
African Diaspora Journal of Mathematics
Special Volume in Honor of Prof. Augustin Banyaga
Volume 14, Number 2, pp. 118–133 (2012)

ISSN 1539-854X
www.math-res-pub.org/adjm

SM   A C
S

T D̆∗ P R†
Department of Mathematics & Statistics, Florida International University,

Miami, FL 33199, USA

Abstract

The question of whether a Sasakian metric can admit an additional compatible
(K)-contact structure is addressed. In the complete case if the second structure is also
assumed Sasakian, works of Tachibana-Yu and Tanno show that the manifold must be
3-Sasakian or an odd dimensional sphere with constant curvature. Some extensions of
this result are obtained, mainly in dimensions 3 and 5.
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1 Introduction

This note is motivated by the following question: On a Sasakian manifold (M2n+1,g,η), is
it possible to have a second g-compatible contact structure (g, η̃), with η̃ . ±η ?

The answer is known to be affirmative; there are examples when (g, η̃) is also Sasakian.
Indeed, if (M2n+1,g) = (S 2n+1,g0) is a standard odd dimensional sphere of constant cur-
vature, it is well known that the space of Sasakian structures which are compatible with
g0 and a given orientation can be identified with the Hermitian symmetric space S O(2n+
2)/U(n+1). Also, if (M4k+3,g) is 3-Sasakian, there is an S 2-family of Sasakian structures
compatible with g and the given orientation. Conversely, by results of Tachibana-Yu and
Tanno, if (M,g) is complete and (g, η̃) is assumed to be Sasakian as well, then the above are
essentially the only examples.

Theorem 1.1. [13, 14] Suppose (M2n+1,g) is a complete Riemannian manifold which ad-
mits two compatible Sasakian structures (g,η), (g, η̃), with η . ±η̃. Then

(a) (M2n+1,g) is covered by the round sphere (S 2n+1,g0), or
(b) n = 2k+1, (M4k+3,g) is 3-Sasakian and η, η̃ belong to the S 2-family of g-compatible

Sasakian structures.
Moreover, if the angle function of the two Reeb fields g(ξ, ξ̃) is non-constant, then only

case (a) can occur.
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It is thus natural to consider the following refinement of the original question.

Question 1.2. Is it possible on a Sasakian manifold (M2n+1,g,η) to have a second non-
Sasakian contact structure (g, η̃)?

One may consider local or global versions of the question. One may also allow for
η and η̃ to induce the same or opposite orientations on M2n+1. Certainly, this distinction
is irrelevant when dim(M) = 4k+ 1. In this case, if η̃ is a g-compatible contact structure,
then −η̃ is also a g-compatible contact structure inducing the opposite orientation; thus, it
is enough to treat Question 1.2 in the case when η and η̃ induce the same orientation. When
dim(M) = 4k+3 the two cases can be quite different. For instance, Question 1.2 has a neg-
ative answer for a compact Sasakian 3-manifold (M3,g,η), if the second contact structure η̃
induces the same orientation (see Corollary 3.6). However, when η and η̃ induce opposite
orientations, S̃ L2 and its compact quotients provide affirmative examples for Question 1.2.
At this time, we do not know if these are the only such 3-dimensional examples. We prove
that locally they are the only examples with constant scalar curvature.

Theorem 1.3. Let (M3,g) be a connected Riemannian 3-manifold with constant scalar
curvature. Assume that the metric g admits a compatible Sasakian structure (g,η) and
another compatible contact structure (g, η̃) with η̃ . ±η. One of the following holds:

(i) The structure (g, η̃) is also Sasakian and, in this case, (M3,g) is locally isometric to
the standard sphere (S 3,g0).

(ii) The structure (g, η̃) is not Sasakian; in this case η, η̃ must induce opposite orienta-
tions, and (M3,g) must be locally isometric to (S̃ L2,g0) as described in Example 3.1.

Contrasting with case (ii) of Theorem 1.3, note that Question 1.2 has a negative an-
swer in all dimensions for complete Einstein manifolds (see Theorem 1.2 in [1]). This is a
consequence of a theorem of Boyer and Galicki [6] that any complete K-contact Einstein
manifold must be Sasakian and a result of Blair characterizing K-contact structures by the
Ricci curvature in the direction of the Reeb field ([4], Theorem 7.1).

In section 4, we treat the special case of Question 1.2 when we assume that (g, η̃) is a
K-contact structure, i.e. the Reeb vector field ξ̃ of η̃ is a Killing vector field for the metric
g. In this case, if the Reeb vector fields do not commute, i.e. [ξ, ξ̃] . 0, Theorem 1.1
easily implies that odd-dimensional spheres and 3-Sasakian manifolds are the only possible
complete examples. Thus, the Sasakian–K-contact version of Question 1.2 has a negative
answer if the Reeb fields do not commute (see Proposition 4.3). Even more generally,
Belgun, Moroianu, Semmelmann [3] obtained a beautiful characterization of K-contact
manifolds (M2n+1,g, ξ1) which admit another unit Killing field ξ2, orthogonal to ξ1, and
with [ξ1, ξ2] = ξ3 . 0. They show that such a manifold must have dimension 4k + 3 and
(M4k+3,g, ξ1, ξ2, ξ3) is a so-called weakly K-contact 3-structure. This means that ξ1, ξ2, ξ3
are orthogonal, all induce K-contact structures with respect to the given metric g, and there
is a splitting T M = D+ ⊕D− ⊕ V , where V = Span(ξ1, ξ2, ξ3), so that the corresponding
endomorphisms φ1,φ2,φ3 satisfy the quaternionic relations on D− and the anti-quaternionic
relations on D+. See [3] for more details on weakly K-contact 3-structures. It is also shown
there how these structures arise naturally from pseudo-Riemannian 3-Sasakian manifolds.
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As it is related to our main question, let us also mention here a result of Kashiwada
[8] that a contact metric 3-structure (g, ξ1, ξ2, ξ3) (definition as above without K-contact
assumption and with D+ trivial) is necessarily 3-Sasakian.

