African Diaspora Journal of Mathematics ISSN 1539-854X
Volume 13, Number 2, pp. 81-99 (2012) www.math-res-pub.org/adjm

PARAMETERS IDENTIFICATION IN POPULATION DYNAMICS
PROBLEM

SAWADOGO SOMDOUDA*
Département de Mathématiques et Informatique
UFR/Sciences Exactes et Appliquées, Université de Ouagadougou.
Boite Postale: 09 BP 522 Ouaga 09-Burkina Faso

Abstract

We are interested in the identification of parameters in a problem of pollution mod-
eled by a population dynamics problem. We use the notion of sentinel introduced by
O.Nakoulima in [13]. We prove the existence of such sentinels by solving a prob-
lem of null-controllability with constraint on the control. The key of our results is an
observability inequality of Carleman type adapted to the constraint.
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1 Introduction

In the modeling of the problems of pollution in population dynamics problem, the source
terms as well as the initial or boundary conditions may be unknown. More precisely, the
unknown real function y depends on variables ¢,a, x, where ¢ € (0,T) stands for the running
time, a € (0,A) for the age of individuals and x € Q ¢ RV for space variable. The number
¥(t,a, x) is the distribution of a — year old individuals at time ¢ at the point x. We set U =
0, T)x(0,A); 0=UxQ; 04 =(0,A)xQ; Or =(0,T)xQ; ¥ =U xTI. The function y has
satisfy the following two time scale varying equation

dy  dy

ot ¥ da

M
—Ay+puy f+ g&ﬁ in 0,
y = 0, on X, (1.1)
¥(0,a,%) Wa,0+5%a,x), in QO
A
¥(1,0,x) Jy Bt.a, x)y(t,a,x)da, Or.

5

It is assumed that Q is open and bounded with C? boundary I' = 0Q and u(t,a,x) >
0;8(¢,a,x) > 0. The parameters of the problem have the following sense: the bound 7" > 0 is
the horizon of the problem, the bound A is the expectation of life, the weight § is the natural
fertility rate, the function u = u(t,a, x) is the natural death rate of a — year old individuals at
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time 7 > 0 and in the position x, the function f corresponds to external flow and y° = y%(a, x)
is the initial distribution of individuals.

Convenient assumptions for mesurability and integrability of functions are made. In par-
ticular f € L*(Q).In the equation (1.1),we have:

M
e The source term is unknown and represents pollution source of the form f+ : 4;f;.
i=1

The functions f and {ﬁ}lsisM are known whereas the real coefficients {4;}1<;<)s are
unknown.

— The initial condition is of the form y° +73° where the function y° is known while
T, real, is unknown.

We assume that

e y? and 3 belong to L>(Q,), f and }: belong to L*(Q),
— the functions f 1 <i < M are linearly independent,
— the real 7 is sufficiently small.

In the model (1.1), we are interested in identifying the parameters A; without any attempt
of computing the missing term 7y°.To identify these parameters, we use the method of
sentinels. In this paper we construct sentinels when the supports of the observation function
and of the control function are included in two different open subsets of RV. This point of
view has already been proposed by Nakoulima [13] for the parabolics equations. In [12]
the authors use the previous point of view and build the sentinels with given sensitivity in
order to identify parameters in a problem of pollution modeled by a semilinear parabolic
equation.

The sentinels theory relies on three features:

e A state equation represented here by (1.1) whose solution

y=y(t,a,x,4,7) = y(1,7) depends on two families of parameter A = {4y,...,Ay} and 7.
We assume the following [1]:

H1 BeLT((0,A)x(0,T)xQ),
(H1) 16 € (0,A) s.t. B(a,.,.) =0 for a € (5,A);

(H2) ue L ([0,A); L7((0,T)xQ)), u>0a.e. in Qq;

loc

O<t<A, xe€ Qali_n)lAfOt/J(L,a—l‘+L,x)dL = 400,

(H3)

A<t<T, xeQlim foa,u(t—a—i-a/,a,x)da/= +00.
a—A
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For the biological comments about the model and for the basic existence of the solution
to (1.1) we refer to [2, 8, 15]. For the sake of simplicity, we use indifferently y, y(t,a, x; 4,7)
or y(4,7) to denote the unique solution of (1.1).It is relevant since A and 7 are fixed param-
eters.

e An observation y,,; which is a measurement of the concentration of the pollutant
taken on a non-empty open subset O of €, called observatory.

e A function S = S(4,7) called "’sentinel”. Let
ho € L*(U x 0) (1.2)

and let w  Q, open and nonempty, w # O. For any control function w € L*>(U X w),
set

SA,1)= f fhoy(t,a,x; A, T)dtdadx+f fwy(t,a,x; A, T)dtdadx. (1.3)
UJo UJw
Choose now w € L>(U x w) such that the following holds:

e S is stationary to the first order with respect to the missing term 7y° :

