A REGULARIZATION PROXIMAL POINT ALGORITHM FOR ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES

TRUONG MINH TUYEN*

Department of Mathematics and Informatics, Thai Nguyen University, Thainguyen, Vietnam

Abstract

In this paper, we study the strong convergence of a regularization proximal point algorithm for the problem of finding a zero of m-accretive operators in a uniformly smooth Banach space E, and the stability of the regularization algorithms are considered.

AMS Subject Classification: 47B44; 47H05; 47H09; 47H10.

Keywords: Accretive operators, sunny nonexpansive retraction, weak sequential continuous mapping, regularization.

1 Introduction

Let E be a Banach space, let $A: E \longrightarrow 2^E$ be an m-accretive operator. It is well known that many problems in nonlinear analysis and optimization can be formulated as the problem:

find an x such that
$$0 \in A(x)$$
.

This problem has been investigated by many researchers: see, for instance, Benavides et al. [6], Brézis and Lions [8], Ha and Jung [13], Jung and Takahashi [14, 15], Reich [22], Rockafellar [23], Xu [27, 28] and others. One popular method of solving equation $0 \in A(x)$ is the proximal point algorithm. The proximal point algorithm generates, for any starting point $x_0 = x \in E$, a sequence $\{x_n\}$ by the rule

$$x_{n+1} = J_{r_n}^A(x_n), n \ge 0, (1.1)$$

where $\{r_n\}$ is a sequence of positive real numbers and $J_{r_n}^A = (I + r_n A)^{-1}$ is the resolvent of A. Some of them dealt with the weak convergence of the sequence $\{x_n\}$ generated by (1.1) and others proved strong convergence theorems by imposing assumptions on A.

Note that, algorithm (1.1), can be rewritten as

$$x_{n+1} - x_n + r_n A(x_{n+1}) \ni 0. {(1.2)}$$

^{*}E-mail address: tm.tuyentm@gmail.com

This proximal iteration may be interpreted as an implicit one-step discretization method for the evolution differential inclusion

$$\frac{dx}{dt}(t) + A(x(t)) \ni 0, \text{ a.e. } t \ge 0,$$
(1.3)

where the parameter r_n is a (variable) stepsize. Let H be a real Hilbert space and A be a maximal monotone on H. When $A^{-1}(0) \neq \emptyset$ and A is demipositive, R. Bruck [9] proved the following convergence result: every solution trajectory $\{x(t): t \longrightarrow \infty\}$ of (1.3) converges weakly in H to an element of $A^{-1}(0)$. To know more informations and new results for the evolution differential inclusion, we can see in [4, 7, 24, 29]...

In particular, in 1976, Rockafellar [23] devised the proximal point algorithm which generates, starting with an arbitrary initial x_0 in Hilbert space H, a sequence $\{x_n\}$ satisfying:

$$x_{n+1} = J_{r_n}^A(x_n) + e_n, \ n \ge 0, \tag{1.4}$$

where A is a maximal monotone operator in H, $r_n > 0$ is a real number, and e_n is an error vector. Rockafellar proved the weak convergence of algorithm (1.4) if the sequence $\{r_n\}$ is bounded away from zero and if the sequence of the errors satisfies the condition: $\sum_n ||e_n|| < \infty$. An analogous result was established by O. Nevanlinna and S. Reich [19] for the problem of finding a zero of the accretive operator A in Banach spaces. They considered the sequence $\{x_n\}$ defined by

$$x_{n+1} + \lambda_{n+1} A x_{n+1} \ni x_n + e_{n+1}, \ n \ge 0, \tag{1.5}$$

where $\{\lambda_n\}$ is a positive sequence, and they obtained the strong convergence of the sequence $\{x_n\}$ to an element of $A^{-1}0$ when $\sum_{n=1}^{\infty} \lambda_n = \infty$, $\sum_{n=1}^{\infty} ||e_n|| < \infty$ and the operator A satisfies the converge condition. In 1991, Güler [11] gave an example showing that Rockafellar's proximal point algorithm does not converge strongly. An example of the authors Bauschke, Matoušková and Reich [5] also showed that the proximal algorithm only converges weakly but not in norm. Solodov and Svaiter [25] in 2000 proposed a modified proximal point algorithm which converges strongly to a solution of equation $0 \in A(x)$ by using projection method. Motivated by iterative algorithms of Halpern's type [12] and Mann's type [18], Kamimura and Takahashi [16] introduced the iterative algorithms in Hilbert spaces and Banach spaces:

$$x_{n+1} = \alpha_n x_0 + (1 - \alpha_n) J_{r_n}^A(x_n), \ n \ge 0, \tag{1.6}$$

and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) J_{r_n}^A(x_n), \ n \ge 0, \tag{1.7}$$

and showed that the sequence $\{x_n\}$ generated by (1.6) converges strongly to some $v \in A^{-1}(0)$ and the sequence $\{x_n\}$ generated by (1.7) converges weakly to some $v \in A^{-1}(0)$. Lehdili and Moudafi [17] obtained the convergence of the sequence $\{x_n\}$ generated by the algorithm

$$x_{n+1} = J_{c_n}^{A_n}(x_n), (1.8)$$

where $A_n = \mu_n I + A$ is viewed as a Tikhonov regularization of A.

When A is maximal monotone in Hilbert space H, in 2006, Xu [27]; in 2009, Song and Yang [26] used the technique of nonexpansive mappings to get convergence theorems for $\{x_n\}$ defined by the perturbed version of the algorithm (1.4)

$$x_{n+1} = J_{r_n}^A(t_n u + (1 - t_n)x_n + e_n). \tag{1.9}$$

Note that, the algorithm (1.9) can be rewritten as

$$r_n A(x_{n+1}) + x_{n+1} \ni t_n u + (1 - t_n) x_n + e_n, \ n \ge 0.$$
 (1.10)

In this paper, we use the regularization proximal point algorithm (1.10) and the technique of accretive operators to get convergence theorems for the problem of finding a zero of m-accretive operator in Banach spaces.

2 Preliminaries

Let E be a real Banach space with norm $\|.\|$ and let E^* be its dual. The value of $f \in E^*$ at $x \in E$ will be denoted by $\langle x, f \rangle$. When $\{x_n\}$ is a sequence in E, then $x_n \longrightarrow x$ (resp. $x_n \longrightarrow x$, $x_n \stackrel{*}{\longrightarrow} x$) will denote strong (resp. weak, weak*) convergence of the sequence $\{x_n\}$ to x.

We know that if C is a closed convex subset of a reflexive strictly convex Banach E, then for each $x \in E$, there exists a unique element $u = P_C x \in C$ with $||x - u|| = \inf\{||x - y|| : y \in C$. Such a P is called the metric projection of E onto C.

The function

$$\rho_E(\tau) = \sup\{2^{-1}(\|x+y\| + \|x-y\|) - 1 : \|x\| = 1, \|y\| = \tau\},\tag{2.1}$$

is called the modulus of smoothness of the space E. The function $\rho_E(\tau)$ defined on the interval $[0, +\infty)$ is convex, continuous, increasing and $\rho_E(0) = 0$. A Banach space E is said to be uniformly smooth, if

$$\lim_{\tau \to 0} \frac{\rho_E(\tau)}{\tau} = 0. \tag{2.2}$$

It is well known that every uniformly smooth Banach space is reflexive.

A mapping j from E onto E^* satisfying the condition

$$J(x) = \{ f \in E^* : \langle x, f \rangle = ||x||^2 \text{ and } ||f|| = ||x|| \}$$
 (2.3)

is called the normalized duality mapping of E. In any smooth Banach space $J(x) = 2^{-1} \operatorname{grad} ||x||^2$, and if E is a Hilbert space, then J = I, where I is the identity mapping. It is well known that if E^* is strictly convex or E is smooth, then J is single valued. Suppose that J is single valued, then J is said to be weakly sequentially continuous if for each $\{x_n\} \subset E$ with $x_n \to x$, $J(x_n) \stackrel{*}{\to} J(x)$. We know that every Hilbert spaces and the l^p spaces with 1 are uniformly smooth spaces and have a weakly sequentially continuous duality mappings [1]. We denote the single valued normalized duality mapping by <math>j.

Lemma 2.1. [2] In an uniformly smooth Banach space E, for all $x, y \in E$,

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x)\rangle + c\rho_E(||y||),$$
 (2.4)

where $c = 48 \max(L, ||x||, ||y||)$.

