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Abstract

In this paper, we investigate a class of screen conformal invariant lightlike hy-
persurfaces of an indefinite Sasakian manifold. The geometric configuration of such
hypersurfaces is established. We prove that its geometry is closely related to the one of
leaves of its conformal screen distributions. We also prove that, in any leaf of a confor-
mal screen distribution of an invariant lightlike hypersurface of an indefinite Sasakian
space form, the parallelism and semi-parallelism notions are equivalent.
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1 Introduction

A hypersurface M of a semi-Riemannian manifold M is called lightlike (degenerate) hyper-
surface if the induced metric on M is degenerate. In general, lightlike submanifolds have
been studied widely in mathematical physics. They appear in general relativity as some
smooth parts of event horizons of the Kruskal and Kerr black holes [8]. Lightlike subman-
ifolds of semi-Riemannian manifold have been studied by Duggal-Bejancu and Kupeli in
[2] and [7], respectively. Kupeli’s approach is intrinsic while Duggal-Bejancus approach
is extrinsic. Lightlike hypersurfaces of indefinite Sasakian manifolds are defined according
to the behaviour of the almost contact structure of indefinite Sasakian manifolds and such
submanifolds were studied by the author in [10], [11], [12], [13] and [14], and Duggal and
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Sahin whose details are given in the book [6] and references therein. They defined and
studied invariant, contact CR-lightlike and screen CR- lightlike.

We know that the shape operator plays a key role in studying the geometry of sub-
manifolds [2]. Motivated by above line of direction, the aim of this paper is to introduce
the concept screen conformal distributions of invariant lightlike hypersufaces of Sasakian
space forms. That is, we study invariant lightlike hypersufaces of Sasakian space forms
whose shape operators are conformal to shape operators of their corresponding screen dis-
tributions. We also investigate the effect of conformal and invariance conditions on the
geometry of leaves of some integrable distributions.

The paper is organized as follows. In section 2, we recall some basic definitions for in-
definite Sasakian manifolds and lightlike hypersurfaces of semi-Riemannian manifolds. In
section 3, we introduce a class of screen conformal invariant lightlike hypersurface M of an
indefinite Sasakian space form M(c) supported by an example. By Theorem 3.6, we estab-
lish the geometric configuration of such hypersurfaces in indefinite Sasakian. We prove that
the geometry of any leaf of the screen distribution is close to that of the screen conformal
invariant lightlike hypersurface. We also prove that, in any leaf M′ of a conformal screen
distribution S (T M) of an invariant lightlike hypersurface M of an indefinite Sasakian space
form M(c), the parallelism and semi-parallelism notions are equivalent (Theorem 3.10).

2 Lightlike hypersurfaces

Let M be a (2n+1)-dimensional manifold endowed with an almost contact structure (φ,ξ,η),
i.e. φ is a tensor field of type (1,1), ξ is a vector field, and η is a 1-form satisfying

φ
2
= −I+η⊗ ξ, η(ξ) = ε, η◦φ = 0 and φξ = 0, (2.1)

where ε = ±1. Then (φ,ξ,η, g) is called an indefinite almost contact metric structure on M
if (φ,ξ,η) is an almost contact structure on M and g is a semi-Riemannian metric on M such
that [3], for any vector field X, Y on M,

g(φX,φY) = g(X,Y)−εη(X)η(Y), (2.2)

It follows that, for any vector X on M,

η(X) = εg(ξ,X). (2.3)

If, moreover, dη(X,Y) = −g(φX,Y) and (∇Xφ)Y = g(X,Y)ξ − εη(Y)X, where ∇ is the
Levi-Civita connection for the semi-Riemannian metric g, we call M an indefinite Sasakian
manifold. From (2.3), ξ is never a lightlike vector field on M.

Sasakian manifolds with indefinite metrics have been first considered by Takahashi [17].
Their importance for physics have been pointed out by Duggal [5]. We have two classes of
indefinite Sasakian manifolds [5]: ξ is spacelike (ε = 1 and the index of g is an even number
ν = 2r) and ξ is timelike (ε = −1 and the index of g is an odd number ν = 2r+1).

Takahashi [17] shows that it suffices to consider those indefinite almost contact mani-
folds with space-like ξ. Hence, from now on, we shall restrict ourselves to the case of ξ a
space-like unit vector (that is g(ξ, ξ) = 1).
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In this case, the equality

(∇Xφ)Y = g(X,Y)ξ−η(Y)X,

implies ∇Xξ = −φ(X), (∇Xη)Y = −g(φX,Y) and ξ is a Killing vector field.
The Sasakian structure defined in [1] differs from the indefinite Sasakian one only by

the positiveness of the metric involved and so, the main results in [1] remain unchanged for
the indefinite case. We denote by Γ(Ξ) the set of smooth sections of the vector bundle Ξ.