S
E(O,O) =0 Yy (1.4)

e § is sensitive to the first order with respect to the pollution terms /li};:

a8
5(0,0):@-, I1<i<M, (1.5)

where ¢;, (1 <i < M), are given constants not all identically zero.
e The control w is of minimal norm in L?(U X w) among “the admissible controls” i.e
||W||L2(U><w) = Iwneig”WHLZ(wa), (1.6)
where E = {w € L2(U X w), such that (w, S (w)) satisfies (1.3)-(1.5)}.
In the sequel, we assume without loss of generality that
f=0in Qandy’ =01in Q4. (1.7)

0
Remark 1.1. Consider the function y, = a—y, where y corresponds to parameter values A =0,
T

0
7 =0 and the function y,, = %, where y corresponds to parameter values A; =0, 7 =0. The
i

functions y. and y,, are respectively the solution of the problems

dy: Oy

E-Fa_c:—_AyT_'_IJyT:O in Q,
yVr =0 onZ, (18)

ye(0.a,x) =3° in Qy,
ye(t,0.3) = [ Bt.a. x)ye(t.a.x)da in Or:
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and p 5

YA Y A;

AL A A =7

5t T og Dt = fi inQ,
Y = 0 on 2, (19)
v4;(0,a,x) =0 in Oy,

A .

Ya,(t.0.%) = [ B(t,a, x)y,,(t.a, x)da in Q.

Under the assumptions (H;) — (H3), the linear problems (1.8), (1.9) gets respectively one
only solution y; such that y,(#,A,x) = 0 and y,, such that y,,(¢,A,x) = 0. For the details of
the proof we refer to [2, 8, 15].

Remark 1.2. If the function S defined by (1.3)-(1.5) exists, then it is unique since w verifies
(1.6). In this case, to estimate the parameter A; one proceeds as follows: Assume that the
solution of the state equation (1.1) when 4 = 0 and 7 = 0 is known. Then one has the
following information:

S(A,7)—S(0,0) ~ Z/l (00)

Therefore, fixing i, j € {1, ..., M} and choosing i and j such that

oS oS
87(0 ,0) =0 for j#iand 6/1,(0 0 =1,

one obtains the following estimate of the parameter A; :

1

~ —(§(4,7)-5(0,0)).

Ci
Definition 1.3. We will refer to the function §' given by (1.3)-(1.5) as sentinel with given
{c;} sensitivity.

Let x,, be the characteristic function of the set w. We set
Yy = Span{yi, Xews - YayXw}s (1.10)

the vector subspace of L*(U X w), generated by the M independent functions y,,x,, 1 <i <
M and we denote by Y j the orthogonal of Y, in L*(U X w). Assume that

ok Ok 1.11
—+ ——Ak+pk =0, in U X w, is identically zero in U X w. (1.11)

{ any function ke Y; N L*(U,H"(w)) such that
ot Oa

Next, we consider the following general null-controllability problem: Given h € L*(Q), find
v e L*(U X w) such that

vVEYT, (1.12)
and such that g = q(t,a,x,v) € L*(Q) which is the solution of
dq 0
_9_% —Ag+pg =pBq(t,0,x)+h+vy,in O,
ot Oa

g=0 onZ, (1.13)
q(T,a,x)=0 in Qa,

q(t,A,X) =0 in QT,
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satisfies
q(0,a,x,v) =01in Qg; (1.14)
with v of minimal norm in [*(U X w), that is
IVl 220wy = MIn|Wll 2xgw) ; (1.15)
web
where
E= {\7 € Yy such that (v,g = g(1,a, x,V)) is subject to (1.13)—(1.14)}. (1.16)

For the evolutions equations, others topics such as exact controllability and approxi-
mate controllability are considered. For example in [5], exact controllability of semilinear
stochastic evolution equation is studied and, in [9], the interior approximate controllability
of semilinear heat equation was proved.

For the problem (1.12)-(1.15), two matters are considered. The first one consists in
solving the null-controllability problem, and the second one consists in characterizing the
optimal solution (1.15) by some optimality system. The problem (1.12)-(1.15) is solved
when Y;={0} (i.e. setting without constraints or free constraints) in several issues by various
methods [1], [4]. In the present paper both points are considered in the general setting Y,
# {0}.More precisely, we have the following results:

Theorem 1.4. Assume that the above hypotheses on Q,w,O and the data of the equation
(1.1) are satisfied. Then the existence of sentinel (1.3)-(1.6) holds if and only if, null con-
trollability problem with constraint on the control (1.12)-(1.15) holds.

