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Abstract

In this paper, we study the strong convergence of a regularization proximal point
algorithm for the problem of finding a zero of m—accretive operators in a uniformly
smooth Banach space E, and the stability of the regularization algorithms are consid-
ered.
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1 Introduction

Let E be a Banach space, let A : E — 2% be an m—accretive operator. It is well known
that many problems in nonlinear analysis and optimization can be formulated as the prob-
lem:

find an x such that 0 € A(x).

This problem has been investigated by many researchers: see, for instance, Benavides et
al. [6], Brézis and Lions [8], Ha and Jung [13], Jung and Takahashi [14, 15], Reich [22],
Rockafellar [23], Xu [27, 28] and others. One popular method of solving equation 0 € A(x)
is the proximal point algorithm. The proximal point algorithm generates, for any starting
point xo = x € E, a sequence {x,} by the rule

X1 = I}, (X),n 2 0, (1.1)

where {r,} is a sequence of positive real numbers and J‘r‘}l = (I +r,A)"" is the resolvent of A.
Some of them dealt with the weak convergence of the sequence {x,} generated by (1.1) and
others proved strong convergence theorems by imposing assumptions on A.

Note that, algorithm (1.1), can be rewritten as

Xn+1 _xn+rnA(xn+1) 50. (12)
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This proximal iteration may be interpreted as an implicit one-step discretization method for
the evolution differential inclusion

%(t) +Ax(1)>0, ae. 120, (1.3)

where the parameter r, is a (variable) stepsize. Let H be a real Hilbert space and A be a
maximal monotone on H. When A~!(0) # 0 and A is demipositive, R. Bruck [9] proved the
following convergence result: every solution trajectory {x(¢) : ¢t — oo} of (1.3) converges
weakly in H to an element of A~1(0). To know more informations and new results for the
evolution differential inclusion, we can see in [4, 7, 24, 29]...

In particular, in 1976, Rockafellar [23] devised the proximal point algorithm which
generates, starting with an arbitrary initial xy in Hilbert space H, a sequence {x,} satisfying:

st = 1y (Xn) + €, 20, (1.4)

where A is a maximal monotone operator in H, r, > 0 is a real number, and e, is an
error vector. Rockafellar proved the weak convergence of algorithm (1.4) if the sequence
{r,} is bounded away from zero and if the sequence of the errors satisfies the condition:
Ynlleall < oo. An analogous result was established by O. Nevanlinna and S. Reich [19] for
the problem of finding a zero of the accretive operator A in Banach spaces. They considered
the sequence {x,} defined by

Xna1 + Aps1AXps1 3 Xp+ €41, 120, (L.5)

where {4,,} is a positive sequence, and they obtained the strong convergence of the sequence
{x,} to an element of A~'0 when Yot An =00, 277 |lexll < oo and the operator A satisfies
the converge condition. In 1991, Giiler [11] gave an example showing that Rockafellar’s
proximal point algorithm does not converge strongly. An example of the authors Bauschke,
Matouskova and Reich [5] also showed that the proximal algorithm only converges weakly
but not in norm. Solodov and Svaiter [25] in 2000 proposed a modified proximal point
algorithm which converges strongly to a solution of equation 0 € A(x) by using projection
method. Motivated by iterative algorithms of Halpern’s type [12] and Mann’s type [18],
Kamimura and Takahashi [16] introduced the iterative algorithms in Hilbert spaces and
Banach spaces:

X1 = X0 + (1= @n)Jy, (), 2 0, (1.6)

and
X1 = @ + (1= @), (), 1 20, (1.7)

and showed that the sequence {x,} generated by (1.6) converges strongly to some v € A~ (0)
and the sequence {x,} generated by (1.7) converges weakly to some v € A~!(0). Lehdili and
Moudafi [17] obtained the convergence of the sequence {x,} generated by the algorithm

Xne1 = T2 (%), (1.8)

where A, = u,I+ A is viewed as a Tikhonov regularization of A.
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When A is maximal monotone in Hilbert space H, in 2006, Xu [27]; in 2009, Song and
Yang [26] used the technique of nonexpansive mappings to get convergence theorems for
{x,} defined by the perturbed version of the algorithm (1.4)

Xpe1 = T2ttt + (1= 1,)%, + €). (1.9)
Note that, the algorithm (1.9) can be rewritten as
A1) + Xpe1 D tau+ (1 —t)x, +e,, n>0. (1.10)

In this paper, we use the regularization proximal point algorithm (1.10) and the tech-
nique of accretive operators to get convergence theorems for the problem of finding a zero
of m—accretive operator in Banach spaces.