Remark 2.2. Reich [21] established a similar inequality with inequality (2.4) in the form

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x)\rangle + \max\{||x||, 1\}||y||\beta(||y||), \tag{2.5}$$

where

$$\beta(t) = \sup\{(\|x + ty\|^2 - \|x\|^2)/t - 2\langle y, j(x) \rangle : \|x\| \le 1, \|y\| \le 1\}.$$

An operator $A: D(A) \subseteq E \longrightarrow 2^E$ is called accretive if for all $x, y \in D(A)$ there exists $j(x-y) \in J(x-y)$ such that

$$\langle u - v, j(x - y) \rangle \ge 0, \ \forall u \in A(x), \ v \in A(y).$$
 (2.6)

An operator $A: D(A) \subseteq E \longrightarrow 2^E$ is called m-accretive if it is an accretive operator and the range $R(\lambda A + I) = E$ for all $\lambda > 0$. If A is a m-accretive operator in Banach space E with E has a weakly sequentially continuous duallity mapping J, then it is a demiclosed operator, i.e., if the sequence $\{x_n\} \subset D(A)$ satisfies $x_n \longrightarrow x$ and $A(x_n) \ni y_n \longrightarrow f$, then A(x) = f [3].

A mapping Q of C into C is said to be a retraction if $Q^2 = Q$. If a mapping Q of C into itself is a retraction, then Qz = z for every $z \in R(Q)$, where R(Q) is range of Q. Let D be a subset of E and let Q be a mapping of C into D. Then Q is said to be sunny if each point on the ray $\{Qx + t(x - Qx) : t > 0\}$ is mapped by Q back onto Qx, in other words,

$$O(Ox + t(x - Ox)) = Ox$$

for all t > 0 and $x \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D [20].

Proposition 2.3. [10] Let G be a nonempty closed convex subset of a smooth Banach space E. A mapping $Q_G: E \longrightarrow G$ is a sunny nonexpansive retraction if and only if

$$\langle x - Q_G x, j(\xi - Q_G x) \rangle \le 0, \ \forall x \in E, \ \forall \xi \in G.$$
 (2.7)

Reich [22] showed that if E is uniformly smooth Banach and $A: D(A) \subseteq E \longrightarrow 2^E$ is an m-accretive mapping with $A^{-1}(0) \neq \emptyset$, then there exists a sunny nonexpansive retraction Q from E onto $A^{-1}(0)$.

Let C_1 , C_2 be convex subsets of E. The quantity

$$\beta(C_1, C_2) = \sup_{u \in C_1} \inf_{v \in C_2} ||u - v|| = \sup_{u \in C_1} d(u, C_2)$$

is said to be semideviation of the set C_1 from the set C_2 . The function

$$\mathcal{H}(C_1, C_2) = \max\{\beta(C_1, C_2), \beta(C_2, C_1)\}\$$

is said to be a Hausdorff distance between C_1 and C_2 .

Finally, we need the following lemma:

Lemma 2.4. [28] Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the property:

$$a_{n+1} \le (1 - \lambda_n)a_n + \lambda_n\beta_n + \sigma_n, \ \forall n \ge 0$$

where $\{\lambda_n\}$, $\{\beta_n\}$ and $\{\sigma_n\}$ satisfy the conditions

- i) $\sum_{n=0}^{\infty} \lambda_n = \infty$;
- ii) $\limsup_{n\to\infty} \beta_n \le 0$ or $\sum_{n=0}^{\infty} |\lambda_n \beta_n| < \infty$;
- iii) $\sigma_n \ge 0$, $\forall n \ge 0$ and $\sum_{n=0}^{\infty} \sigma_n < \infty$.

Then $\{a_n\}$ converges to zero as $n \longrightarrow \infty$.

3 Main results

Let *E* be an uniformly smooth Banach space and $A: D(A) \subseteq E \longrightarrow 2^E$ be an m-accretive operator with $S = A^{-1}(0) \neq \emptyset$.

Now we study the strong convergence of sequence $\{x_n\}$ generated by the following algorithm: $u, x_0 \in E$,

$$r_n A(x_{n+1}) + x_{n+1} \ni t_n u + (1 - t_n) x_n, \ n \ge 0,$$
 (3.1)

where $\{t_n\} \subset (0,1)$ and $\{r_n\} \subset (0,+\infty)$.