For our Sasakian–K-contact version of Question 1.2, it thus remains to consider the
case when the Reeb vectors commute. We provide the following partial answer.

Theorem 1.4. Let (M2n+1,g,η,ξ) be a compact Sasakian manifold which admits another g-
compatible K-contact structure (g, η̃, ξ̃) with [ξ, ξ̃] = 0. Let f = g(ξ, ξ̃) be the angle function
of the two Reeb fields and assume that one of its critical sub-manifolds f −1(1), or f −1(−1)
has codimension 2. Then (g, η̃, ξ̃) is also Sasakian and the manifold is covered by a sphere.

In dimension 5, we have the following complete answer for the Sasakian–K-contact version
of Question 1.2.

Theorem 1.5. Suppose (M5,g,η,ξ) is a complete Sasakian 5-manifold which admits an-
other g-compatible K-contact structure (g, η̃, ξ̃). Then (g, η̃) is also Sasakian and if ξ . ±ξ̃,
then (M5,g) is covered by the round sphere (S 5,g0).

For dimensions higher than 5 the Sasakian–K-contact problem still remains open in the case
of commuting Reeb fields.

A crucial role throughout this note is played by the angle function f = g(ξ, ξ̃). The study
of this angle function goes back to the work of Professor Banyaga with the second author
[2]. Some ideas from [2] and [12] are essential in the proof of Theorem 1.4. Thus, the
authors find it particularly fitting to dedicate this work to Professor Banyaga.

2 Preliminaries

A contact form on an orientable odd dimensional manifold M2n+1 is a 1-form η so that
η∧ (dη)n is a volume form on M2n+1, i.e. it does not vanish at any point of the manifold. It
is well known that each contact form η has a uniquely associated Reeb field ξ, so that

η(ξ) = 1 , iξdη = 0 , (2.1)

where iX denotes the interior product of a form with a tangent vector X ∈ T M. As an
immediate consequence of its definition, the Reeb field satisfies

Lξη = 0 , Lξdη = 0 , (2.2)

where LX is the Lie derivative with respect to X ∈ T M. We denote byD = kerη the contact
distribution associated to η.

A Riemannian metric g is said to be compatible (or associated) to η if the skew-
symmetric endomorphism φ of T M defined by

1
2

dη(X,Y) = g(X,φY)1 (2.3)

1We generally follow the notations and conventions from [4]. One exception is the definition of the dif-
ferential d. For us the differential of a 1-form α is dα(X,Y) := X(α(Y))−Y(α(X))−α([X,Y]). In [4], the right
hand-side has a “1/2” factor.
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is an almost complex structure on the contact distributionD. In view of (2.1), this is equiv-
alent to the condition

φ2 = −Id+η⊗ ξ . (2.4)

The tuple (M2n+1,g,φ,η,ξ) as above is called a contact metric structure and, as already done
in the introduction, we sometimes refer to it just as (M2n+1,g,η).

A consequence of (2.3) and (2.4) is that the volume form dVg, defined by the metric g
and the orientation induced by η, coincides with the volume form induced by η∧ (dη)n, up
to a dimension factor:

dVg =
1

2nn!
η∧ (dη)n . (2.5)

Recall that a contact metric structure (g,φ,η,ξ) is said to be K-contact if the Reeb vector
field is a Killing vector field for the metric, i.e. Lξg= 0. A contact metric structure (g,φ,η,ξ)
is called Sasakian if the covariant derivative of φ with respect to the Levi-Civita connection
is given by

(∇Xφ)Y = g(X,Y)ξ−η(Y)X , ∀ X,Y ∈ T M . (2.6)

It is well known that the Sasakian condition always implies the K-contact condition, with
the converse being true only in dimension 3.

Let (M2n+1,g,φ,η,ξ) be a contact metric structure. Following [4], define the tensor field
h by

h =
1
2

Lξφ .

It is easy to see that h is g-symmetric, φ-anti-invariant and hξ = 0. Also, the tensor h can be
seen as the obstruction to the structure being K-contact, as h ≡ 0 if and only if Lξg ≡ 0.

In the following proposition we collect some basic facts about contact metric structures.