The proof of the null controllability problem with constraint on the control (1.12)-(1.15)
lies on the existence of a function 6 and a Carleman inequality adapted to the constraint (cf
Subsection 2.2), for which we have the following result:

Theorem 1.5. Assume that the hypotheses of Theorem 1.4 and the condition (1.11) are
satisfied. Then there exists a positive weight function 0 such that, for any function h € L*(Q)
with 6h € L*(Q), null controllability problem with constraint on the control (1.12)-(1.15)
holds. Moreover, the control is given by:

79 = _(ﬁ@_P.b\é)/\/a))Xw, (1.17)

where pg is a solution of:

dpe . Ipx —~ =~
j+Tj—Ape+Mpe—Oln 0,

po=0 on X, (1.18)
—_ A — .
po(t,0,x) = [ B(t,a,x)pg(t,a, x)da in Or;

and P is the orthogonal projection operator from L*(U X w) into Y.

The remaining of paper is organized as follows. Section 2 is devoted to some prelim-
inary results. In this section, we prove Theorem 1.4 and establish the inequality adapted
to the constraint (1.12). In Section 3, we prove the existence and the uniqueness of the
solution for the controllability problem (1.12)-(1.15) of Theorem 1.4 and give the proof of
Theorem 1.5. We finish with Section 4 where the expression of the sentinel S defined by
(1.3)-(1.5) and the estimate of the parameters A; are given.
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2 Preliminary results

2.1 Proof of Theorem 1.4

Since y. and y,, are respectively solutions of (1.8) and (1.9), the stationary condition (1.4)
and respectively the sensitivity conditions (1.5) hold if and only if:

ffhoy,dtdadﬁffwy,dtdadxzo, VI 2 < 1 (2.1)
vJo UJw 4

ffhoy/l,.dtdadx+ffwy/l,.dtdadxzcilsiSM. (2.2)
vJo UJow

In order to transform equation (2.1), we introduce the classical adjoint state. More
precisely, we consider the solution g = ¢(t,a, x) of the linear problem

and

— 5t — 51— Ag+pug = Bg(t,0,x) + hoxo +wx,, in O,
qg=0 onx,

Q(T,a,x) = 0 in QA,

q(t,A,x)=0 in Or:

2.3)

where yo and y,, are indicator functions for the respective open sets O and w. There is
only one solution in L*(Q) as some consequence of the fixed point theorem for contracting
mapping [2, 3]. The so called adjoint state ¢ depends on the unknown function w and its
utility comes from the following process.

First, multiplying both members of the differential equation in (2.3) by y,, and integrat-
ing by parts over Q

A
f f hoy-dtdadx + f f wy-dtdadx = f f q(0,a, x)y’dadx,
vJo UJow 0 Ja

2
\76;0 € L (QA)’ WHLZ(QA) S 1
Thus, the condition (1.4) (or (2.1) ) holds if and only if

q(0,a,x) =0, a.e (a,x) € (0,A) x Q. 2.4)

Then, multiplying both sides of the differential equation in (2.3) by y,, € L*(Q) which is
solution of (1.9), and integrate by parts over Q

f f qfdtdadx = f f hoya,didadx + f f wyydtdadx, 1<i<M.  (2.5)
UJQ UJo UJdow

Thus, the condition (1.5) (or (2.2)) is equivalent to

f f qfdtdadx=ci, 1 <i<M. (2.6)
UJQ

Therefore, the above considerations show that the existence of the sentinel defined by
(1.3)-(1.5) holds if and only if, the following null controllability problem with constraints
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on the state g holds: Given hg € L2(UxO0), find w of minimal norm in L*(U X w) such that
the pair (w,q) verifies (2.3), (2.4) and (2.6).

Actually, condition (1.5)(or the constraints (2.6) on the state g) is equivalent to con-
straint on the control. Indeed, let Y, be the real vector subspace of L*(U X w) defined in
(1.10). Since Y, is finite dimensional, there exists a unique wy € Y, such that

c,-—ffhoy,lidtdadxzffwoyﬂidtdadxlsiSM.
vJo UJow

Therefore, the condition (2.2) or (2.6) holds if and only if
w—w0=v€Yj. 2.7
Consequently, replacing w by v+ wy in (2.3)1, then setting

h = hoxo +woxw € LX(Q), (2.8)

we finally deduce that we have the existence of the sentinel (1.3)-(1.5) if and only if, null
controllability with constraint on the control (1.12)-(1.15) holds m

2.2 An adapted Carleman inequality

The observability inequality we are looking for is a consequence of Carleman’s inequality.
We consider an auxiliary function y € C?(Q) which satisfies the following conditions:

U(x)>0VxeQ, y(x)=0Vxel, |V¥(x)|#0Vxe Q- wy, 2.9)

where wq denotes any open set such that wy C w (for example w( can be some small enough
open ball). Such a function ¢ exists according to A.Fursikov and O.Yu.Imanuvilov [7].
We define for any positive parameter A the following weight functions:

e P _ ()

at(T—t)’ CL’(I,G,X) = W (210)

o(t,a,x) =

Since ¢ does not vanish on Q, we set

eS(l

1
0= or — = @ Jpe™ . 2.11)
A Ve

1 — _
Remark 2.1. 7 = @ +Jpe™* is defined on Q = [0; T x [0;A] X Q by:

—(t,a,x) = @3 (t,a,%) =04 on 10, T[x]0,A[xQ,
6" | 00on Q- (0, T[x]0,A[xQ);

1 1
and we have the following limits: lim —(t,a,x)=0= 3 (0,0,x);

(t,a,x)—(0,0,x) @
1
Iim —

1
t’ b = O == 07 b ;
(t,a,x)—)(O,a,x)Q( 4 X) 0 ( a X)
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1
lim t, 0=-=(0,x);
(tax)—)(tOx)Q( a,%) = 9( )3

1
li —(t, 0=-(T
(tax)—>n(lTax 0( ax} 9( aX)

1
(tax)1—>(T0x Q(IQX) 0= _(TOX)

1 1
Thus i is continuous on Q and since Q is bounded in RV*2 then s is bounded.
We adopt the following notations
_d
L=g+4 a - A+ul,

Lr=-2 -8 Ayl (2.12)
V={peC~(Q), p=00nZ}.

Lemma 2.2. Assume that (1.11) holds. Let 6 be the function given by (2.11) and P be the
operator defined as in Theorem 1.5. Then there exists a positive constant C such that for
anypeV:

1
f f — |pl* didadx < C( f f \Lp|* dtdadx + f f lo — Pp|* dtdadx) (2.13)
vJat vJda vJdo

The proof of this lemma requires what we call the global Carleman’s inequality.

Proposition 2.3 (Global Carleman’s inequality). Let ¥,¢ and « be the functions defined
respectively as in (2.9)-(2.10). Then, there exists A, > 1 and s, > 1 and there exists C >0
such that, for any A > A,, for any s > s, and for any p € V the following inequality holds:

—2sa
f ew (|pt+pa|2+|Ap|2)dtdadx+ f sA2pe” 2 \Vp|? dtdadx
0 0

+ f s A e p? dtdadx
0

T A
< c( f e 2 Lo* dtdadx + f f f SPGB dtdadx).  (2.14)
0 0 0 w

Proof. We refer to [1] and [14]. O

According to the definition of ¢ and @ given by (2.10), the function 6 given by (2.11)
sa

—sa

1
is positive and ik \pe™* is bounded. So, replacin

inequality holds:

1
2 2 2
L lol“ dtdadx < C(f —92 Py |Lo|” dtdadx + L j; 5} lol” dtdadx).

1 1
As a consequence of the boundedness of 3 and PRy we get the next observability in-
@’

equality:
1
f — |pl? dtdadx < C( f \Lp|? dtdadx + f f lo? dtdadyx). (2.15)
92
o 0 UJdw
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Proof of Lemma 2.1. The proof uses a well known compactness-uniqueness argument and
the inequality (2.15). Indeed suppose that (2.13) does not hold. Then

. £ 2
{v]eN o €V, [, oz ol didadx =1, (2.16)

Sy Jo|Lp i didadx < Y and [, [ |o;~ Pp[* didadx < 1.

The forthcomming proof consists of extracting some subsequence, still denoted (p;);
such that the following contradiction holds

. I, p
jETmLL§|pJ| dtdadx = 0.

Denote by (h|g);2(yx.) the natural scalar product in the Hilbert space
[*(U xw). Let {ky, ko, ..., kys) be some orthonormal basis of Y.
Step 1. We show first that for any i = 1,2, ..., M the numerical sequence ((0jlki)12(pxqw)) jeN*

is bounded or equivalently that the sequence (”Pp J’”iz (wa)) j 18 bounded.
Start with the norm inequality

(fflp) [ didadx)? < (ffl| |} drdadx)?
0@ = d.e
1
+(ff—|pj—ij|2dtdadx)é.
U wgz

1
Since 7z is bounded and by (2.16) it follows that there is some number y

1
VjeN*,ff—|ij|2dtdadx§y. 2.17)
U (ugz

Since Y, is finite dimensional, norms are equivalent. Particularly the mappings

1
k—s f f k? dtdadx and k —> f f —2|k|2dtdadx,
UJdw U a)g

are equivalent norms on Y. There is then some number y’

VjeN*,f f|Pp,-|2dzdadx3y’.

UJw

The relation (p; — Pp;) € Y1,V j €EN* means the following
(0j=Ppjlk) 2(yxwy =0 Vi, 1 <i< M, VjeN".