A plane section σ in TpM is called a φ-section if it is spanned by X and φX, where
X is a unit tangent vector field orthogonal to ξ. The sectional curvature of the φ-sectional
σ is called a φ-sectional curvature. If an indefinite Sasakian manifold M has constant φ-
sectional curvature c, then, by virtue of the Theorem 7.19 in [1], the curvature tensor R of
M is given by, for any X, Y , Z ∈ Γ(T M),

R(X,Y)Z =
c+3

4
{g(Y ,Z)X−g(X,Z)Y}+

c−1
4
{η(X)η(Z)Y −η(Y)η(Z)X

+g(X,Z)η(Y)ξ−g(Y ,Z)η(X)ξ+g(φY ,Z)φX−g(φX,Z)φY −2g(φX,Y)φZ}. (2.4)

An indefinite Sasakian manifold M of constant φ-sectional curvature c will be called indef-
inite Sasakian space form and denoted M(c).

Example 2.1. Let R7 be the 7-dimensional real number space. Let us consider {xi}1≤i≤7 as
Cartesian coordinates on R7 and define with respect to the natural field of frames

{
∂
∂xi

}
a

tensor field φ of type (1,1) by: φ( ∂∂x1
) = − ∂∂x2

, φ( ∂∂x2
) = ∂

∂x1
+ x4

∂
∂x7

, φ( ∂∂x3
) = − ∂∂x4

, φ( ∂∂x4
) =

∂
∂x3
+ x6

∂
∂x7

, φ( ∂∂x5
) = − ∂∂x6

, φ( ∂∂x6
) = ∂

∂x5
, φ( ∂∂x7

) = 0. The 1-form η is defined by η = dx7 −

x4dx1 − x6dx3. The vector field ξ is defined by ξ = ∂
∂x7
. It is easy to check (2.1) and thus

(φ,ξ,η) is an almost contact structure on R7. Finally, we define a metric g on R7 by

g = (x2
4−1)dx2

1−dx2
2+ (x2

6+1)dx2
3+dx2

4−dx2
5−dx2

6+dx2
7− x4dx1⊗dx7

− x4dx7⊗dx1+ x4x6dx1⊗dx3+ x4x6dx3⊗dx1− x6dx3⊗dx7− x6dx7⊗dx3,

with respect to the natural field of frames. It is easy to check that g is a semi-Riemannian
metric and (φ,ξ,η,g) given above is a Sasakian structure on R7. Therefore, (R7,φ,ξ,η,g) is
an indefinite Sasakian space form of constant sectional curvature c = −3.

A hypersurface (M,g) with g = g|M of an indefinite Sasakian manifold M is called a
lightlike hypersurface if g is of constant rank 2n−1 and the normal bundle T M⊥ of M is a
vector subbundle of the tangent bundle T M of M, of rank 1. Suppose that M is paracompact.
Then, there exists a non-degenerate complementary vector bundle S (T M) of T M⊥ in T M,
called a screen distribution on M, such that

T M = S (T M) ⊥ T M⊥, (2.5)

where ⊥ denotes the orthogonal direct sum. In general, S (T M) is not canonical (thus it is
not unique) and the lightlike geometry depends on its choice but it is canonically isomorphic
to the vector bundle T M/RadT M [7]. We denote such a lightlike hypersurface by triple
(M,g,S (T M)). It is well-known [2] that, for any null section E of T M⊥ on a coordinate
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neighborhoodU⊂M, there exists a unique null section N of a unique vector bundle tr(T M)
of rank 1 in the orthogonal complement S (T M)⊥ of S (T M) in M satisfying

g(N,E) = 1 and g(N,N) = g(N,W) = 0, ∀W ∈ Γ(S (T M)|U). (2.6)

In this case, the tangent bundle T M of M is decomposed as follow:

T M = S (T M) ⊥ (T M⊥⊕ tr(T M)) = T M⊕ tr(T M), (2.7)

where ⊕ denotes the nonorthogonal direct sum. We call tr(T M) and N the transversal
vector bundle and the null transversal vector field of M with respect to the screen S (T M),
respectively.

Let P be the projection morphism of Γ(T M) on Γ(S (T M)) with respect to the decom-
position (2.5). Then the local Gauss and Weingartan formulas of M and S (T M) are given,
respectively, by

∇XY = ∇XY +B(X,Y) N, (2.8)

∇XN = −AN X+τ(X)N, (2.9)

∇XPY = ∇∗XPY +C(X,PY)E, (2.10)

∇XE = −A∗EX−τ(X)E, (2.11)

for any X, Y ∈ Γ(T M|U), where ∇ and ∇∗ are the liner connections on T M and S (T M),
respectively, B and C are the local second fundamental forms on T M and S (T M), respec-
tively. AN and A∗E are the shape operators on T M and S (T M), respectively, and τ is a
differential 1-form on T M. Since ∇ is torsion-free, ∇ is also torsion-free and B is symmet-
ric on T M. From the fact that B(X,Y) = g(∇XY,E), for any X, Y ∈ Γ(T M), we show that B
is independent of the choice of a screen distribution and satisfies B(·,E) = 0. The two local
second fundamental forms B and C are related to their shape operators by

B(X,PY) = g(A∗EX,PY), g(A∗EX,N) = 0, (2.12)

C(X,PY) = g(AN X,PY), g(AN X,N) = 0. (2.13)

From (2.12), A∗E is S (T M)-valued self-adjoint on T M such that

A∗EE = 0. (2.14)

Denote by R and R the Riemann curvature tensors of M and M, respectively. From
Gauss-Codazzi equations [2], we have, for any X, Y , Z ∈ Γ(T M|U),