Proposition 2.1. Let (M2n+1,g,φ,η,ξ) be a contact metric structure. Denote by R, Ric, s
respectively the Riemannian curvature tensor, the Ricci tensor and the scalar curvature of
the metric g. Let δg be the divergence operator induced by the metric and also denote by l
the symmetric endomorphism of T M defined by lX = R(ξ,X)ξ. The following relations hold:

∇ξφ = 0 ; (2.7)

∇Xξ = −φX−φh(X) ; (2.8)

δgη = 0 , δg(dη) = 4nη (2.9)

(∇ξ(φh))X = φ2X+ (φh)2X− lX ; (2.10)

Ric(ξ, ·) = 2nη+δg(φh) ; (2.11)

Ric(ξ,ξ) = 2n− |h|2 ; (2.12)

ξ(|h|2) = −2 < l,φh > ; (2.13)

−ξ(|h|2)+δg(Ric(ξ, ·)D) = −
1
2
ξ(s)+ < Ric,φh > . (2.14)



122 T. Drăghici and P. Rukimbira

Proof. All relations, except perhaps the last two, are well known. For proofs see Blair’s
book [4]. Relation (2.13) follows by taking the inner product of both sides of (2.10) with
φh, then use φhξ = 0, tr(φh) = 0 and < (φh)2,φh >= 0 (as φh is φ-anti-invariant and (φh)2 is
φ-invariant).

Relation (2.14) follows from alternative ways of computing δg(Ric(ξ, ·)). Indeed, from
(2.11) and (2.12) we have

Ric(ξ, ·) = (2n− |h|2)η+ (Ric(ξ, ·))D ,

and taking divergence of this relation we get

δg(Ric(ξ, ·)) = −ξ(|h|2)+δg(Ric(ξ, ·)D) .

Computing δg(Ric(ξ, ·)) directly by making use of (2.8), we have

δg(Ric(ξ, ·)) = (δgRic)(ξ)+ < Ric , φh >= −
1
2
ξ(s)+ < Ric,φh > ,

where for the last equality we used the Bianchi differential identity δgRic = −1/2ds. �

As a consequence of independent interest of the relation (2.14), note the following

Corollary 2.2. Let (M2n+1,g,φ,η,ξ) be a contact metric structure. Suppose that the Reeb
field is an eigenvector of the Ricci tensor and that the Ricci tensor is φ-invariant. Then
ξ(s−2|h|2) = 0.

Next consider a Riemannian manifold (M2n+1,g) which admits two compatible contact
structures η, η̃. Let ξ, ξ̃ be the two Reeb fields and let φ, φ̃ be the almost complex structures
on the corresponding contact bundles. In the next proposition we make some first general
observations on the angle function f := g(ξ, ξ̃) of the two Reeb fields.

Proposition 2.3. Suppose (M2n+1,g) is a Riemannian manifold which admits two compati-
ble contact structures η, η̃ and let f = g(ξ, ξ̃) denote the angle function. Then

(a) η∧ (dη)n = ±η̃∧ (dη̃)n and η(̃ξ) = η̃(ξ) = f , where the ± sign in the first relation
corresponds to whether η and η̃ induce the same, or opposite orientations on M.

(b) The gradient of the angle function is given by

∇ f = φξ̃+ φ̃ξ−φhξ̃− φ̃̃hξ . (2.15)

(c) The Laplaceian of the angle function is given by

∆ f = 8n f −2 < φ, φ̃ > −2 < φh, φ̃̃h > −2Ric(ξ, ξ̃) . (2.16)

In particular, if one of the structures is K-contact, then

∆ f = 4n f −2 < φ, φ̃ > . (2.17)
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Proof. Part (a) is obvious and part (b) follows directly from relation (2.8) of Proposition
2.1. For the Laplaceian of f , we have

∆ f = ∆ < η, η̃ >=< ∇∗∇η, η̃ > + < η,∇∗∇η̃ > −2 < ∇η,∇η̃ > .

Now we use the Weitzenböck formula for 1-forms applied to η and η̃.

(dδg+δgd)η = ∇∗∇η+Ric(ξ, ·) .

By relation (2.9), (dδg+δgd)η = 4n η, thus

∇∗∇η = 4nη−Ric(ξ, ·) ,

and the similar formula for ∇∗∇η̃. Now formula (2.16) follows noting that
< ∇η,∇η̃ >=< ∇ξ,∇ξ̃ > and using (2.8). Relation (2.17) follows from formula (2.11) spe-
cialized to the K-contact case. �

3 The 3-dimensional case

In this section we are interested in the 3-dimensional version of Question 1.2 and we will
prove Theorem 1.3. We start with the following example of contact forms sharing a compat-
ible metric. The example is inspired from [7], where it appeared in the context of classifying
taut-contact circles. See also [9] for the classification of 3-dimensional Lie groups.

Example 3.1. Let G denote one of the simply connected Lie groups S 3 = S U(2), S̃ L2, Ẽ2,
where S̃ L2 is the universal cover of PS L2R and Ẽ2 is the universal cover of the Euclidean
group (i.e. orientation preserving isometries of R2). Then the Lie algebra of G admits a
basis ξ1, ξ2, ξ3 satisfying the structure equations

[ξ2, ξ3] = 2ξ1, [ξ3, ξ1] = 2ξ2, [ξ1, ξ2] = 2εξ3,

where ε = 1,−1, or 0 for each of the three groups listed, respectively. Denote by η1,η2,η3
the co-frame dual to ξ1, ξ2, ξ3 and let the Riemannian metric

g0 = η1⊗η1+η2⊗η2+η3⊗η3.