Theorem 3.1. Let E be an uniformly smooth Banach space which admits a weakly sequentially continuous normalized duality mapping j from E to E^* . Let $A: D(A) \subseteq E \longrightarrow 2^E$ be an m- accretive operator with $S=A^{-1}(0) \neq \emptyset$. If the sequences $\{r_n\} \subset (0,+\infty)$ and $\{t_n\} \subset (0,1)$ satisfy

- i) $\lim_{n\to\infty} t_n = 0$; $\sum_{n=0}^{\infty} t_n = +\infty$;
- ii) $\lim_{n\to\infty} r_n = +\infty$,

then the sequence $\{x_n\}$ generated by (3.1) converges strongly to $Q_S u$, where Q_S is a sunny nonexpansive retraction of E onto S.

Proof. Since A is an m-accretive operator, equation (3.1) has solution, i.e., there exists x_{n+1} such that

$$r_n A(x_{n+1}) + x_{n+1} \ni t_n u + (1 - t_n) x_n.$$
 (3.2)

Hence, for each n, there exists $y_{n+1} \in A(x_{n+1})$ such that

$$r_n y_{n+1} + x_{n+1} = t_n u + (1 - t_n) x_n. (3.3)$$

For each $x^* \in S$, we have

$$\langle r_n y_{n+1}, j(x_{n+1} - x^*) \rangle \ge 0, \ \forall n \ge 0.$$
 (3.4)

Therefore,

$$\langle t_n u + (1 - t_n) x_n - x_{n+1}, j(x_{n+1} - x^*) \rangle \ge 0, \ \forall n \ge 0.$$
 (3.5)

It gives the inequality

$$||x_{n+1} - x^*||^2 \le [t_n ||u - x^*|| + (1 - t_n)||x_n - x^*||] \cdot ||x_{n+1} - x^*||, \ \forall n \ge 0.$$

Since $||x_{n+1} - x^*|| \ge 0$, $\forall n \ge 0$, we obtain

$$||x_{n+1} - x^*|| \le t_n ||u - x^*|| + (1 - t_n)||x_n - x^*||, \ \forall n \ge 0.$$
(3.6)

Consequently,

$$||x_{n+1} - x^*|| \le t_n \max(||u - x^*||, ||x_n - x^*||) + (1 - t_n) \max(||u - x^*||, ||x_n - x^*||)$$

$$= \max(||u - x^*||, ||x_n - x^*||)$$

$$\le \max(||u - x^*||, ||x_{n-1} - x^*||)$$

$$\vdots$$

$$\le \max(||u - x^*||, ||x_0 - x^*||), \forall n \ge 0.$$

Therefore, the sequence $\{x_n\}$ is bounded. Every bounded set in a reflexive Banach space is relatively weakly compact. This means that there exists some subsequence $\{x_{n_k}\}\subseteq \{x_n\}$ which converges weakly to a limit point $\overline{x}\in E$.

From equation (3.3) and the sequence $\{x_n\}$ is bounded, we get

$$||y_{n+1}|| = \frac{1}{r_n} ||t_n u + (1 - t_n) x_n|| \longrightarrow 0, \ n \longrightarrow \infty.$$
 (3.7)

It is clear that $\overline{x} \in S$ because the operator A is demiclosed. Hence, noting the inequality (2.7), we obtain

$$\lim \sup_{n \to \infty} \langle u - Q_S u, j(x_n - Q_S u) \rangle = \lim_{k \to \infty} \langle u - Q_S u, j(x_{n_k} - Q_S u) \rangle$$

$$= \langle u - Q_S u, j(\overline{x} - Q_S u) \rangle \le 0.$$
(3.8)

Next, we have

$$\begin{aligned} \|x_{n+1} - Q_S u\|^2 &= \langle -r_n y_{n+1} + t_n u + (1 - t_n) x_n - Q_S u, j(x_{n+1} - Q_S u) \rangle \\ &= -\langle r_n y_{n+1}, j(x_{n+1} - Q_S u) \rangle \\ &+ \langle t_n u + (1 - t_n) x_n - Q_S u, j(x_{n+1} - Q_S u) \rangle \\ &\leq \langle t_n (u - Q_S u) + (1 - t_n) (x_n - Q_S u), j(x_{n+1} - Q_S u) \rangle \\ &\leq \frac{1}{2} [\|t_n (u - Q_S u) + (1 - t_n) (x_n - Q_S u)\|^2 + \|x_{n+1} - Q_S u\|^2]. \end{aligned}$$