R(X,Y)Z = R(X,Y)Z+B(X,Z)ANY −B(Y,Z)AN X

+g(R(X,Y)Z,E)N, (2.15)

g(R(X,Y)Z,N) = g(R(X,Y)Z,N), (2.16)

g(R(X,Y)PZ,N) = (∇XC)(Y,PZ)− (∇YC)(X,PZ)

+τ(Y)C(X,PZ)−τ(X)C(Y,PZ), (2.17)

g(R(X,Y)E,N) =C(Y,A∗EX)−C(X,A∗EY)−2dτ(X,Y). (2.18)
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Now, consider (M,φ, ξ,η,g) to be an indefinite Sasakian manifold and let (M,g) be a
null hypersurface of (M,g), tangent to the structure vector field ξ (ξ ∈ T M). If E is a local
section of T M⊥, it is easy to check that φE , 0 and g(φE,E) = 0, then φE is tangent to
M. Thus φ(T M⊥) is a distribution on M of rank 1 such that φ(T M⊥)∩T M⊥ = {0}. This
enables us to choose a screen distribution S (T M) such that it contains φ(T M⊥) as a vector
subbundle. If we consider a local section N of tr(T M), we have φN , 0. Since g(φN,E) =
−g(N,φE) = 0, we deduce that φE ∈ Γ(S (T M)) and φN is also tangent to M. At the same
time, g(φN,N) = 0, i.e., φN has no component with respect to E. Thus φN ∈ Γ(S (T M)),
that is, φ(tr(T M)) is also a vector subbundle of S (T M) of rank 1.

From (2.1), we have g(φN,φE)= 1. Therefore, φ(T M⊥)⊕φ(tr(T M)) is a non-degenerate
vector subbundle of S (T M) of rank 2. If ξ ∈ T M, we may choose S (T M) so that ξ belongs
to S (T M). Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists a non-degenerate
distribution D0 of rank 2n−4 on M such that

S (T M) =
{
φ(T M⊥)⊕φ(tr(T M))

}
⊥ D0 ⊥< ξ >, (2.19)

where 〈ξ〉 is the distribution spanned by ξ. The distribution D0 is invariant under φ, i.e.
φ(D0) = D0. Moreover, from (2.5) and (2.19) we obtain the decompositions

T M =
{
φ(T M⊥)⊕φ(tr(T M))

}
⊥ D0 ⊥< ξ >⊥ T M⊥, (2.20)

T M =
{
φ(T M⊥)⊕φ(tr(T M))

}
⊥ D0 ⊥< ξ >⊥ (T M⊥⊕ tr(T M)). (2.21)

Now, we consider the distributions on M,

D := T M⊥ ⊥ φ(T M⊥) ⊥ D0 and D′ := φ(tr(T M)). (2.22)

Then D is invariant under φ and

T M =
(
D⊕D′

)
⊥< ξ > . (2.23)

Let us consider the local lightlike vector fields U := −φN, V := −φE. Then, from (2.23),
any X ∈ Γ(T M) is written as

X = RX+QX+η(X)ξ, QX = u(X)U, (2.24)

where R and Q are the projection morphisms of T M into D and D′, respectively, and u is a
differential 1-form locally defined on M by u(·) = g(·,V). Applying φ to (2.24), using (2.1)
and noting that φ

2
N = −N, we obtain

φX = φX+u(X)N, ∀X ∈ Γ(T M), (2.25)

where φ is a tensor field of type (1,1) defined on M by φX := φRX, for any X ∈ Γ(T M).
Again, applying φ to (2.25) and using (2.1), we also have

φ2X = −X+η(X)ξ+u(X)U, ∀X ∈ Γ(T M). (2.26)

We have the following useful identities, for any X ∈ Γ(T M),

∇Xξ = −φX, (2.27)

B(X, ξ) = −u(X), (2.28)

C(X, ξ) = −v(X), (2.29)

where v is a 1-form locally defined on M by v(·) = g(·,U).
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Example 2.2. Let M be a hypersurface of (R7,φ,ξ,η,g) in Example 2.1 defined as M =
{(x1, ..., x7) ∈R7 : x5 = x4}. Thus, the tangent space T M is spanned by {Ui}1≤i≤6, where U1 =
∂
∂x1

, U2 =
∂
∂x2

, U3 =
∂
∂x3

, U4 =
∂
∂x4
+ ∂
∂x5

, U5 =
∂
∂x6

, U6 = ξ and the 1-dimensional distribution
T M⊥ of rank 1 is spanned by E, where E = ∂

∂x4
+ ∂
∂x5
. It follows that T M⊥ ⊂ T M. Then

M is a 6-dimensional lightlike hypersurface of R7. Also, the transversal bundle tr(T M) is
spanned by N = 1

2 ( ∂∂x4
− ∂
∂x5

). On the other hand, by using the almost contact structure of R7

and also by taking into account of the decomposition (2.19), the distribution D0 is spanned
by {F, φF}, where F =U2, φF =U1+ x4ξ and the distributions 〈ξ〉, φ(T M⊥) and φ(tr(T M))
are spanned, respectively, by ξ, φE = U3 −U5 + x6ξ and φN = 1

2 (U3 +U5 + x6ξ). Hence M
is a lightlike hypersurface of R7.