In the case of S U(2), (η1,η2,η3) are all contact structures with the same volume form and are
all compatible with the metric g0; in fact, (g0,η1,η2,η3) is the standard 3-Sasakian structure
on the 3-dimensional sphere S 3 = S U(2). In the case of S̃ L2R, or Ẽ2, η1 and η2 are contact
structures with the same volume form, both compatible with g0. In fact, any contact form
η̃ = a1η1 +a2η2 of the (taut contact) circle determined by η1,η2 (a2

1 +a2
2 = 1) is compatible

with g0 and is non-Sasakian. In the case of S̃ L2R, (g0,η = η3) is a Sasakian structure
inducing the opposite orientation as that of (g0, η̃).

We next give a lemma needed in the proof of Theorem 1.3, but which has some inde-
pendent interest.
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Lemma 3.2. Assume that η, η̃ are two contact forms on (an open set of) a 3-dimensional
manifold, with Reeb fields ξ and ξ̃, respectively. Assume also that at all points

η∧dη = η̃∧dη̃, η(̃ξ) = η̃(ξ), and [ξ, ξ̃] = 0 .

Then, up to sign, the Reeb fields must coincide, i.e. ξ ≡ ±ξ̃. Moreover, η̃ = ±η+a, where a
is a closed, basic 1-form (i.e. da = 0, a(ξ) = 0). In particular, such contact forms η, η̃ admit
a common compatible metric if only if η ≡ ±η̃, i.e. a ≡ 0.

Proof. Applying η∧dη = η̃∧dη̃ to (ξ, ξ̃,X) and using η(̃ξ) = η̃(ξ), we get

ĩξdη = −iξdη̃ .

From the assumption [ξ, ξ̃] = 0, we also have Lξ̃η = Lξη̃ = 0 and, using Cartan’s formula, it
follows that

d(η(̃ξ)) = 0, ĩξdη = 0, iξdη̃ = 0 .

These relations imply that ξ =±ξ̃. Assume ξ = ξ̃, the other case being similar. Let a := η̃−η.
Clearly, a(ξ) = 0, so a∧dη = a∧dη̃ = 0. From

η̃∧dη̃ = η∧dη+η∧da+a∧dη̃ ,

combined with η∧ dη = η̃∧ dη̃, it follows that η∧ da = 0. But we also have iξda = 0, so
these imply da = 0, i.e. a is a closed, basic 1-form, as stated. Finally, note that the forms
η̃ = η+a and η share a common compatible metric g if and only if a = 0, as both forms must
be the g-duals of the common Reeb field ξ. �

Remark 3.3. As a consequence of Lemma 3.2, observe that the conditions

η∧dη = η̃∧dη̃, η(̃ξ) = η̃(ξ) ,

although necessary, are not also sufficient for insuring that two contact forms, like-wise
oriented, η, η̃ admit a common compatible metric. They are sufficient on the set of points
where f = η(̃ξ) = η̃(ξ) is not equal to ±1.

Next we specialize Proposition 2.3 to the 3-dimensional problem.

Proposition 3.4. Let (M3,g) be a 3-dimensional Riemannian manifold which admits a com-
patible Sasakian structure (g,φ,ξ,η) and another compatible contact structure (g, φ̃, ξ̃, η̃).
As before, let f = g(ξ, ξ̃) denote the angle function between the two Reeb fields. Then we
have the following:

(a) If η and η̃ induce the same orientation on M3, then φξ̃ = −φ̃ξ. Moreover, in this case
the gradient and the Laplaceian of the angle function satisfy

∇ f = −φ̃̃hξ , ∆ f = 0 . (3.1)

(b) If η and η̃ induce opposite orientations on M3, then φξ̃ = φ̃ξ. Moreover, in this case

∇ f = 2φ̃ξ− φ̃̃hξ , ∆ f = 8 f . (3.2)

Note that in either case f satisfies an elliptic equation, so it has the (strong) unique
continuation property. Also note that in either case we have that ξ̃( f ) = 0.
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Proof. As in the proof of Lemma 3.2, condition η∧dη = ±η̃∧dη̃ implies

ĩξdη = ∓iξdη̃ , hence φξ̃ = ∓φ̃ξ,

where the signs correspond. The formulae for ∇ f now follow from (2.15). The formulae
for ∆ f follow from (2.17) noting that in dimension 3

< φ, φ̃ >=
1
2
< dη,dη̃ >=

1
2
< ?g(dη),?g(dη̃) >= ±2 < η, η̃ >= ±2 f ,

where ?g is the Hodge operator of the metric g. �

The proof of Theorem 1.3 follows from Propositions 3.5, 3.7, 3.8 below. The first one
deals with the case of constant angle function.

Proposition 3.5. Let (M3,g) be a 3-dimensional Riemannian manifold which admits a com-
patible Sasakian structure (g,φ,ξ,η) and another compatible contact structure (g, φ̃, ξ̃, η̃).
Suppose that the angle function f = g(ξ, ξ̃) is constant. Then either (g, φ̃, ξ̃, η̃) is Sasakian as
well, or (M3,g) is locally isometric with (S̃ L2,g0) as presented in Example 3.1.

Proof. In the case η, η̃ induce the same orientation, the gradient of the angle function for-
mula (3.1) shows that ∇ f = 0 implies φ̃̃h = 0, i.e. (g, φ̃, ξ̃, η̃) is Sasakian.