By the Lemma 2.1 and the estimate above, we conclude that

$$||x_{n+1} - Q_S u||^2 \le ||t_n(u - Q_S u) + (1 - t_n)(x_n - Q_S u)||^2$$

$$\le (1 - t_n)^2 ||x_n - Q_S u||^2 + 2t_n(1 - t_n)\langle u - Q_S u, j(x_n - Q_S u)\rangle$$

$$+ c\rho_E(t_n||u - Q_S u||).$$

Consequently,

$$||x_{n+1} - Q_S u||^2 \le (1 - t_n)||x_n - Q_S u||^2 + t_n \beta_n,$$
(3.9)

where

$$\beta_n = 2(1 - t_n)\langle u - Q_S u, j(x_n - Q_S u)\rangle + c \frac{\rho_E(t_n||u - Q_S u||)}{t_n}.$$

Since E is the uniformly smooth Banach space, $\frac{\rho_E(t_n||u-Q_Su||)}{t_n} \longrightarrow 0$, $n \longrightarrow \infty$. By (3.8), we obtain $\limsup_{n\to\infty}\beta_n \le 0$. So, an application of Lemma 2.4 to (3.9) yields the desired result.

Remark 3.2. If for some n_0 , $||x_{n_0} - x^*|| = 0$, then $||x_{n_0+k} - x^*|| = 0$, $\forall k \ge 1$ in proximal point algorithm (because $||x_{n+1} - x^*|| \le ||x_n - x^*||$, $\forall n \ge 0$), but this property is not necessarity true in a regularization proximal point algorithm.

Remark 3.3. The sequences $\{r_n\}$ and $\{t_n\}$ defined by $r_n = n$, $t_n = \frac{1}{n}$ satisfy all conditions in Theorem 3.1.

Theorem 3.4. Let E be an uniformly smooth Banach space which admits a weakly sequentially continuous normalized duality mapping j from E to E^* . Let $A: D(A) \subseteq E \longrightarrow 2^E$ be an m- accretive operator with $S=A^{-1}(0) \neq \emptyset$. If the sequences $\{r_n\} \subset (0,+\infty)$ and $\{t_n\} \subset (0,1)$ satisfy

i)
$$\lim_{n\to\infty} t_n = 0$$
; $\sum_{n=0}^{\infty} t_n = +\infty$, $\sum_{n=0}^{\infty} |t_{n+1} - t_n| < +\infty$;

ii)
$$\inf_{n} r_n = r > 0$$
, $\sum_{n=0}^{\infty} \left| 1 - \frac{r_n}{r_{n+1}} \right| < +\infty$,

then the sequence $\{x_n\}$ generated by (3.1) converges strongly to $Q_S u$, where Q_S is a sunny nonexpansive retraction of E onto S.

Proof. From the proof of Theorem 3.1, we obtain the sequence $\{x_n\}$ is bounded and there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to \overline{x} \in E$. Now, we show that $\overline{x} \in S$.

In equation (3.3) replacing n by n + 1, we get

$$r_{n+1}y_{n+2} + x_{n+2} = t_{n+1}u + (1 - t_{n+1})x_{n+1}. (3.10)$$

From (3.3) and (3.10) and by the accretiveness of A, we have

$$r_{n+1}\langle x_{n+2} - x_{n+1}, j(x_{n+2} - x_{n+1}) \rangle - (r_{n+1} - r_n)\langle x_{n+2}, j(x_{n+2} - x_{n+1}) \rangle$$

$$\leq \langle r_n[t_{n+1}u + (1 - t_{n+1})x_{n+1}] - r_{n+1}[t_nu + (1 - t_n)x_n], j(x_{n+2} - x_{n+1}) \rangle.$$

Hence,

$$|r_{n+1}||x_{n+2} - x_{n+1}|| \le |r_{n+1} - r_n| \cdot ||x_{n+2}|| + ||r_n[t_{n+1}u + (1 - t_{n+1})x_{n+1}] - r_{n+1}[t_nu + (1 - t_n)x_n]|| \le r_{n+1}(1 - t_{n+1})||x_{n+1} - x_n|| + |r_{n+1} - r_n| \cdot ||x_{n+2}|| + r_{n+1}|t_{n+1} - t_n| \cdot ||x_n|| + ||u|| + |r_{n+1} - r_n| \cdot ||(1 - t_{n+1})||x_{n+1}|| + t_{n+1}||u||].$$