3 Screen conformal invariant lightlike hypersurfaces

Let (M,g,S (T M)) be a lightlike hypersurface of an indefinite Sasakian manifold (M,φ,ξ,η,g).
We say that M is invariant in M [18, p. 312] if M is tangent to the structure vector field

ξ and
φX ∈ Γ(T M), ∀X ∈ Γ(T M), (3.1)

that is, using (2.26),
φX = φX, ∀X ∈ Γ(T M). (3.2)

It is easy to see that any invariant submanifold M with induced structure tensors, which will
be denoted (φ,ξ,η,g), is also a Sasakian manifold.

From (2.8), (2.27) and (3.2), one obtains

h(X, ξ) = 0, (3.3)

h(X,φY) = h(φX,Y) = φh(X,Y), ∀X,Y ∈ Γ(T M). (3.4)

Therefore, an invariant lightlike hypersurface is not totally geodesic, in general.
A submanifod M is said to be parallel [10] if its second fundamental form h satisfies,

(∇Xh)(Y,Z) = 0, ∀X, Y, Z ∈ Γ(T M). (3.5)

If M is an invariant lightlike hypersurface of an indefinite Sasakian manifold M. Then,

(∇Xh)(Y, ξ) = h(Y,φX), ∀X, Y ∈ Γ(T M). (3.6)

This relation leads, using (3.4), to h(X,Y) = −h(φX,φY) = −(∇Xh)(φY, ξ). This means that, if
the second fundamental form h = B⊗E of an invariant lightlike hypersurface M is parallel,
then M is totally geodesic.

An invariant lightlike hypersurface (M,g,S (T M)) of an indefinite Sasakian manifold
(M,g) is screen locally conformal if the shape operators AN and A∗E are related by [6]

AN = ϕA∗E , (3.7)

or equivalently,
C(X,PY) = ϕB(X,PY), ∀X, Y ∈ Γ(T M), (3.8)
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where ϕ is a non-vanishing smooth function onU in M. In caseU = M the screen confor-
mality is said to be global. Such a submanifold has some important and desirable properties,
for instance, the integrability of its screen distribution [6].

Note that, for an invariant lightlike hypersurface (M,g) of an indefinite Sasakian mani-
fold (M,g), it is easy to check that the differential 1-forms u and v are vanishing identically
on M. As an example, we have:

Example 3.1. Let M be the hypersurface of R7, of Example 2.1, given by M = {(x1, ..., x7) ∈
R7 : x5 = x4}, where (x1, ..., x7) is a local coordinate system for R7. As explained in Exam-
ple 2.1, M is a lightlike hypersurface of R7 having a local quasi-orthogonal field of frames
{U1, U2, U3, U4 = E, U5, U6 = ξ, N} along M. Denote by ∇ the Levi-Civita connection on
R7. Then, by straightforward calculations, the non-vanishing covariant derivative compo-
nents of N and E along M are given by, ∇U1 E = 2∇U1 N = −1

2 x4U1 −
1
2 (x2

4 + 1)ξ, ∇U3 E =
2∇U3 N = −1

2 x6U1 −
1
2 x4x6ξ and ∇ξE = 2∇ξN = 1

2 U1 +
1
2 x4ξ. Using these equations above,

the differential 1-form τ vanishes i.e. τ(X) = 0, for any X ∈ Γ(T M). So, from the Gauss
and Weingarten formulae, the non-vanishing components of the shape operators AN and
A∗E are given by, A∗EU1 = 2ANU1 =

1
2 x4U1 +

1
2 (x2

4 +1)ξ, A∗EU3 = 2ANU3 =
1
2 x6U1 +

1
2 x4x6ξ

and A∗Eξ = 2ANξ = −
1
2 U1 −

1
2 x4ξ. From these relations, we deduce that AN X = 1

2 A∗EX, for
any X ∈ Γ(T M) and trAN = 0, i.e. the shape operator AN is trace-free. Therefore, the
hypersurface M of R7 is screen conformal and minimal. So, its screen distribution is inte-
grable. The non-vanishing components of the local second fundamental form B are given by
B(U1,U1) = −x4, B(U1,U3) = −1

2 x6 and B(U1,U6) = 1
2 . It is easy to check that B(X, ξ) = 0,

for any X ∈ Γ(T M). Hence, M is a screen conformal invariant lightlike hypersurface.

Let M be a screen conformal invariant lightlike hypersurface of an indefinite Sasakian
space form M(c). Let us consider the pair {E,N} onU ⊂ M. Using (2.4), (2.15) and (2.25),
and comparing the tangential and transversal parts of both sides, we have, for any X, Y ,
Z ∈ Γ(T M),

R(X,Y)Z =
c+3

4
{g(Y,Z)X−g(X,Z)Y}+

c−1
4
{η(X)η(Z)Y −η(Y)η(Z)X

+g(X,Z)η(Y)ξ−g(Y,Z)η(X)ξ+g(φY,Z)φX−g(φX,Z)φY −2g(φX,Y)φZ}

+ϕ{B(Y,Z)A∗EX−B(X,Z)A∗EY}, (3.9)

and

(∇X B)(Y,Z)− (∇Y B)(X,Z) = τ(Y)B(X,Z)−τ(X)B(Y,Z)+
c−1

4
{g(φY,Z)u(X)