In the case η, η̃ induce opposite orientations, the constant angle function f must be iden-
tically 0, by the Laplaceian relation in (3.2). Thus the vectors ξ, ξ̃, φ̃ξ form a g-orthonormal
basis. From the gradient relation in (3.2), we get that φ̃ξ is an eigenvector of h̃ with eigen-
value −2. As h̃ anti-commutes with φ̃, ξ is also an eigenvector of h̃ with eigenvalue 2. Using
relation (2.8) for (g, η̃) and the Sasakian condition for (g,η) it is easy to check the following
Lie brackets relations:

[ξ, ξ̃] = −2φ̃ξ, [̃ξ, φ̃ξ] = 2ξ, [φ̃ξ,ξ] = 2ξ̃ .

Thus our manifold is locally isometric with (S̃ L2,g0) as presented in Example 3.1. �

An immediate consequence of Propositions 3.4 and 3.5 is:

Corollary 3.6. Let (M3,g) be a compact 3-dimensional Riemannian manifold which admits
two compatible contact structures (g,φ,ξ,η), (g, φ̃, ξ̃, η̃) inducing the same orientation. If
one of the structures is Sasakian then the other is Sasakian as well, and if η . ±η̃, (M3,g)
must be locally isometric with (S 3,g0).

Proof. From relation (3.1), the angle function is harmonic, so it must be constant as the
manifold is assumed compact. Then the conclusion follows from Proposition 3.5. �

We can draw conclusions without compactness and irrespective of orientation if we
assume the constancy of the scalar curvature.

Proposition 3.7. Let (M3,g) be a 3-dimensional Riemannian manifold which admits a com-
patible Sasakian structure (g,φ,ξ,η) and another compatible contact structure (g, φ̃, ξ̃, η̃). If
the scalar curvature is constant, then the angle function f = g(ξ, ξ̃) must be constant, or the
second structure is Sasakian as well.
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Proof. We assume f is not identically 1, or −1 as otherwise there is nothing to prove. As f
satisfies the unique continuation property, the set of points where f 2 , 1 is an open dense
set. We’ll work on this set and then extend the conclusions by continuity.

It is well known that in dimension 3, the whole curvature tensor is determined by the
Ricci tensor. Using this, relation (2.13) for the structure (g, φ̃, ξ̃, η̃) takes the form

ξ̃(|̃h|2) = 2 < Ric, φ̃̃h > .

On the other hand, the assumption that (M3,g,η) is Sasakian implies that the Ricci tensor is
given by

Ric =
( s
2
−1
)
g+
(
3−

s
2

)
η⊗η .

From these two relations we get

ξ̃(|̃h|2) = (6− s) < φ̃̃hξ , ξ > . (3.3)

From the above expression of the Ricci tensor we also get

Ric(̃ξ, ξ̃) =
( s
2
−1
)
+
(
3−

s
2

)
f 2 .

Combining this with relation (2.12), we obtain

(1− f 2)(3−
s
2

) = |̃h|2 . (3.4)

Noting also that ξ̃( f ) = 0 and ξ( f ) = − < φ̃̃hξ , ξ > (in either case when η, η̃ induce the same
or opposite orientation), we obtain from (3.3) and (3.4)

(1− f 2)̃ξ(6− s) = −2(6− s)ξ( f ) . (3.5)

Using the assumption that the scalar curvature is constant and the fact that ξ̃( f ) = 0, it
follows that both sides of relation (3.5) vanish. From (3.4), s = 6 if and only if h̃ = 0. It
remains to consider the case ξ( f ) = − < φ̃̃hξ , ξ >= 0. Note that this condition is equivalent
with φ̃ξ being an eigenvector for h̃. Let λ be the corresponding eigenvalue. From now
on we split the cases when η and η̃ induce the same or opposite orientation, although the
arguments are very similar.

In the case of the same orientation we have

∇ f = −φ̃̃hξ = λφ̃ξ ,

[ξ, ξ̃] = ∇ξ ξ̃−∇ξ̃ξ = −2φ̃ξ− φ̃̃hξ = (−2+λ)φ̃ξ.

As ξ̃( f ) = ξ( f ) = 0, we have [ξ, ξ̃]( f ) = 0. Thus the two relations above imply

0 = [ξ, ξ̃]( f ) = g([ξ, ξ̃],∇ f ) = λ(−2+λ)(1− f 2).

As we work on the (open, dense) set where f 2 , 1, it follows that λ = 0 or λ = 2. But λ = 2
corresponds to [ξ, ξ̃] = 0, a case which cannot occur, by Lemma 3.2 (as η̃ , ±η). Thus λ = 0,
i.e. ∇ f = 0 is the only possibility in this case.
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In the case of opposite orientation we have

∇ f = 2φ̃ξ− φ̃̃hξ = (2+λ)φ̃ξ ,

[ξ, ξ̃] = ∇ξ ξ̃−∇ξ̃ξ = −φ̃̃hξ = λφ̃ξ .

As before,
0 = [ξ, ξ̃]( f ) = g([ξ, ξ̃],∇ f ) = λ(2+λ)(1− f 2),

so λ = 0 or λ = −2. In this case, λ = 0, corresponds to [ξ, ξ̃] = 0, but also implies that h̃ = 0,
that is the structure (g, η̃) is Sasakian. The case λ = −2 corresponds to ∇ f = 0. �

The final step of the proof of Theorem 1.3 is the elementary observation that in dimen-
sion 3, Theorem 1.1 has the following local version.