2 Preliminaries

Let E be a real Banach space with norm ||.|| and let £* be its dual. The value of f € E*
at x € E will be denoted by (x, f). When {x,} is a sequence in E, then x, — x (resp.
Xp — X, Xp A x) will denote strong (resp. weak, weak™) convergence of the sequence {x,}
to x.

We know that if C is a closed convex subset of a reflexive strictly convex Banach E, then
for each x € E, there exists a unique element u = Pcx € C with ||x—u|| = inf{||lx—y| : yeC.
Such a P is called the metric projection of E onto C.

The function

pE(®) = sup(2” (e + Yl +llx =yl = 1= llxdl =1, [yl =7}, 2.1

is called the modulus of smoothness of the space E. The function pg(7) defined on the
interval [0, +00) is convex, continuous, increasing and pg(0) = 0. A Banach space E is said
to be uniformly smooth, if
lim pe(®) _
™0 T

0. 2.2)

It is well known that every uniformly smooth Banach space is reflexive.
A mapping j from E onto E* satisfying the condition

J) = {f € E*: (. f) = |IxIl” and ||| = [1xI} (2.3)

is called the normalized duality mapping of E. In any smooth Banach space

J(x) = 2‘1grad||x||2, and if E is a Hilbert space, then J = I, where [ is the identity map-
ping. It is well known that if E* is stricly convex or E is smooth, then J is single valued.
Suppose that J is single valued, then J is said to be weakly sequentially continuous if for
each {x,} c E with x, — x, J(x,) BN J(x). We know that every Hilbert spaces and the /7
spaces with 1 < p < oo are uniformly smooth spaces and have a weakly sequentially con-
tinuous duality mappings [1]. We denote the single valued normalized duality mapping by

J-
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Lemma 2.1. [2] In an uniformly smooth Banach space E, for all x,y € E,

llox +YII* < 11l + 24y, j(x)) + cpe(lylD, (24)
where ¢ = 48 max(L, ||x|,||]]).

Remark 2.2. Reich [21] established a similar inequality with inequality (2.4) in the form

e+ 1P < [1xl1* + 2y, )y + max{lxcl, BIYIBAIID, (2.5)

where
B = sup{(llx+ tyll* = 1xl1*) /1= 2¢y, j(x)) : Il < 1, [Iyll < 1}.

An operator A : D(A) C E —> 2F is called accretive if for all x,y € D(A) there exists
j(x—y) € J(x—y) such that

(u—v,j(x—-y)) >0, Yu € A(x), v € A(y). (2.6)

An operator A : D(A) C E — 2F is called m—accretive if it is an accretive operator and the
range R(1A + 1) = E for all A > 0. If A is a m—accretive operator in Banach space E with E
has a weakly sequentially continuous duallity mapping J, then it is a demiclosed operator,
i.e., if the sequence {x,} C D(A) satisfies x,, — x and A(x,) >y, — f, then A(x) = f [3].

A mapping Q of C into C is said to be a retraction if Q> = Q. If a mapping Q of C into
itself is a retraction, then Qz = z for every z € R(Q), where R(Q) is range of Q. Let D be a
subset of £ and let Q be a mapping of C into D. Then Q is said to be sunny if each point
on the ray {Qx+t(x— Qx) : t > 0} is mapped by Q back onto Qx, in other words,

Q(Qx+1t(x—0x)) = Ox

forall # >0 and x € C. A subset D of C is said to be a sunny nonexpansive retract of C if
there exists a sunny nonexpansive retraction of C onto D [20].

Proposition 2.3. [10] Let G be a nonempty closed convex subset of a smooth Banach space
E. A mapping Qg : E — G is a sunny nonexpansive retraction if and only if

(x=06x, j(6-0cx)) <0, Vxe E, V¢ €G. 2.7

Reich [22] showed that if E is uniformly smooth Banach and A : D(A) C E — 2 is an
m—accretive mapping with A=1(0) # 0, then there exists a sunny nonexpansive retraction Q
from E onto A~(0).