−g(φX,Z)u(Y)−2g(φX,Y)u(Z)}. (3.10)

Also using (2.4) and (2.17), we obtain, for any X, Y , Z ∈ Γ(T M),

(∇XC)(Y,PZ)− (∇YC)(X,PZ) = ϕτ(X)B(Y,PZ)−ϕτ(Y)B(X,PZ)+
c+3

4
{g(Y,PZ)θ(X)

−g(X,PZ)θ(Y)}+
c−1

4
{η(X)η(PZ)θ(Y)−η(Y)η(PZ)θ(X)+g(φY,PZ)v(X)

−g(φX,PZ)v(Y)−2g(φX,Y)v(Z)}. (3.11)
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Let us consider the following distribution

D̂ =
{
φ(T M⊥)⊕φ(tr(T M))

}
⊥ D0 (3.12)

so that the tangent space of M is written

T M = D̂ ⊥ 〈ξ〉 ⊥ T M⊥. (3.13)

Let P̂ be the morphism of S (T M) on D̂ with respect to the orthogonal decomposition of
S (T M) such that

P̂X = PX−η(X)ξ, ∀X ∈ Γ(T M), (3.14)

and it is easy to see that the morphism P̂ is a projection.
Using the projection morphism P̂ and the relation (3.3), we have the following identi-

ties, for any X, Y , Z ∈ Γ(T M),

B(PX,PY) = B(P̂X, P̂Y), (3.15)

∇XPY = ∇X P̂Y +X(η(Y))ξ−η(Y)φX, (3.16)

(∇X B)(Y,PZ) = (∇X B)(Y, P̂Z)+η(Z){B(φX,Y)+B(X,φY)}. (3.17)

If M is a screen conformal invariant lightlike hypersurface, then, using (3.8), we have, for
any X, Y , Z ∈ Γ(T M),

(∇XC)(Y, P̂Z) = X(ϕ)B(Y, P̂Z)+ϕ(∇X B)(Y, P̂Z), (3.18)

and using (3.3) and (3.18), the left hand side of (3.11) is given by

(∇XC)(Y, P̂Z)− (∇YC)(X, P̂Z) = X(ϕ)B(Y, P̂Z)−Y(ϕ)B(X, P̂Z)

+ϕ{τ(Y)B(X, P̂Z)−τ(X)B(Y, P̂Z)}, (3.19)

On the other hand, using (3.14) and the fact that v(X) = −ϕB(X, ξ) = 0, the relation (3.11)
becomes

(∇XC)(Y, P̂Z)− (∇YC)(X, P̂Z) = ϕτ(X)B(Y, P̂Z)−ϕτ(Y)B(X, P̂Z)

+
c+3

4
{g(Y, P̂Z)θ(X)−g(X, P̂Z)θ(Y)}. (3.20)

Putting the pieces (3.19) and (3.20) together and using (3.8), we have

{X(ϕ)−2ϕτ(X)}B(Y, P̂Z)−{Y(ϕ)−2ϕτ(Y)}B(X, P̂Z)

=
c+3

4
{g(Y, P̂Z)θ(X)−g(X, P̂Z)θ(Y)}. (3.21)

For Y = E, one obtains

{E(ϕ)−2ϕτ(E)}B(X, P̂Z) =
c+3

4
g(X, P̂Z). (3.22)

Therefore,
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Proposition 3.2. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface
of an indefinite Sasakian space form (M(c),g). Then,

{E(ϕ)−2ϕτ(E)}B(X, P̂Y) =
c+3

4
g(X, P̂Y), (3.23)

for any X, Y ∈ Γ(T M).

Let M′ be a leaf of an integrable screen distribution S (T M). Then, using the second
equations of (2.8) and (2.10), we obtain, for any X, Y ∈ Γ(T M′),

∇XY = ∇∗XY +C(X,Y)E+B(X,Y)N

= ∇′XY +h′(X,Y), (3.24)

where ∇′ and h′ are the Levi-Civita connection and second fundamental form of M′ in M.
Thus, for any X, Y ∈ Γ(T M′),

h′(X,Y) =C(X,Y)E+B(X,Y)N. (3.25)

In the sequel, we need the following lemma.

Lemma 3.3. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface of
an indefinite Sasakian manifold (M,g) with a leaf M′ of S (T M). Then, for any X ∈ Γ(T M′),

∇′Xξ = −φX, (3.26)

∇′XU = ϕφ(A∗EX)+τ(X)U, (3.27)

∇′XV = φ(A∗EX)−τ(X)V. (3.28)

Proof. The proof of this lemma follows the one of Lemma 4.2 in [12] using the fact that
the differential 1-forms u and v vanish. �

Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface of an indefinite
Sasakian manifold (M,g). Then, the local fundamental form C is symmetric on S (T M).
Thus, by Theorem 2.3.5 in [2, page 63], S (T M) is integrable and M is locally a product
manifold L×M′, where L is an open subset of a lightlike geodesic ray in M and M′ is a leaf
of S (T M).