Proposition 3.8. Suppose (M3,g) is a connected Riemannian manifold which admits two
compatible Sasakian structures (g,η), (g, η̃), with η . ±η̃. Then (M3,g) is locally isometric
to the round sphere (S 3,g0).

Proof. From the assumption η . ±η̃ and Corollary 3.4, it follows that the set of points
where the angle function f = g(ξ, ξ̃) is not equal to ±1 is dense in M. On this set, using the
Sasakian condition for both ξ, ξ̃, it follows that Ric = 2g. In dimension 3, this implies that
the metric has constant sectional curvature 1 and, by density, this is true on the whole M.
Thus, g is locally isometric to the standard round sphere metric g0. �

This concludes the proof of Theorem 1.3. Certainly it is natural to ask what happens if
the constant scalar curvature condition is removed. At this time we don’t know the answer
and we leave this as an open question.

4 Proof of Theorems 1.4 and 1.5

This section has a better presentation at the level of the symplectic cone, so we start with
some brief preliminaries on this. It is well known that there is a dictionary between a
contact manifold (M2n+1,η) and its symplectic cone (M̄ := M×R∗+,ω), with the symplectic
form given by

ω = rdr∧η+
r2

2
dη , (4.1)

where r denotes the coordinate on the R∗+-factor. The dictionary extends to compatible
metrics as well, see [5]. If (g,φ,η,ξ) is a contact metric structure on M this corresponds
to an almost Kähler structure (ḡ, J,ω) on M̄ where ω is the form defined above, the cone
metric is

ḡ = dr2+ r2g ,

and the almost complex structure is given by

J = φ onD = Ker η , and Jξ = r∂r ,

where ∂r denotes the vector field ∂
∂r on M̄, and r∂r is the so called Liouville vector field on

the cone.
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We record below (see e.g. [10]) formulas relating the Levi-Civita connections ∇ and ∇̄
of (M,g) and (M̄, ḡ).

∇̄∂r∂r = 0; ∇̄X∂r = ∇̄∂r X =
1
r

X; ∇̄XY = ∇XY − rg(X,Y)∂r. (4.2)

Using this, we obtain for every vector X and a p–form θ on M

∇̄∂rθ = −
p
r
θ and ∇̄Xθ = ∇Xθ−

1
r

dr∧ (iXθ), (4.3)

∇̄∂r dr = 0 and ∇̄Xdr = rX[. (4.4)

The curvature tensors R, R̄ of (M,g) and (M̄, ḡ) respectively, are related by

R̄(∂r, ·) = 0, R̄(X,Y)Z = R(X,Y)Z+g(X,Z)Y −g(Y,Z)X. (4.5)

From (4.5) one can see that (M̄, ḡ) is flat if and only if (M,g) has constant curvature 1.
From (4.3) it is easily seen that we have the following relation on the almost Kähler

cone (M̄, ḡ, J,ω)
∇̄∂rω = 0. (4.6)

Since (M̄, J,ω) is almost Kähler, the covariant derivative of ω satisfies

∇̄J.ω(J., .) = ∇̄.ω(J., J.) = −∇̄.ω(., .). (4.7)

Using this and (4.6), we also immediately have

∇̄ξω = 0. (4.8)

This is equivalent to relation (2.7). In general, using (4.3) if X ∈ T M

∇̄Xω = r2(X[∧η+
1
2
∇Xdη), (4.9)

which implies the well known fact that (M,g, ξ,φ,η) is Sasakian if and only if (M̄, J,ω) is
Kähler.

We also collect some easy facts about the cone in the case when (M,g, ξ,φ,η) is K-
contact.

Proposition 4.1. Suppose (M,g, ξ,φ,η) is K-contact. Then on the cone (M̄, ḡ, J,ω), ξ is an
automorphism of the almost Kähler structure. Moreover, we have

(i) ∇̄Aξ =−JA, ∀A ∈T M̄ ;

(ii) R̄(A, ξ)B=−(∇̄AJ)B ∀A,B∈T M̄ .

Proof. The fact that ξ is an automorphism of the almost Kähler cone is clear. Relation (i)
follows straight from (2.8) in the K-contact case and the formulas (4.2). As ξ is Killing for
ḡ, we have that

R̄(A, ξ)B = ∇̄2
A,Bξ = ∇̄A∇̄Bξ−∇̄∇̄ABξ . (4.10)

On the other hand, from (i) ∇̄2
A,Bξ = −(∇̄AJ)B, so (ii) follows. �
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A consequence of the previous proposition is the following:

Proposition 4.2. Let (M2n+1,g) be a Riemannian manifold admitting two compatible K-
contact structures (g,φ,ξ,η), (g, φ̃, ξ̃, η̃). Denote by (ḡ, J,ω), (ḡ, J̃, ω̃) the corresponding al-
most Kähler structures on the cone M̄. Then for any A ∈ T M̄ we have

[J, J̃]A+ ∇̄A([ξ, ξ̃]) = R̄(ξ, ξ̃)A = −(∇̄ξ J̃)A = (∇̄ξ̃J)A , (4.11)

where [J, J̃] denotes the commutator of the two almost complex structures.