Let C;, C; be convex subsets of E. The quantity

B(C1,C2) = sup inf [lu—v|| = sup d(u,C2)

u€C1 vela LlGCl
is said to be semideviation of the set C from the set C». The function
H(C1,C2) = max{B(Cy,Cr), B(C2,C1)}

is said to be a Hausdorff distance between C; and Cs.
Finally, we need the following lemma:
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Lemma 2.4. [28] Let {a,} be a sequence of nonnegative real numbers satisfying the prop-
erty:
ans1 < (1= A)an+ ,Bn+0y,, ¥n 20

where {A,,}, {B,} and {0} satisfy the conditions
) XA =00,
ii) limsup, B, <0o0r 37 |4,8,| < 005
iii) 0,>0,Yn>0and 3, o, < .

Then {a,} converges to zero as n — oo,

3 Main results

Let E be an uniformly smooth Banach space and A : D(A) C E — 2F be an m—accretive
operator with S = A~1(0) # 0.

Now we study the strong convergence of sequence {x,} generated by the following
algorithm: u, xg € E,

FnA(Xp41) + Xpt1 3ty + (1 — 1), 20, (3.1)
where {#,} € (0,1) and {r,,} C (0, +00).

Theorem 3.1. Let E be an uniformly smooth Banach space which admits a weakly sequen-
tially continuous normalized duality mapping j from E to E*. Let A: D(A) C E — 2F be an
m— accretive operator with S = A~1(0) # 0. If the sequences {r,} C (0, +c0) and {t,}  (0,1)
satisfy

i) lim,e0ty, =0; X7 oty = +00;
i) lim,_e0 7, = 400,

then the sequence {x,} generated by (3.1) converges strongly to Qsu, where Qs is a sunny
nonexpansive retraction of E onto S.

Proof. Since A is an m—accretive operator, equation (3.1) has solution, i.e., there exists x,41
such that
FnAXp41) + Xpg1 Dty + (1 = 1,) x5, (3.2)

Hence, for each n, there exists y,+; € A(x;+1) such that
FnYn1 + Xnt1 = gt + (1 = 1,) x5 (3.3)
For each x* € S, we have
(FaYn+1s j(Xne1 = X)) 20, Yn 2 0. (3.4)

Therefore,
(taut+ (1 = 1,)x5 = Xp41, j(Xpe1 — X)) 2 0, Vn > 0. (3.5)
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It gives the inequality
et = X1 < [l = x|+ (1= 1)l = X |1 X1 = X7, ¥V 2 0.
Since [|x,+1 —x*|| = 0, ¥n > 0, we obtain
[x+1 = X7 < tulle = 7N+ (1 = )llx, = X7l Y 2 0. (3.6)
Consequently,

[1xn 1 = X" <ty max((lu— x|, [1x, = x*[1) + (1 = #,) max(flee — x|, [|x, — x7[])
= max(|u — x|, l|lx, — x*[})

< max([lu— x|, [[x,—1 — x*|)

< max(||u—x*||, [lxo — x*|]), Vr > 0.

Therefore, the sequence {x,} is bounded. Every bounded set in a reflexive Banach space
is relatively weakly compact. This means that there exists some subsequence {x,, } € {x,}
which converges weakly to a limit point x € E.

From equation (3.3) and the sequence {x,} is bounded, we get

1

yneill = =ttt + (1 = 1) Xal] — 0, 1 — co. (3.7
n

It is clear that x € S because the operator A is demiclosed. Hence, noting the inequality

(2.7), we obtain

lim sup (= Qsu, j(x, ~ Qsu)) = lim (u=Qsa, jCr, = Os10) .

={u—Qsu, j(x—Qsu)) <0.
Next, we have
%41 — QS ”Hz = <_rnyn+1 +tqu+ (1 —1,)x, — QS u,j(xn+1 - QS u))
= ~(TuYn+1, J(Xns1 — Qs ut))

+ <tnu + (1 - tn)xn - QS u, j(xn+l - QS Lt)>
<tn(u— Qg u) + (1 = 1,)(xn — Qs ut), j(Xp41 — Qs 1))

1
< Sl = Qs 1) + (1 = 1) 00 = Qs I + 11 = Qs ).
By the Lemma 2.1 and the estimate above, we conclude that

26041 — Qs ull® < lltw(u— Qs 1) + (1 = 1,)(x, — Qs )|
< (1= 1)1 — Qs ull® + 2t,(1 = )t — Qs u, j(x, — Qs 1))
+cpe(tyllu— Qs ull).