By $\{t_n\} \subset (0,1)$ and $r_n > 0$ for all n, we deduce

$$||x_{n+2} - x_{n+1}|| \le (1 - t_{n+1})||x_{n+1} - x_n|| + \left(2|t_{n+1} - t_n| + 3|1 - \frac{r_n}{r_{n+1}}|\right)K,\tag{3.11}$$

where $K = \max\{||u||, \sup ||x_n||\} < +\infty$. By Lemma 2.4, $||x_{n+1} - x_n|| \longrightarrow 0$, as $n \longrightarrow \infty$. Therefore,

$$||y_{n+1}|| = \frac{1}{r_n} ||t_n(u - x_n) + (x_n - x_{n+1})||$$

$$\leq \frac{1}{r} (2Kt_n + ||x_{n+1} - x_n||) \longrightarrow 0, \ n \longrightarrow \infty.$$
(3.12)

Since *A* is demiclosed, we obtain $\overline{x} \in S$.

The rest of the proof follows the pattern of Theorem 3.1.

Remark 3.5. The sequences $\{r_n\}$ and $\{t_n\}$ defined by $r_n = 1 + \frac{1}{n}$, $t_n = \frac{1}{n}$ satisfy all conditions in Theorem 3.4.

Next, we study stability of algorithm (3.1) in the form

$$r_n A^n(x_{r+1}) + z_{n+1} \ni t_n u + (1 - t_n) z_n, \ u, \ z_0 \in E, \ n \ge 0,$$
 (3.13)

where $A^n: D(A^n) \subseteq E \longrightarrow 2^E$ are m-accretive operators with $D(A^n) = D(A)$ such that

$$\mathcal{H}(A^n(x), A(x)) \le g(\|x\|)h_n,\tag{3.14}$$

where g is real bounded (image of a bounded set is bounded) function for $t \ge 0$ with g(0) = 0 and $\{h_n\}$ is positive sequence.

We have the following results:

Theorem 3.6. Let E be an uniformly smooth Banach space which admits a weakly sequentially continuous normalized duality mapping f from E to f. Let f : f

- i) $\lim_{n\to\infty} t_n = 0$; $\sum_{n=0}^{\infty} t_n = +\infty$;
- ii) $\lim_{n\to\infty} r_n = +\infty$;
- iii) $\sum_{n=1}^{\infty} r_n h_n < +\infty$,

then the sequence $\{z_n\}$ generated by (3.13) converges strongly to $Q_S u$, where Q_S is a sunny nonexpansive retraction of E onto S.

Proof. For each n, by A^n is an m-accretive operator, the equation (3.13) has solution, i.e., there exists z_{n+1} such that

$$r_n A^n(z_{n+1}) + z_{n+1} \ni t_n u + (1 - t_n) z_n.$$
 (3.15)

Hence, there exists $w_{n+1} \in A^n(z_{n+1})$ such that

$$r_n w_{n+1} + z_{n+1} = t_n u + (1 - t_n) z_n. (3.16)$$

By the condition (3.14), for each $y_{n+1} \in A(x_{n+1})$, there exists $b_{n+1} \in A^n(x_{n+1})$ such that

$$||y_{n+1} - b_{n+1}|| \le g(||x_{n+1}||)h_n \le g(K)h_n. \tag{3.17}$$

From (3.3) and (3.16), we have

$$\langle r_n(w_{n+1} - b_{n+1}), j(z_{n+1} - x_{n+1}) \rangle + \langle r_n(b_{n+1} - y_{n+1}), j(z_{n+1} - x_{n+1}) \rangle$$

 $+ ||z_{n+1} - x_{n+1}||^2 = (1 - t_n) \langle z_n - x_n, j(z_{n+1} - x_{n+1}) \rangle.$

By A^n is an m-accretive operator and by (3.17), we obtain

$$||z_{n+1} - x_{n+1}|| \le (1 - t_n)||z_n - x_n|| + g(K)r_n h_n.$$
(3.18)

By the assumption and Lemma 2.1, we conclude that $||z_n - x_n|| \longrightarrow 0$, as $n \longrightarrow \infty$. In addition, by Theorem 3.1,

$$||z_n - Q_S u|| \le ||z_n - x_n|| + ||x_n - Q_S u|| \longrightarrow 0, \ n \longrightarrow \infty, \tag{3.19}$$

which implies that z_n converges strongly to $Q_S u$.