Thus

M M
Ppj= > (Pplkd)2sarki = (01K 2 wxankin (2.18)
i=1 i=1

and from orthonormality

M
fU fw |Pp,|” didadx = Z:‘ k) 2]’ = PO 2 (2.19)
=
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Thus 5
“Pp/”LZ(wa) <y (2.20)
Step 2. Since (Pp;) jen- is bounded and

o= Poill 2 = o, Po,| didadx — 0,
( ) UJdow

then the sequence (p;) jen+ is bounded. There is some weakly convergent subsequence
still denoted by (o) jen+ such that:

pj— g weakly in L*(U X w). (2.21)
Since subsequences have the same limit as convergent sequence
pj—Pp;— 0 strongly in L* (U X w). (2.22)

Next, we deduce from the compactness of P ( because Y, is finite dimensional ) that
there exists £ € Y, such that

Pp; — { strongly in L>(Uxw). (2.23)

We deduce from (2.22) and (2.23) that p; — g = { strongly in L* (U X w). Thanks to the
continuity of P, we have Pp; — Pg strongly in L? (U X w). Therefore, Pg = g and so g € Y.
Step 3. In fact, we have g = 0. Indeed, from (2.16), we also have Lp; — 0 strongly
in L2(Q). Thus Lp; — 0 strongly in L*(U xw). We conclude that Lp; — 0 weakly in
D'(U X w) and so Lg = 0. The assumption (1.11) implies g = 0 on U X w. Finally, p; — 0
strongly in L2 (U X w).
Step 4. Since p; € V, it follows from the observability inequality (2.15) that

f f iszjfdtdadxsc( f f |Lp,|’ didadx + f f |pj|2dtdadx).
U Qe UJO vJdo

Then, the conclusions in the third step, yield that fU fg 9% |p j|2dtdadx — 0 when j —
+00. The proof is now completed. O

3 Null controllability with constraint on the control

The main tool used is the observability inequality (2.13), adapted to the constraint.

3.1 Existence of optimal control variable for null controllability

Consider now the following symetric bilinear form

YpeV.¥peV, alp,p) = f prLﬁdtdadx+f f(p — Pp)(o— Pp)dtdadx.  (3.1)
UJQ UJow

According to Lemma 2.1, this symetric bilinear form is a scalar product on V. Let V be the
completion of V with respect to the related norm:

p— llplly = va(p,p). (3.2)
The closure of V is the Hilbert space V.
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Remark 3.1. 1. The norm ||.||y is related to the right side of the inequality (2.13) while the
left member of (2.13) leads to the norm

1

1 2

YoeV, |,0|9=(f f 6§|p|2dtdadx) .
UJa

2. The completion of V is the weigthed Hilbert space usually denoted by Lzl.
3. The inequality (2.13) shows that ’

lol, < Clielly - (3.3)

Let 6 be defined by (2.11) and & € L*(Q) be such that 6k € L*(Q). Then, thanks to
Cauchy-Schwartz’s inequality and (2.13), the following linear form defined on V by:

p—>ffhpdtdadx,
UJQ

is continuous. Therefore, Lax-Milgram’s Theorem [6], allows us to say that, for every
function i € L*(Q) such that 8k € L*(Q), there exists one and only one solution pg in V of
the variational equation:

a(pg,p) = f fhpdtdadx YpoeV. (3.4)
UJa

Remark 3.2. In the statement of the null-controllability problem, there are boundary and
initial or end conditions. These conditions concern the values of the control or state func-
tions at the points of the boundary for example. The solutions dealt by means of functionnal
analysis are not functions but elements of function spaces which are equivalence classes.
As a consequence boundary or initial or end values of the solutions have to be considered in
function spaces. Such a question has been adressed by Lions-Magenes. We refer to [11] to
derive the following trace theorems in regular open set Q. Let’s assume that g € L2(U X Q) ~
L2(U,L2(Q)) and Ag € H'(U, L2(Y)). Then glyxr € H~'(U, H (). The meaning of gls,
the trace of ¢ on Z, is clear. Let’s assume that g € L2(UxQ) =~ L*([0,T]x[0,A],L*(€)) and

dq  0Oq 2 -2
o + P e L-(U,H“(Q). Then

q € C([0,A], L*([0,T1, H*(Q))) N C([0, T1, L*([0,A], H*(Q))).

That means there exists some function g : [0,7] X [0,A] — L*([0,T],H2(Q)) standing for
g € L>(U xQ) which is separately continuous, so that the following values in L>([0, T], H~2(Q))
get sense

Y(t,a) € U, q(t,a) =q(t,a),

and
q(T) € L*[0,A,H*(Q)),

q(0) € L*([0,T],H*(Q)),
q(Ad) e LX0,T],H*(Q)).
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Proposition 3.3. Assume (1.11) holds. For h € L*(Q) such that 6h € L*(Q), let Py be the
unique solution of (3.4),

ve = —(PoXw — Ppo), (3.5)
and
90 = Lpo. (3.6)
Then, the pair (vg,qqg) is such that (1.12)-(1.14) hold.