Consequently,
1 = Qs ull” < (1= t)llx, — Qs ul* + 1B, (3.9)
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where
PE(ty|lu — Qs ull)

n

PE(n|lu— Qs ul])

Brn=2(1 = t,){u—QOsu, j(x, — Qsu)) +c

Since E is the uniformly smooth Banach space, — 0, n — 0. By (3.8),

we obtain limsup,_, B, <0. So, an application of Lemma 2.4 to (3.9) yields the desired
result. O

Remark 3.2. If for some ny, ||x,, — x*|| = 0, then ||x,,+x —x*|| = 0, Yk > 1 in proximal point
algorithm (because ||x,,+1 —x*|| < ||x, — x*||, ¥n > 0), but this property is not necessarity true
in a regularization proximal point algorithm.

1
Remark 3.3. The sequences {r,} and {z,} defined by r,, = n, t, = — satisfy all conditions in
n
Theorem 3.1.
Theorem 3.4. Let E be an uniformly smooth Banach space which admits a weakly sequen-
tially continuous normalized duality mapping j from E to E*. Let A : D(A) C E — 2F be an
m— accretive operator with S = A~1(0) # 0. If the sequences {r,} C (0, +0c0) and {t,} c (0,1)
satisfy
1) llmn_)oo tl’l = 0,‘ Z;O:O tn = +00’ ZZO:() |tl’l+1 - tnl < +OO;

I'n

i) infr, =r>0, ¥ 0|1 - —=| < +co,
n

n+1
then the sequence {x,} generated by (3.1) converges strongly to Qsu, where Qg is a sunny
nonexpansive retraction of E onto S.

Proof. From the proof of Theorem 3.1, we obtain the sequence {x,} is bounded and there
exists a subsequence {x,,} of {x,} such that x,, — x € E. Now, we show that x € §.
In equation (3.3) replacing n by n+ 1, we get

Fne1Yn+2 + Xn42 = tnpr + (1 =t 1) X041 (3.10)
From (3.3) and (3.10) and by the accretiveness of A, we have
P 1 X042 = Xt 15 J(Xn42 = Xn1)) = (P = ) X425 J(Xn42 = Xn+1))
< (raltneru+ (1= tpg 1) Xns 1] = Pt [t + (1= 12) 2], j(Xn42 = Xn41))-
Hence,

Fnat X042 = Xna1 |l < [rnet = Fal |2l
Frnltneru+ (1 =ty 1) Xne1] = Pt [nte + (1= 1) ]|
< Pt (1= tn DlXnr1 = Xall + 171 = Fal 2]
+ Pt — Bl (1] + luel])

+ 1 = 1l LA = B DX 1 1+ Eg [ul].

By {#,} € (0,1) and r,, > O for all n, we deduce

)
ons2 = X1l < (1= sl ns 1 — %l +(2|rn+1 —nf+3[1- |)K, G.11)
n+
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where K = max{||u||,sup||x,||} < +oco. By Lemma 2.4, ||x,+1 — xu|| — 0, as n — co.
Therefore,

1
yne1ll = r_”tn(u = Xn) + (X = Xps 1)l
n (3.12)

1
< =Kty + |1xXp41 = Xull) — 0, n —> oo,
-

Since A is demiclosed, we obtain x € S .
The rest of the proof follows the pattern of Theorem 3.1. O

1 1

Remark 3.5. The sequences {r,} and {t,,} defined by r,, = 1+ —, 1, = — satisfy all conditions
n n

in Theorem 3.4.

Next, we study stability of algorithm (3.1) in the form
rnA" (Xp41) + Zne1 D tau+ (1 =)z, 4, 20 € E, n >0, (3.13)
where A" : D(A™) C E — 2F are m—accretive operators with D(A™) = D(A) such that
H(A™(x),A(x)) < glIxIDhn, (3.14)

where g is real bounded (image of a bounded set is bounded) function for 7 > 0 with g(0) =0
and {A,} is positive sequence.
We have the following results:

Theorem 3.6. Let E be an uniformly smooth Banach space which admits a weakly sequen-
tially continuous normalized duality mapping j from E to E*. Let A : D(A) C E — 2F and
A" D(A") C E — 2F be m— accretive operators with S = A~1(0) # 0 and D(A) = D(A™)
for all n. If the condition (3.14) is fulfilled and the sequences {r,,} C (0, +c0), and {t,} C (0, 1)
satisfy

i) lim, ety =0; 207 gty = +00;
1) limy,_e0 1y = +00;
iii) 37 rphy < +oo,

then the sequence {z,} generated by (3.13) converges strongly to Qsu, where Qs is a sunny
nonexpansive retraction of E onto S.