Theorem 3.7. Let E be an uniformly smooth Banach space which admits a weakly sequentially continuous normalized duality mapping j from E to E^* . Let $A: D(A) \subseteq E \longrightarrow 2^E$ and $A^n: D(A^n) \subseteq E \longrightarrow 2^E$ be m- accretive operators with $S = A^{-1}(0) \neq \emptyset$ and $D(A) = D(A^n)$ for all n. If the condition (3.14) is fulfilled and the sequences $\{r_n\} \subset (0, +\infty)$, and $\{t_n\} \subset (0, 1)$ satisfy

i)
$$\lim_{n\to\infty} t_n = 0$$
; $\sum_{n=0}^{\infty} t_n = +\infty$, $\sum_{n=0}^{\infty} |t_{n+1} - t_n| < +\infty$;

ii)
$$\inf_{n} r_n = r > 0$$
, $\sum_{n=0}^{\infty} \left| 1 - \frac{r_n}{r_{n+1}} \right| < +\infty$;

iii)
$$\sum_{n=1}^{\infty} r_n h_n < +\infty$$
,

then the sequence $\{z_n\}$ generated by (3.13) converges strongly to $Q_S u$, where Q_S is a sunny nonexpansive retraction of E onto S.

Corollary 3.8. Let H be a Hilbert space. Let $A: D(A) \subseteq H \longrightarrow 2^H$ and $A^n: D(A^n) \subseteq H \longrightarrow 2^H$ be maximal monotone operators with $S = A^{-1}(0) \neq \emptyset$ and $D(A) = D(A^n)$ for all n. If the condition (3.14) is fulfilled and the sequences $\{r_n\} \subset (0, +\infty)$, and $\{t_n\} \subset (0, 1)$ satisfy

- i) $\lim_{n\to\infty} t_n = 0$; $\sum_{n=0}^{\infty} t_n = +\infty$;
- ii) $\lim_{n\to\infty} r_n = +\infty$;
- iii) $\sum_{n=1}^{\infty} r_n h_n < +\infty$,

then the sequence $\{z_n\}$ generated by (3.13) converges strongly to $P_S u$, where P_S is a metric projection of E onto S.

Corollary 3.9. Let H be a Hilbert space. Let $A: D(A) \subseteq H \longrightarrow 2^H$ and $A^n: D(A^n) \subseteq H \longrightarrow 2^H$ be maximal monotone operators with $S = A^{-1}(0) \neq \emptyset$ and $D(A) = D(A^n)$ for all n. If the condition (3.14) is fulfilled and the sequences $\{r_n\} \subset (0, +\infty)$, and $\{t_n\} \subset (0, 1)$ satisfy

i) $\lim_{n\to\infty} t_n = 0$; $\sum_{n=0}^{\infty} t_n = +\infty$, $\sum_{n=0}^{\infty} |t_{n+1} - t_n| < +\infty$;

ii)
$$\inf_{n} r_n = r > 0$$
, $\sum_{n=0}^{\infty} \left| 1 - \frac{r_n}{r_{n+1}} \right| < +\infty$;

iii)
$$\sum_{n=1}^{\infty} r_n h_n < +\infty$$
,

then the sequence $\{z_n\}$ generated by (3.13) converges strongly to $P_S u$, where P_S is a metric projection of E onto S.

Remark 3.10. Corollary 3.8 and Corollary 3.9 are more general than the results of H. -K. Xu in [27].

Corollary 3.11. Let H be a Hilbert space. Let $T: H \longrightarrow H$ be a nonexpansive mapping from H into itself with $S = \{x \in H: T(x) = x\} \neq \emptyset$. If the sequences $\{r_n\} \subset (0, +\infty)$, and $\{t_n\} \subset (0, 1)$ satisfy the conditions i) and ii) in Theorem 3.1 or the conditions i) and ii) in Theorem 3.4, then the sequence $\{x_n\}$ defined by u, $x_0 \in E$ and

$$\begin{cases} y_n = t_n u + (1 - t_n) x_n, \\ x_{n+1} = \frac{r_n}{1 + r_n} T(x_{n+1}) + \frac{1}{1 + r_n} y_n, \ n \ge 0, \end{cases}$$
(3.20)

converges strongly to $P_S u$, where P_S is a metric projection of E onto S.