Proof. We prove that (vg,qg) is a solution of (1.12)-(1.14). According to (3.4), we have
pg € V. Consequently gy € L?(Q) and since Ppy € Y,, the function vy = —(pgx, — Ppg) €Y j
Next, replacing Lpy by gg and —(pgx» — Ppg) by vy in (3.4), we obtain

f f qeLpdtdadx — f f vg(p — Pp)dtdadx = f f hopdtdadx, Yp € V.
UJQ UJow UJQ

Since Pp € Y, and vy € Y, this latter equality is reduced to

ffqupdtdadxzffhpdtdadx+ffvepdtdadx, VpeV. 3.7
UJQ UJQ UJow

In the duality frame D(Q), D’'(Q) (3.7) means that
L*qg = h+vgx, in D'(Q). (3.8)

Besides i+ vgy., € L*(Q), then L*qg € L*(Q). 1
Since g € L*(Q) and Agy € H~' (U, L?(Q)) and by the above Remark gy|yxr € H~'(U,H™2(T)).

Similarly, since go € L2(0)) and 22 + 292 ¢ 121 H-2(Q)). 45(0.a,x) € L2(10, AL, H-2(©),

ot da
qo(T,a,x) € L*([0,A], H*(Q));
q6(1,0,x) € L>([0,T1, H2(Q)) and gy(1,A,x) € L*([0,T], H">(Q)). Taking into account
(3.8), integrate by parts

0
Vpe(foqupdtdadx+f<qg, p> ., dida
|y AN EL S
+f [{ge(2,0,.), p(2, 0a-)>H—2(Q),H2(Q) _<QH(I,A,-),P(t,A’-))H—2(Q),H2(Q)]df
0
A
+f [(q@(oaaa-)’p(O,a’-)>H*2(Q),H2(Q)_<q0(T’a,-)’p(T,a’-)>H*2(Q),H2(Q)]da
0

f(h +vgyw)pdtdadx.
Q0

By (3.7) since V c V, it follows
VYoeV, f <q9, > . dtda
N[ 53 )13 )
+f [{q6(2,0,.),0(2,0,.)) g2 12 — (qo(t, A, ), p(1, A, )) 2 ) 12 1t
0

A
+f [{q6(0,a,.),p(0,a, ) g2y 12 — (qe(T, a,.),p(T, a,.)) g2 (), m2 () lda
0
= 0.



Parameters Identification in Population Dynamics Problem 93

Then, successively, we get gg =0on X, g¢(0,a,x) =0 and go(T,a,x) =01in Qy; ge(t,0,x) =
0 and gy(t,A.x) = 0in Q7. Since gy(t,0,x) = 0 we have

L*qo = Bqo(t,0,x) + h+ vox -
Hence the proof is completed. -

Proposition 3.4. Under the assumptions of the Proposition 3.1, there exists a control vari-
able v such that the pair (v,q) satisfies (1.12)-(1.14). Moreover, we can get a unique control
Vg such that (1.15) holds.

Proof. We have proved in Proposition 3.1 that (vy, gg) satisfies (1.12)-(1.14). Consequently,
the set & of the control variables v € L>(U X w) such that (v, q(t,a, x,v)) verifies (1.12)-(1.14)
is non-empty. Moreover, adapted observability inequality (2.13) shows that the choice of the
scalar product on V is not unique. Thus, proceeding as in Proposition 3.1, we can construct
infinitely many control functions v which belong to &. It is then clear that £ is a nonempty
closed convex subset of L>(U x w). Therefore, there exists a unique control variable vy of
minimal norm in L2(U X w) such that (Vy, gy = ¢(t,a, x,vp)) solves (1.12)-(1.15). m|

3.2 Proof of Theorem 1.5

In this subsection, we are concerned with the proof of Theorem 1.5. That is, the optimality
system for the control vy such that the pair (vy,gp) satisfies (1.12)-(1.15). As a classical
way to derive this optimality system is the method of penalization due to J.L.Lions [10], the
proof of Theorem 1.5 requires some preliminary results.