Proof. For each n, by A" is an m—accretive operator, the equation (3.13) has solution, i.e.,
there exists z,,41 such that

rnAn(Zn+l)+Zn+l 3 thu+ (1 —1,)zy. (3.15)
Hence, there exists wy,4+1 € A"(z,+1) such that

FaWntl + Zns1 = e+ (1 — 1)z, (3.16)
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By the condition (3.14), for each y,;1 € A(x,+1), there exists b,.1 € A"(x,+1) such that

yn+1 = Dnsill < g(l1xn+11DAn < g(K)Ay. (3.17)
From (3.3) and (3.16), we have

Wit = bns1),J@Zns1 = X001)) + Fn(Brst = Ynr1), J(Zne1 — Xns1))

2 .
+|zns1 = Xna1lI” = (A = 2420 = X, J(Zna1 = Xns1))-

By A" is an m—accretive operator and by (3.17), we obtain
IZn+1 = Xn1ll < (1= )|z — Xnll + g(K) Py 1. (3.18)

By the assumption and Lemma 2.1, we conclude that ||z,, — x,,|| — 0, as n — oo. In addition,
by Theorem 3.1,

llzn — Os ull < llzn = xpll + [l — Qs ull — 0, n —> o0, (3.19)
which implies that z,, converges strongly to Qg u. O

Theorem 3.7. Let E be an uniformly smooth Banach space which admits a weakly sequen-
tially continuous normalized duality mapping j from E to E*. Let A : D(A) C E — 2F and
A" D(A") C E — 2F be m— accretive operators with S = A~1(0) # 0 and D(A) = D(A™)
for all n. If the condition (3.14) is fulfilled and the sequences {r,,} C (0, +c0), and {t,} € (0, 1)
satisfy

i) lim, 001, =0; Zf,o:o Iy = +09, ZZO:O [fne1 — tn] < +o0;

I'n

i) infr, =r>0, %2, |1 - ——| < +oo;
n

Fn+1

iii) 37 rphy < +oo,

then the sequence {z,} generated by (3.13) converges strongly to Qsu, where Qs is a sunny
nonexpansive retraction of E onto S.

Corollary 3.8. Let H be a Hilbert space. Let A : D(A) C H — 2" and A" : D(A")C H —
28 be maximal monotone operators with S = A~1(0) # 0 and D(A) = D(A") for all n. If the
condition (3.14) is fulfilled and the sequences {r,} C (0, +00), and {t,} C (0,1) satisfy

i) lim, ety =0; 207 oy = +00;
i) lim,_e0 1, = +00;
iii) Y rphy < +oo,

then the sequence {z,} generated by (3.13) converges strongly to Psu, where Ps is a metric
projection of E onto S.

Corollary 3.9. Let H be a Hilbert space. Let A: D(A) C H— 2" and A" : D(A")CH —
2" be maximal monotone operators with S = A~1(0) # 0 and D(A) = D(A") for all n. If the
condition (3.14) is fulfilled and the sequences {r,} C (0,+c0), and {t,,} C (0,1) satisfy
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1) lim, 00, = 0; Z;o:() Iy = +09o, Z;o:() [th41 —tn] < +o0;

I'n

i) infry=r>0, 32,1 - = < +oo;
n

T+l

iii) 2% rahy < +oo,

then the sequence {z,,} generated by (3.13) converges strongly to Psu, where Ps is a metric
projection of E onto S.

Remark 3.10. Corollary 3.8 and Corollary 3.9 are more general than the results of H. -K.
Xu in [27].

Corollary 3.11. Let H be a Hilbert space. Let T : H — H be a nonexpansive mapping
from H into itself with S ={xe H: T(x) = x} # 0. If the sequences {r,} C (0,+c0), and
{t.} € (0,1) satisfy the conditions i) and ii) in Theorem 3.1 or the conditions i) and ii) in
Theorem 3.4, then the sequence {x,} defined by u, xy € E and

Yn = tatt + (1 = 1,) Xy,

I 1 (3.20)
=——-T +— >0
Xnt1 TTr (Xn+1) 1+rnyn,n_ ,

converges strongly to Psu, where Ps is a metric projection of E onto S.
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