Applying φ to (3.27) and (3.28), and using (3.3), we have, for any X ∈ Γ(T M′),

φ∇′XU = −ϕA∗EX+τ(X)N, (3.29)

and φ∇′XV = −A∗EX−τ(X)E. (3.30)

Putting the pieces (3.29) and (3.30) together into (3.25), we have,

h′(X,Y) =C(X,Y)E+B(X,Y)N = g(∇′XU,φY)E+g(∇′XV,φY)N. (3.31)

From (3.31), it is easy to see that M′ is totally geodesic if and only if the lightlike vector
fields U and V are parallel with respect to the Levi-Civita connection ∇′ on M′.
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Using the relations (3.27) or (3.28), the parallelism of the lightlike vector fields U or V ,
with respect to ∇′ on M′, implies that the shape operator A∗E and the differential 1-form τ
vanish identically on M′, and vice versa.

In the case of invariant lightlike hypersufaces, B(X,V) = −B(A∗EX, ξ) = 0 and B(X,U) =
ϕB(X,V) = 0, and the shape operator A∗E takes the form

A∗EX =
2n−4∑
i=1

B(X,Fi)Fi, ∀X ∈ Γ(S (T M)). (3.32)

This means that A∗EX ∈ Γ(D0) and since the distribution D0 is non-degenerate, we have
g(A∗EX,A∗EX) = 0 if and only if A∗EX = 0, that is,

B(X,Fi) = 0, ∀ i = 1,2, ...,2n−4. (3.33)

Let t(x) and t′(x) be the type numbers of M and M′, respectively, for any point x ∈ M, that
is, the ranks of shape operators AN and A∗E , respectively, at x.

The rank of a matrix is the maximum number of independent rows (or, the maximum
number of independent columns) and if the shape operator A∗E , locally, takes the form

A∗E =


...
...
...

...

~r1 ~r2 ~r3 · · · ~r2n−1
...
...
...

...

 , (3.34)

one has, rank(A∗E) = dimC(A∗E), where C(A∗E) = Span{~r1,~r2, · · · ,~r2n−1} which is the num-
ber of vectors in the basis for C(A∗E). Since ϕ is a non-vanishing smooth function on M,
dimC(ϕA∗E) = dimC(A∗E), i.e., rank(AN) = rank(A∗E), since AN = ϕA∗E . Thus, if the rank of
the shape operator A∗E is vanishing identically on M, then A∗E is a zero matrix which implies
that AN = ϕA∗E is also a zero matrix. Consequently, by Theorem 2.2 and Proposition 2.7 in
[2, pages 88, 89], the submanifolds M and M′ are totally geodesic in M. This means that if
the rank of A∗E is non-zero, then M and M′ cannot be totally geodesic. Therefore, we have:

Proposition 3.4. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface
of an indefinite Sasakian manifold (M,g) with a leaf M′ of S (T M). Then, t(x) ≡ t′(x), for
any x ∈ M. Moreover, t(x) = 0 if and only if M and M′ are totally geodesic in M.

Next, we deal with the geometric configuration of the screen conformal invariant light-
like hypersurface of an indefinite Sasakian manifold (M,g).

By combining (2.8) and (2.10), we obtain, for any X ∈ Γ(T M), Y ∈ Γ(M̂′),

∇XY = ∇̂∗XY +g(φX,Y)ξ+B(X,Y){ϕE+N}

= ∇̂′XY + ĥ′(X,Y), (3.35)

where ∇̂′ and ĥ′ = g(φ·, ·)⊗ ξ+B⊗ {ϕE +N} are the Levi-Civita connection and the second
fundamental form of M̂′ in M, respectively. We have,

Lemma 3.5. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface of an
indefinite Sasakian manifold (M,g). Then, the distribution D̂ in (3.12) is always integrable.
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Proof. The proof follows from g(φX,Y) = 0, for any X, Y ∈ Γ(T M̂′). �

Theorem 3.6. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface of
an indefinite Sasakian space form (M(c),g). Then, c = −3. Moreover, if the type number
of M, t(x) > 0, for any x ∈ M, then M is not totally geodesic and the non-zero function ϕ
satisfies the following partial differential equation,

E(ϕ)−2ϕτ(E) = 0.

Proof. Assume that c , −3. Then, by Proposition 3.2, we have, E(ϕ)− 2ϕτ(E) , 0 and
B , 0, that is, M is not totally geodesic. From (3.8) and (3.23), we have

B(X, P̂Y) = ρg(X, P̂Y), C(X, P̂Y) = ϕρg(X, P̂Y), (3.36)

for any X, Y ∈ Γ(T M), where ρ = c+3
4 (E(ϕ)−2ϕτ(E))−1 , 0. The latter leads to

ρ{E(ϕ)−2ϕτ(E)} =
c+3

4
. (3.37)

The relations in (3.36) are equivalent to A∗EX = ρP̂X and AN X = ϕρP̂X. Since ϕρ , 0, M
and D̂ are not totally geodesic but proper totally umbilical. By Theorem 5.2 in [2], we have,

E(ρ)+ρτ(E)−ρ2 = 0. (3.38)

From (3.37) and (3.38), we have

E(ϕρ2) = ρ(
c+3

4
+2ϕρ2). (3.39)