Let € > 0. We define the functional

1 L|| g dq 2
1) = 5 B+ 5 | 5 - 5~ Ad g =00~ h=vxe

. (39

L2(Q)
for any pair (v, q) such that

vevt, geIX(Q),

0 Io]
—% = 3t~ Ag+pq - fq(1.0,x) € LX(Q), (3.10)
g=0onZ, ¢g(T,a,x)=01n Q4, q(t,A,x) =01n Qr,

q(0,a,x)=01n Q4.
and we consider the minimization problem
inf{Je(v,q) | (v,q) subject to (3.10)}. (3.11)

Proposition 3.5. Under the assumptions of Proposition 3.1, the problem (3.11) has an
optimal solution. In other words, there exists a unique pair (ve,qc) such that

JeWe,qe) =inf{Jc(v,q) | (v,q) subject to (3.10)} (3.12)

Proof. Let (v,,g,) be a minimizing sequence satisfying (3.10). The sequence (Jc(Vi, gn))n
is bounded from above

Je(Vn, qn) < ¥(€), (3.13)
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then

“Vn”Lz(wa) <C(e),
H - = Agn + pgn — Bgn(t,0,x) —h—vyx,
da 12

< VeC(e).
Q)

There is some subsequence of (v,),, still denoted by (v,),, such that
vy, — ve weakly in LZ(U X w).
As a consequence (3.10) the sequence (g,), is bounded
gnllr2cg) < C.
There is some subsequence of (g,),, still denoted by (g,), such that
gn — qe weakly in L*(0).

Then
liminf Je(v,, gn) = Je(Ve, qe).

We deduce that (ve, g¢) is a unique optimal control, from the strict convexity of Je.

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

O

Proposition 3.6. The assumptions are as in Proposition 3.1. Then, the pair (ve,qe) is
optimal solution of the problem (3.12) if and only if there exists a function pe such that
(Ve»Gespe) € L2(UXxw)xL*(Q)xV satisfies the following approximate optimality system:

ot " da Age+uge = Bqe(t,0,x) + h+vexw + €pe in Q,
ge=0 on Z,

qe(T,a,x) =0 in Qu,

qe(t,A,x) =0 in Or;

qe(0,a,x) =0 in Qy;

dpe |, Ope
('; +5a p —Ape+ppe =01in Q,
pg—OonE

A .
pe(1,0,x) = [ B(t.a, )pe(ta, x)da in Qr;
Ve = —(PeXw — Ppe) € Yj_-

Proof. Express the Euler-Lagrange optimality conditions which characterize
(Ve,qe). For any (v, ) such that (3.10) the following holds

ffvgvdtdadx+

f (=== ~Aget puqe —Bqe(t,0,X) —h—vexw)
€ 0 a

dp 0
X(__"D _%_ Ap + up — Bo(t,0, x) — vy, )dtdadx = 0.
ot da

(3.19)

(3.20)

(3.21)

3.22)

(3.23)
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Define the adjoint state

ot Oa

Pe=—~\—
€

1 € €
( %4. %4 —Aqe+uqe—ﬁqe<z,o,x)—h—vexw). (3.24)

Then (3.19) holds.
For any (v, ¢) such that (3.10),(3.23) becomes

dp 9
f f vevdtdadx + f 022 _ % Np+ o - Be(1,0, %) — vy )didadx = 0. (3.25)
UJdow 0 Bt Ba

Integrate by parts in (3.25). As a consequence the couple (ve,pe) is shown to satisfy
Ope |, Ope .

5, + 52 —Ape+ppe =01n O,
pe=0o0nZ, (3.26)

A
pe(1,0,%) = [ Bt,a, 0)pe(t,a, X)da;

and
f f (Ve +pe)vdtdadx =0, Yv € Yj. (3.27)
UJw
Hence v¢ +pcx o € Y. Since v € Yj then ve + pexw = P(Ve + pexw) = Ppe and thus
Ve = = (PeXw — Ppe) . (3.28)
Hence the assertion follows. |

Remark 3.7. There is no available information concerning p(t,A, x) in Or, p¢(0,a,x) in
QA’ pE(Taaax) in QA

Proposition 3.8. Let (ve,qe,pe) be defined as in Proposition 3.6. Then there exists a con-
stant C > 0 independent on € such that

llgell2gy < G, (3.29)
”,OE_Ppe||L2(U><w) < C, (3.30)
lloell2xwy < G (3.31)
lloely, < C. (3.32)
Proof. From (3.14), we have
0 0
H Te _ qe— Aqe+ pge —Bqe(t,0,x) — h—vexw < Ce (3.33)
da L2(Q)
Vel 2wy < C. (3.34)

Since g, verifies (3.10), we derive from (3.33), the relation (3.29). From (3.22) and (3.34),
we obtain (3.30). Then as Lp, = 0, using the definition of the norm on V given by (3.2), we
have (3.32) in one hand.

