ((1101), (1110)), and

Ψ
M
S ′ ∈ Span

Λ
((0111), (1110)), ΨM

T ′ ∈ Span
Λ

((1011), (1101)).
(2.1)

More explicitly, we have the following

Ψ
M
S =

[

(0111)+ (1011)
]

e
1
2

(1000)+h[(1000)−(0100)]

Ψ
M
T = −

[

(1101)+ (1110)
]

e−
1
2 (0010)−h[(0010)−(0001)]

Ψ
M
S ′ =

[

−(1110)+ (0111)
]

e
1
2

(1000)+h[(0001)+(1000)]

Ψ
M
T ′ = −

[

−(1011)+ (1101)
]

e−
1
2 (0010)−h[(0100)+(0010)]
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We’ll drop the superscripts such as X from the notation of the Seidel elements as they

can be inferred from the subscripts. The Seidel elements of loops in img(m) are of the form

σ := Ψ
ε1

R1
Ψ
ε2

R2
Ψ
ε3

R1

Ψ
ε4

R2

Ψ
p

S
Ψ

q

T

where ε j ∈ {0,1} and p,q ∈ Z. Square it we have

σ2
= Ψ

2p

S
Ψ

2q

T
(2.2)

Suppose that σ also lies in img(m′), then ∃p′,q′ ∈ Z so that

σ2
= Ψ

2p

S
Ψ

2q

T
= Ψ

2p′

S ′
Ψ

2q′

T ′
= σ′

2
(2.3)

In the following we show that (2.3) holds iff p = q = p′ = q′ = 0.

It’s easy to see from (2.1) (also see below for the first two) that

Ψ
2
S ∈ V := SpanΛ((1111), (0011)), Ψ2

T ∈W := SpanΛ((1111), (1100))

and Ψ2
S ′ ∈ V′ := Span

Λ
((1111), (0110)), Ψ2

T ′ ∈W′ := Span
Λ

((1111), (1001)).

Notice that V,V′,W and W′ are closed under the quantum product ∗ and inverse (whenever

exists).

Let us first assume that p,q, p′ ,q′ > 0, then σ2 has the form:

(a(1111)+b(0011))∗ (c(1111)+d(1100)) = ac(1111)+ad(1100)+bc(0011)+bd(0000)

while σ′2 is of the form:

(a′(1111)+b′(1001))∗(c′(1111)+d′(0110))= a′c′(1111)+a′d′(0110)+b′c′(1001)+b′d′(0000)

It follows that the necessary condition for (2.3) to hold is

ad = bc = a′d′ = b′c′ = 0 ∈Λ (2.4)

Here we need the explicit form of the Seidel elements. First we have

Ψ
2
s =

[

2(00)+ (11)
(

e−(10)
+ e−(01)

)]

e(10)+2h[(10)−(01)] ∈ QH∗(X).

Now let x = e−(10), y = e−(01), A = (00) and B = (11), then for any integer p > 0

Ψ
2p
s = Kp

(

A+
x+ y

2
B

)p

, where A2
= Bxy,B2

= B,AB= A and K = 2x−2h−1y2h

We have the explicit formula

Ψ
2p
s = Kp























b
p

2
c
∑

i=0

(

p
2i

)

αp−2i(xy)iB+

b
p−1

2
c

∑

i=0

(

p
2i+1

)

αp−2i−1(xy)iA























, where α =
x+ y

2
.

Note that

τ(x) = e(10)
= x−1,τ(y) = e(01)

= y−1,τ(A) = (00) = (00) = A and τ(B)= B
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It follows that τ(α) = (xy)−1α and τ(K) = 2x2h+1y−2h
= 4K−1. Using (1.1) we get for q > 0

Ψ
2q

τ(s)
= 4qK−q























b
q

2
c
∑

i=0

(

q
2i

)

αq−2i(xy)i−q B+

b
q−1

2
c

∑

i=0

(

q
2i+1

)

αq−2i−1(xy)i+1−qA























,

Since Ψ
2p

S
= Ψ

2p
s ⊗Ψτ(11) and Ψ

2q

T
= Ψ11⊗Ψ

2q

τ(s)
, it follows that in (2.4) ad = bc = 0⇒ p =

q = 0, i.e. σ2
= id. Similaly a′d′ = b′c′ = 0⇒ p′ = q′ = 0 and (σ′)2

= id.

The other cases of the sign combinations of p,q, p′ and q′ are similar. Among p,q,−p′ ,−q′,

there must be 2 of the same sign. Let’s suppose p and −p′ are of the same sign, say both

> 0, then instead of (2.3) we may consider

Ψ
2p

S
Ψ
−2p′

S ′
= Ψ

−2q

T
Ψ

2q′

T ′
.

Without using the details of the Seidel elements involved, we arrive at an equation similar

to (2.4). Afterwards, explicit computation similar to the above gives p = p′ = 0 and thus

σ2
= (σ′)2

= id.

It follows that, at least, all elements in the image of m of the form pS + qT with p or

q , 0 do not lie in the image of m′, and the proposition follows. �

Corollary 2.2. m is not surjective on π1 for (X,ω) = (S 2×S 2,ω0 ⊕λω0) with λ > 1. �
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