By virtue of Lemma 3.5, let us consider a leaf M̂′ of D̂. Since {E(ϕ)− 2ϕτ(E)} , 0 and
B , 0 along M̂′, then, by (3.36) M̂′ is not totally geodesic and its second fundamental form
ĥ′ is given by

ĥ′(X,Y) = Ĥ′g(X,Y), ∀X, Y ∈ Γ(T M̂′),

where Ĥ′ = ρ(ϕE + N) is the mean curvature vector of the leaf M̂′. The relation (3.35)
becomes ∇XY = ∇̂′XY + Ĥ′g(X,Y), and the curvature tensors R and R̂′ of M and M̂′, respec-
tively, are related as R(X,Y)Z = R̂′(X,Y)Z+g(Y,Z)∇XĤ′−g(X,Z)∇Y Ĥ′, which leads to, for
any X, Y , Z, W ∈ Γ(T M̂′),

R(X,Y)Z = R̂′(X,Y)Z−2ϕρ2{g(Y,Z)X−g(X,Z)Y}, (3.40)

X(ρ)+ρτ(X) = 0 and X(ϕρ)−ϕρτ(X) = 0. (3.41)

The latter leads to X(ϕ)−2ϕτ(X) = 0. On the other hand, we have

R(X,Y)Z = R(X,Y)Z+ϕρ2{g(X,Z)Y −g(Y,Z)X}. (3.42)

Putting (3.40) and (3.42) together, we obtain

R(X,Y)Z = R̂′(X,Y)Z−ϕρ2{g(Y,Z)X−g(X,Z)Y}. (3.43)
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Also, using (3.9), the curvature R is expressed along the leaf M̂′ as

R(X,Y)Z = (
c+3

4
+ϕρ2){g(Y,Z)X−g(X,Z)Y}.

Using this and (3.43), the curvature tensor R̂′ of M̂′ is given by

R̂′(X,Y)Z = (
c+3

4
+2ϕρ2){g(Y,Z)X−g(X,Z)Y}. (3.44)

Thus, M̂′ is a semi-Riemannian manifold of constant curvature ( c+3
4 + 2ϕρ2). Let R̂ic

′
be

the induced symmetric Ricci tensor of M̂′. From (3.44), we have,

R̂ic
′
(X,Y) = (2n−3)(

c+3
4
+2ϕρ2)g(X,Y), ∀X,Y ∈ Γ(D̂). (3.45)

Thus, M̂′ is an Einstein manifold. Since dim M̂′ > 2, ( c+3
4 +2ϕρ2) is a constant and M̂′ has

a constant curvature c+3
4 +2ϕρ2. Thus, 0 = E(ϕρ2) = ρ( c+3

4 +2ϕρ2). Since ( c+3
4 +2ϕρ2) is a

constant and ρ, 0, we have, c+3
4 +2ϕρ2 = 0. M̂′ is a semi-Euclidean space. Using the second

relation of (3.41), the covariant derivative of the second fundamental form h∗ = ϕρ(g⊗E)
of S (T M) with respect to the induced connection ∇′, along M̂′, gives,

(∇′Xh∗)(Y,Z) = {X(ϕρ)−ϕρτ(X)}g(Y,Z)E = 0, ∀X, Y, Z ∈ Γ(T M̂′),

which means that S (T M) is parallel along M̂′. By Proposition 2.7 [2, page 89], h∗ = 0
along M̂′. Since h∗ = ϕρ(g⊗ E), we have ϕρ = 0. This implies that c = −3, which is a
contradiction to c , −3. This contradicts the assumption. The last assertion follows from
the relation (3.23) and this completes the proof. �

From the Example 3.1, the non-vanishing components of the shape operators A∗E and
AN are A∗EU1 = 2ANU1 =

1
2 x4U1+

1
2 (x2

4+1)ξ, A∗EU3 = 2ANU3 =
1
2 x6U1+

1
2 x4x6ξ and A∗Eξ =

2ANξ = −
1
2 U1 −

1
2 x4ξ. Locally, the matrix form A∗E , in the local orthogonal field of frames

{U1, U2, U3, U4 = E, U5, U6 = ξ} on M is

A∗E =



1
2 x4 0 1

2 x6 0 0 −1
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
2 (x2

4+1) 0 1
2 x4x6 0 0 −1

2 x4


.

It is easy to see that the rank of A∗E is 2. Therefore, for any x ∈ R7, t(x) = 2 > 0. One of the
non-vanishing components of the local second fundamental form B is B(U1, ξ) = 1

2 , 0 and
this means that M cannot be totally geodesic. Since ϕ = 1

2 and τ(E) = 0 (Example 3.1), we
have E(ϕ)−2ϕτ(E) = 0.