References

- [1] R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer (2009).
- [2] Y. Alber, On the stability of iterative approximatins to fixed points of nonexpansive mappings, *J. Math. Anal. Appl.* **328** (2007), 958-971.
- [3] Y. Alber, I. Ryazantseva, *Nonlinear Ill-posed Problems of Monotone Type*, Springer, 2006.
- [4] D. Barraez, H. Leiva, N. Merentes, and M. Narváez, Exact Controllability of Semilinear Stochastic Evolution Equations, *Afr Diaspora J. Math.* **11** (2011), n. 1,124-139.
- [5] H. H. Bauschke, E. Matoušková, S. Reich, Projection and proximal point methods: convergence results and counterexamples, *Nonlinear Anal.* **56** (2004), 715-738.
- [6] T. D. Benavides, G. L. Acedo, H. -K. Xu, Iterative solutions for zeros of accretive operators, *Math. Nachr.* 248-249 (2003), 62-71.
- [7] J. Blot, P. Cieutat, and G. M. N'Guérékata, S-Asymptotically ω-Periodic Functions and Applications to Evolution Equations, *Afr Diaspora J. Math.* **12** (2011), n. 2, 113-121.
- [8] H. Brézis and P. L. Lions, Produits infinis de resolvants, *Israel J. Math.* **29** (1978) 329-345.

- [9] R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert spaces, *J. Func. Anal.*, **18** (1975), 15-26.
- [10] K. Goebel, S. Reich, *Uniform convexity, hyperbolic geometry and nonexpansive mappings*, Marcel Dekker, New York and Basel (1984).
- [11] O. Güler, On the convergence of the proximal point algorithm for convex minimization, *SIAM Jour. Contr. Optim.* **29** (1991), 403-419.
- [12] B. Halpern, Fixed Points of Nonexpanding maps, *Bull. Amer. Math. Soc.* **73** (1967), 957-961.
- [13] K. S. Ha and J. S. Jung, Strong convergence theorems for accretive operators in Banach spaces, *J. Math. Anal. Appl.* **147** (1990), 330-339.
- [14] J. S. Jung and W. Takahashi, Dual convergence theorems for the infinite products of resolvents in Banach spaces, *Kodai Math. J.* **14** (1991), 358-364.
- [15] J. S. Jung and W. Takahashi, On the asymptotic behavior of the infinite products of resol- vents in Banach spaces, *Nonlinear Anal.* **20** (1993), 469-479.
- [16] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algoritm in Banach spaces, *SIAM Jour. Contr. Optim.* **13**, n. 3 (2002), 938-945.
- [17] N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, *Optim.*, **37**, n. 3 (1996), 239-252.
- [18] W. R. Mann, Mean value methods in iteration, *Proc. Amer. Math. Soc.* 4 (1953), 506-510.
- [19] O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, *Israel J. Math.* **32** (1979), 44-58.
- [20] S. Reich, Asymptotic behavior of contractions in Banach spaces, *J. Math. Anal. Appl.* **44** (1973), 57-70.
- [21] S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, *Nonlinear Anal.* **2** (1978), 85-92.
- [22] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach space, *J. Math. Anal. Appl.* **75** (1980), 287-292.
- [23] R. T. Rockaffelar, Monotone operators and proximal point algorithm, *SIAM Jour. Contr. Optim.* **14** (1976), 887-897.
- [24] R. E. Showalter, Monotone operator in Banach spaces and nonlinear partial differential equations, Amer. Math. Soci. (1997).
- [25] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iteration in Hilert space, *Math. Prog. Series A* **87**, n. 1 (2000), 189-202.

- [26] Y. Song and C. Yang, A note on a paper: A regularization method for the proximal point algorithm, *J. Glob. Optim.* **43**, n. 1 (2009), 171-174.
- [27] H.-K. Xu, A regularization method for the proximal point algorithm, *J. Glob. Optim.* **36**, n. 1 (2006), 115-125.
- [28] H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, *J. Math. Anal. Appl.* **314**, n. 2 (2006), 631-643.
- [29] X. J. Zheng, C. Z. Ye, and H. S. Ding, Asymptotically Almost Automorphic Solutions to Nonautonomous Semilinear Evolution Equations, *Afr Diaspora J. Math.* **12** (2011), n. 2, 104-112.