Proof. Applying relation (4.10) for ξ and ξ̃ we have

R̄(A, ξ)̃ξ = ∇̄A∇̄ξ̃ξ−∇̄∇̄Aξ̃
ξ ;

R̄(A, ξ̃)ξ = ∇̄A∇̄ξ ξ̃−∇̄∇̄Aξ
ξ̃ .

Subtracting the two relations and using Bianchi’s identity we get the first equality in (4.11).
The other equalities in (4.11) are consequences of (ii) of Proposition 4.1. �

The next proposition deals with the case [ξ, ξ̃] . 0 of our Sasakian–K-contact problem.

Proposition 4.3. Suppose (M2n+1,g) is a complete manifold admitting a Sasakian structure
(g,φ,ξ,η) and a second compatible K-contact structure (g, φ̃, ξ̃, η̃) with [ξ, ξ̃] . 0. Then
(M2n+1,g) is covered by the round sphere (S 2n+1,g0), or n = 2k + 1 and (M4k+3,g) is 3-
Sasakian. Moreover, the structure (g, φ̃, ξ̃, η̃) must be also Sasakian.

Proof. It is enough to consider the case 2n+1 ≥ 5. As ξ̃ is Killing, it induces a 1-parameter
group of isometries ψt. The pull-back by ψt of the Sasakian structure (g,φ,η,ξ) yields a
family of g-compatible Sasakian structures. By Theorem 1.1 of Tachibana-Yu and Tanno,
(M2n+1,g) must be isometric to a standard sphere (S 2n+1,g0) or is 3-Sasakian. That the
structure (g, η̃, ξ̃) is also Sasakian follows in the first case from the result of Olszak [11] that
in dimensions greater or equal to 5 a contact metric manifold of constant sectional curvature
is necessarily Sasakian. If the manifold is 3-Sasakian then it is Einstein and one can use the
result of Boyer-Galicki [6] that any complete K-contact Einstein manifold is Sasakian. �

In view of this result, in the remaining of this section we will make the assumption
[ξ, ξ̃] = 0.

Proposition 4.4. Suppose (M2n+1,g) is a Riemannian manifold admitting two compatible
K-contact structures (g,φ,ξ,η), (g, φ̃, ξ̃, η̃) with [ξ, ξ̃] = 0. Then

(i) φ̃ξ = φξ̃.

(ii) The angle-function f = g(ξ, ξ̃) has gradient given by ∇ f = 2φξ̃. Consequently, the
only critical values of f are ±1.

Proof. Part (i) follows from

0 = [ξ, ξ̃] = ∇ξ ξ̃−∇ξ̃ξ = −φξ̃+ φ̃ξ,

and part (ii) follows immediately from (i) and relation (2.15).
�
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Next let us define some distributions that will be used in the rest of the argument.
Consider (M2n+1,g) a Riemannian manifold admitting two compatible K-contact structures
(g,φ,ξ,η), (g, φ̃, ξ̃, η̃) with [ξ, ξ̃] = 0 as in Proposition 4.4. Denote by U the (open, dense) set
of regular points in M of the angle function f , i.e. p ∈U iff ξ(p),±ξ̃(p). On U consider the
3-dimensional distribution V = Span(ξ, ξ̃,φξ̃) and let H =V⊥ the orthogonal complement
with respect to the metric g. It is easily checked that the “horizontal” distributionH is both
φ and φ̃-invariant.

Denote by Ū = U ×R∗+ the corresponding subset in the cone M̄ and consider on Ū
the distributions V̄ = Span(ξ, ξ̃,φξ̃,∂r) and H = V̄⊥, using a slight abuse of notation. The
reader can check easily that V̄ andH are invariant with respect to both J and J̃. Moreover,
restricted to V̄, J and J̃ commute. In other words, over Ū the distribution V̄ further splits
in 2-dimensional distributions V̄ = V̄+ ⊕V̄−, so that J = J̃ on V̄+ and J = −J̃ on V̄−. In
fact, one directly checks that

V̄+ = Span(ξ+ ξ̃,−(1+ f )r∂r +φξ̃) , V̄− = Span(ξ− ξ̃,−(1− f )r∂r −φξ̃) .

Further, we have the following:

Proposition 4.5. Let (M2n+1,g) be a Riemannian manifold admitting two compatible K-
contact structures (g,φ,ξ,η), (g, φ̃, ξ̃, η̃) with [ξ, ξ̃] = 0. Assume further that 2n+ 1 = 5, or
that one of the structures is Sasakian. Then

(i) [J, J̃] = 0 on the cone M̄;
(ii) The normalized gradient flow on (M,g) of the angle function f = g(ξ, ξ̃) consists of

geodesics;
(iii) The distributionH is parallel along the gradient flow of f .

Proof. (i) In the case one of the structures is Sasakian, the commutation of J and J̃ follows
directly from relation (4.11). In the case 2n+1 = 5, even without assuming that one of the
structures is Sasakian, note that the commutation of J and J̃ on V̄ holds and that dim(H) =
2. Thus, in this case, on H , J = J̃, or J = −J̃, so J and J̃ commute everywhere. Note also
that in this case, virtue of relation (4.11), we have

∇̄V J = ∇̄V J̃ = 0, ∀V ∈ V̄ . (4.12)

even if none of the structures is assumed Sasakian. This obviously also holds in all dimen-
sions if one of the structures is assumed Sasakian.