On the over hand, since p. € V, applying the observability inequality (2.13) to pe,

1
we have < C. Therefore, using (3.30) and the fact that 3 is in L=(Q), we

1
gpe

L2(Uxw)

< C. Since Ppc is in Y, which is finite dimensional, we have
L2(Uxw)
I1PPell2(xw) < C. Hence using again (3.30), we obtain estimate (3.31). O

1
deduce that gPpe




96 S. Sawadogo

Proof of Theorem 1.5. We proceed in three steps:
Step 1. We study the convergence of (ve,ge)e.
According to (3.34) and (3.29) we can extract subsequences, still denoted (g¢). and (ve)e
such that
ve — v weakly in L2(U X w), (3.35)
ge — qoweakly in L*(Q). (3.36)

And, as v belongs to Y j which is a closed vector subspace of L*(U x w), we have
vo€EYy. (3.37)

From (3.36), we have g — go weakly in D’(Q) and by the weak continuity of the op-
erator L* in 9 (Q) it follows L*g. — L*qo weakly in 9Y(Q). Moreover the traces functions
are continuous, then the pair (vg, go) satisfies the system

a .
~r " o~ Ado+udo =Pqo(t,0,)+h+vox,, in O,

q0=0 on 2, (3.38)
qo(T,a,x)=0 in Qy,
‘ZO(I,A,X) = O in QT-

q0(0,a,x) =0 in Qa. (3.39)
Step 2.We prove that (vo,qo = ¢(t,a,x,v0)) = (o, qo = q(t,a, x,vy)).

From the expression of J, given by (3.9), we can write

1
5 WellZa sy < JeVe ge).

Since (vy,qg) satisfies (1.12)-(1.14) (or equivalently verifies (3.10)), this latter inequality
becomes

1 1 2
S WellZa iy < Tevere) < 5 [Fol| 2 (3.40)

Then using (3.35) while passing to the limit in (3.40), we obtain

1, 5 . L2
S D002 gy < HINETe(e ) < 5 ([0 2
Consequently,
IVollz2wxw) < |F)\H||L2(U><w)’
and thus,

IVollz2wxwr = [Vl 2

Hence, vy =Vy and since (3.38) has a unique solution, it follows that go = gs.
Step 3. According to the inequalities (3.31) and (3.32), we can extract a subsequence,
still denoted (p¢)e such that

pe — ppweakly in L2(U X w), (3.41)
Pe — ppweakly in V. (3.42)
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As P is a compact operator, we deduce from (3.41) that
Ppe — Ppy strongly in L*(U X w). (3.43)
Therefore, combining (3.41) and (3.43), we get
Ve = PeXw — PPe — Vg = Poxw — PPy weakly in L*(U X w).

Thus, we have proved that there exists 6 given by (2.11) such that for a given i € L*(Q)
with 6h € L*(Q), the unique pair (vy,gy) satisfies (1.12)-(1.15) with Vy = pgxw — Ppy, and
where py is a solution of (1.18). Since the function & defined by (2.8) belongs to L*(Q) if
6h € L*(Q), the proof of Theorem 1.5 is complete. O

4 Expression of the sentinel with given sensitivity and identifi-
cation of parameter A;

We can now give the expression of the sentinel S defined by (1.3)-(1.6) and identify the
parameter A;.
4.1 Expression of the sentinel with given sensitivity

We consider the results obtained in the previous sections and we assume that 4 given by
(2.8) and 6 given by (2.11) are such that 6h € L*(Ux0). Let (g, vp) be defined as in Theorem
1.5. Since vy = —(Pyxw — Ppy) realizes the minimum in L*(U X w) among all controls v
such that the pair (v,q) satisfies (1.12)-(1.15), using (2.7), we deduce that w = wy + vy =
wo — (Pgxw — Ppog). Consequently, replacing w by its expression in (1.3), the function S
becomes:

S(/l,T)zffhoy(ﬂ,T)dtdadx+ff(wo—(ﬁg—Pﬁg)(w))y(/l,T)dtdadx, 4.1
UJo UJw

and (w,S) is such that (1.4)-(1.6) hold.

4.2 Identification of the parameter A;

Yo 1s the solution of the problem (1.1) when A4 = 0 and 7 = 0. Hence, from (4.1) we have

S(0,0) = f f hoyodtdadx + f f(wo — (0o — Ppox w))yodtdadx = 0.
UJo UJw

Next, using (1.4), we obtain

M
oS
S(,1)-S5(0,0) = Z /l,-ﬁ(0,0) for A; and 7 small .
p

i

Since get at our disposal the observation y,s, we get

S(,1)=5(0,0) = f f o (ops — yo)didady + f f W(¥ops — yo)dtdadx.
UJo UJdw
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Thus, we also have the following information:

M

oS
Ytz 00> [ ot —swdidadrs [ | wruns - yortndads,
04 uJo vJo

which, using (1.5) gives

M
Z/lici ~ f fho(yobx—yo)dtdadx+f fw(ynbs—yo)dtdadx.

Now, fixing i € {1,..., M} and choosing ¢; # 0 and ¢; = 0, for all jin {1,..., M} with j # i,

we get this estimate of the parameter A;

1
/ll-z—{ffho(yobs—yo)dtdadx+ffw(yobs—yo)dtdadx}.
¢ \JuJo UJw
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