Therefore, there exist screen conformal invariant lightlike hypersurfaces in indefinite
Sasakian space forms (M(c),g) with ξ ∈ T M which satisfy the results in Theorem 3.6.
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Let us now deal with the leaf M′ of the conformal screen distribution S (T M) of the
lightlike hypersurface M of an indefinite Sasakian space form (M(c),g) with ξ ∈ T M. Using
(3.7) and (3.25), the second fundamental form h′ of M′ becomes, for any X, Y ∈ Γ(T M′),

h′(X,Y) = B(X,Y)K, (3.46)

where K = ϕE+N ∈ Γ(T M⊥⊗ tr(T M)) and the relation (3.24) reduces to

∇XY = ∇′XY +B(X,Y)K. (3.47)

If the type number of M, t(x) > 0, by Theorem 3.6, the covariant derivative of W with
respect to ∇ is given by

∇XK = X(ϕ)E+ϕ∇XE+∇XN

= −{ϕA∗EX+AN X}+ {X(ϕ)−ϕτ(X)}E+τ(X)N

= −2ϕA∗EX+τ(X)K. (3.48)

We have developed the first set of basic formulas for submanifolds, namely,

∇XY = ∇′XY +B(X,Y)K, (3.49)

and ∇XK = −AK X+∇′⊥X K, ∀X,Y ∈ Γ(T M′), (3.50)

where AK X = 2ϕA∗EX and ∇′⊥X K = τ(X)K. Since g(K,K) = 2ϕ , 0, it is easy to check, for
any X, Y ∈ Γ(T M′),

g(h′(X,Y),W) = g(AW X,Y). (3.51)

Theorem 3.7. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface of
an indefinite Sasakian space form (M(c),g) with a leaf M′ of S (T M). Then,

(i) M is totally geodesic,

(ii) M is totally contact umbilical,

(iii) M is minimal,

if and only if M′ is so immersed as a submanifold of M.

Using (3.49) and (3.50), one obtains

R(X,Y)Z = R′(X,Y)Z+ (∇′Xh′)(Y,Z)− (∇′Yh′)(X,Z), (3.52)

from which, using (2.4), we have

g((∇′Xh′)(Y,Z)− (∇′Yh′)(X,Z),K) = 0, (3.53)

which lead to

(∇′X B)(Y,Z)− (∇′Y B)(X,Z) = τ(Y)B(X,Z)−τ(X)B(Y,Z), (3.54)

since (∇′Xh′)(Y,Z) = {(∇′X B)(Y,Z)+ τ(X)B(Y,Z)}K. Taking Z = ξ in this equation, one ob-
tains (∇′X B)(Y, ξ)− (∇′Y B)(X, ξ)= 0. Since (∇′X B)(Y, ξ)= X(B(Y, ξ))−B(∇′Xξ,Y)−B(ξ,∇′XY)=
B(φX,Y). We have,

B(φX,Y) = B(X,φY).
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Proposition 3.8. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface
of an indefinite Sasakian space form (M(c),g) with a leaf M′ of S (T M) immersed in M
as non-degenerate submanifold. Then, φX ∈ Γ(T M′), for any X ∈ Γ(T M′), and the second
fundamental form h′ of M′ satisfies

h′(φX,Y) = h′(X,φY), ∀X, Y ∈ Γ(T M′). (3.55)

Moreover, M′ is parallel if and only if it is totally geodesic.

Proof. For any X ∈ Γ(T M′), φX = PφX + θ(φX)E = PφX. If the leaf M′ is parallel, then
(∇′Xh′)(Y,Z) = {(∇′X B)(Y,Z)+τ(X)B(Y,Z)}K = 0, that is, (∇′X B)(Y,Z) = −τ(X)B(Y,Z). Taking
Z = ξ in these relation leads to (∇′X B)(Y, ξ) = 0 which gives B(φX,Y) = 0, i.e h′(X,Y) = 0.
Thus M′ is totally geodesic. The converse is obvious. �

Putting the relation (3.54) into (3.52) leads to, for any X, Y , Z ∈ Γ(T M′),

R′(X,Y)Z = R(X,Y)Z = {g(Y,Z)η(X)−g(X,Z)η(Y)}ξ

+ {η(Y)X−η(X)Y}η(Z). (3.56)

A submanifold M′ is said to be semi-parallel [14] if its second fundamental form h′ satisfies,
for any X, Y , Z, W ∈ Γ(T M′),

(R′(X,Y) ·h′)(Z,W) = −h′(R′(X,Y)Z,W)−h′(Z,R′(X,Y)W) = 0. (3.57)

By direct calculation, the right hand-side of (3.57) reduces to

(R′(X,Y) ·h′)(Z,W) = −{η(Y)h′(X,W)−η(X)h′(Y,W)}η(Z)

−{η(Y)h′(X,Z)−η(X)h′(Y,Z)}η(W). (3.58)

If M′ is semi-parallel, then, putting W = ξ into (3.58), one obtains,

h′(X,Z)Y = h′(Y,Z)X, (3.59)

which implies that h′(X,Z)= 0, i.e., M′ is totally geodesic. The converse is a straightforward
calculation. We have:

Proposition 3.9. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface
of an indefinite Sasakian space form (M(c),g) with a leaf M′ of S (T M) immersed in M non-
degenerate a submanifold. Then, M′ is semi-parallel if and only if it is totally geodesic.

From Proposition 3.8 and Proposition 3.9, we obtain

Theorem 3.10. Let (M,g,S (T M)) be a screen conformal invariant lightlike hypersurface
of an indefinite Sasakian space form (M(c),g). Let M′ be a leaf of S (T M) immersed in M
as non-degenerate submanifold. Then, M′ is parallel if and only it is semi-parallel.
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