(ii) Let N = φξ̃

‖φξ̃‖
be the normalized gradient vector field of the angle function f on the

regular set U. Using the Sasakian condition for one of the structures, one checks after a
computation that ∇N N = 0. Using relation (4.12), the same conclusion holds if 2n+ 1 = 5
even without the Sasakian assumption.

(iii) Let A be any section of the bundleH . One has

< ∇N A,N >= − < A,∇N N >= 0
< ∇N A, ξ >= − < A,∇Nξ >=< A,φN >= 0
< ∇N A, ξ̃ >= − < A, φ̃N >= 0,

thus ∇N A ∈ H . �
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The following proposition is one more step toward the proof of Theorem 1.4. Together
with Proposition 4.3, it already implies Theorem 1.5.

Proposition 4.6. Suppose (M2n+1,g,φ,ξ,η) is a Sasakian manifold admitting a second com-
patible K-contact structure (g, φ̃, ξ̃, η̃) with [ξ, ξ̃] = 0. Then φ and φ̃ commute on H =
Span(ξ, ξ̃,φξ̃)⊥. If, additionally, we have that φ = φ̃ on H , or φ = −φ̃ on H , then (g, φ̃, ξ̃, η̃)
is also Sasakian.

Proof. The commutation of φ and φ̃ on H certainly follows from the fact that J and J̃
commute on the entire cone M̄. The assumption φ = φ̃ on H , or φ = −φ̃ on H translates
in J = J̃ or J = −J̃ on H . Consider the case J = J̃ on the whole H̄ (the other case follows
from this by replacing J by −J). Then a simple computation shows

ω̃ = ω−
1

2(1− f )
(̃η−η)∧ J(̃η−η) = ω−

1
2(1− f )

(̃η−η)∧d(r2(1− f )) .

For any vector field H ∈ H̄ , we have H( f ) = 0, but also

∇̄H (̃η−η) = 0 , ∇̄H(J(̃η−η)) = 0.

The first equality follows because ∇̄H (̃ξ− ξ) = −J̃H+ JH = 0. The second equality follows
from the first and using the assumption that (g,φ,ξ) is Sasakian, hence ∇̄J = 0. Thus,
∇̄Hω̃ = 0 and combining this with (4.12), it follows that ∇̄Xω̃ = 0 for any vector X. This is
verified first on the set U where ξ(p) , ξ̃(p), but then everywhere by M by the density of
the set U. �

Proof of Theorem 1.5. The case [ξ, ξ̃] . 0 is covered by Proposition 4.3 (certainly, the 3-
Sasakian case does not occur in dimension 5). The case [ξ, ξ̃] = 0, is solved by Proposition
4.6 simply noting that in dimension 2n+ 1 = 5 the condition φ = φ̃, or φ = −φ̃ on H is
automatically satisfied, as the distributionH is 2-dimensional, and is φ and φ̃ invariant. �

For the proof of Theorem 1.4 we need two more steps. The first step clarifies the
organization of the critical set of the angle function.

Proposition 4.7. Let (M2n+1,g,φ,η,ξ) be a compact K-contact manifold. Let ξ̃ be a unit
Killing vector field with [ξ, ξ̃] = 0 on M and assume the angle function f = g(̃ξ,ξ) is not a
constant function. Then f has exactly two critical manifolds, Σ−1, Σ1, the −1 and 1 level
sets.

Proof. The function f = g(̃ξ,ξ) is ξ̃ invariant (it is also ξ invariant), its gradient vector field is
2φξ̃ and, therefore, a point p is critical for g(̃ξ,ξ) if and only if φξ̃ = 0 at p, that is ξ̃ =±ξ at p.
Each connected component of the critical set is a closed, totally geodesic, contact invariant
sub-manifold of M as was shown in [12]. Since they are all non-degenerate critical sub-
manifolds of even index (see [12]), there is exactly one component at the minimum level
and exactly one component at the maximum level of g(̃ξ,ξ). �

Next, let Σ−1, Σ0, Σ1 denote, respectively, the level −1, 0 and 1 manifolds of the angle
function f = g(ξ, ξ̃). Through any point p ∈Σ0, there passes a unique geodesic γ, intersecting
orthogonally each of the three sub-manifolds. Moreover, the unit tangent vector of γ is
N = φξ̃

‖φξ̃‖
away from the critical set of f .
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Proposition 4.8. With the assumptions from Theorem 1.4, suppose that one of the critical
manifolds Σ−1 and Σ1 has codimension 2. Then either φ = φ̃ onH or φ = −φ̃ onH .

Proof. Suppose Σ1 has codimension 2 and let p = γ(0) ∈ Σ0, q = γ(T ) ∈ Σ1. Then the
parallel transport of H from p to q along γ is orthogonal to N and φN and therefore is
fully contained in TqΣ1. But in TΣ1, one has φφ̃ = −1 proving that all eigenvalues of φφ̃
are all equal to −1. If one assumes Σ−1 to have codimension 2, the result will be that all
eigenvalues of φφ̃ are equal to 1. �

To conclude, here is the proof of Theorem 1.4. Combining Propositions 4.8 and 4.6,
it follows that the structure (g, ξ̃, η̃) is also Sasakian. Now the conclusion follows from
Theorem 1.1, noting that, by assumption, the angle function is not constant.

Acknowledgments: The authors are grateful to David Blair and the referee for useful com-
ments about this note.
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