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Abstract

We establish the existence of a Besicovitch almost periodic solution of a second-
order differential equation, u′′(t)+D1V(u(t), t) = 0, in a Hilbert space, when the poten-
tial V(., t) possesses a bump surrounded with a hollow. We use a variational method
on a Hilbert space of Besicovitch almost periodic functions.
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1 Introduction

Let H be a real Hilbert space, V : H ×R→ R be a function which is differentiable with
respect to its first vector variable and which is almost periodic with respect to its second
real variable. We consider the problem of the existence of almost periodic solutions of the
following second-order differential equation.

u′′(t)+D1V(u(t), t) = 0 (1.1)

where D1V denotes the partial differential of V with respect to its first vector variable. We
assimilate H and its dual space H∗ =L(H,R).

We assume that there exists a subset S in H which satisfies the following condition.

S is nonempty convex, closed,and bounded. (1.2)

On the function V we assume that the following conditions are fulfilled.

V ∈ APU(H×R,R) (1.3)
∗E-mail address: Joel.Blot@univ-paris1.fr
†E-mail address: dhaou06@gmail.com



Bumps and Almost Periodic oscillations 123

i.e. V is almost periodic in t uniformly with respect to x in the sense of Yoshizawa, [11] p.
45. D1V denotes (when it exists) the partial differential of V with respect its first variable.

For all (x, t) ∈ H×R,D1V(x, t) exists,and D1V ∈ APU(H×R,H∗). (1.4)

For all t ∈ R,V(., t) is concave on S . (1.5)

We set R0 := supx∈S ‖x‖.

There exists R ∈ (R0,∞) s.t. ∀t ∈ R,∀x ∈ S ,∀y ∈ B(0,R) \S ,V(x, t) ≥ V(y, t) (1.6)

And so we can see the graph of V(., t) on S as a mount, and the graph of V(., t) on B(0,R)\S
as a moat around this mount.

We use a variational formalism on a space of Besicovitch almost periodic functions by
using the functional

J(u) := lim
T→∞

1
2T

∫ T

−T
(
1
2
‖∇u(t)‖2−V(u(t), t))dt (1.7)

where ∇u is a generalized derivative of u. We obtain the existence of a minimizer on a
subset of functions with values into S , and by using the ”moat around S ” we prove that this
minimizer is a critical point of J on a space of functions with values into H, from which
we deduce that this minimizer is an almost periodic solution (in a Besicovitch sense) to
(1.1).

2 Notation

AP0(H) (respectively AP0(R)) denotes the space of the Bohr almost periodic functions
from R into H (respectively R). Endowed with the norm ‖u‖∞ := supt∈R ‖u(t)‖, AP0(H)
is a Banach space. Recall that, when u ∈ AP0(H), its mean value M{u} =Mt{u(t)} :=
limT→∞

1
2T

∫ T
−T u(t)dt exists in H, [15] p. 78, [19] p. 85. When E is a subset of H, we

consider AP0(E) := {u ∈ AP0(H) : u(R) ⊂ E}.

When k ∈ N∗ := N \ {0}, Ck(R,H) denotes the space of the k-times continuously differ-
entiable functions from R into H and APk(H) := {u ∈Ck(R,H) : ∀ j = 0, ...,k,u( j) ∈ AP0(H)}
where u( j)(t) := d ju(t)

dt j if j ≥ 1 and u(0) = u. Endowed with the norm ‖u‖C1 := ‖u‖∞ + ‖u′‖∞,
AP1(H) is a Banach space, [13] (Corollary 2.12). When E is a subset of H, we consider
APk(E) = APk(H)∩AP0(E).

If Z is a Banach space, a function f : H ×R→ Z belongs to APU(H ×R,Z) when f is
continuous and it satisfies the following condition: for all ε > 0, for all compact subset K
in H, there exists ` = `(ε,K) such that, for all α ∈ R, there exists τ ∈ [α,α+ `] satisfying
‖ f (x, t+τ)− f (x, t)‖ ≤ ε for all t ∈ R and for all x ∈ K, [11] p. 45.

B2(H) (respectively B1(H)) denotes the closure of AP0(H) into the Lebesgue space
L2

loc(R,H) (respectively L1
loc(R,H)) for the semi-norm

M{‖u‖2}1/2 := ( lim
T→∞

1
2T

∫ T

T
‖u(t)‖2dt)1/2
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(respectivelyM{‖u‖} := limT→∞
1

2T

∫ T
T ‖u(t)‖dt), and B2(H) (respectively B1(H)) is the quo-

tient space B2(H)/ ∼2 (respectively B1(H)/ ∼1 where u ∼2 v (respectively u ∼1 v) means
M{‖u− v‖2} = 0 (respectivelyM{‖u− v‖} = 0). Endowed with the inner product (u | v)B2 :=
Mt{〈u(t),v(t)〉}, B2(H) is a Hilbert space; its norm is denoted by ‖u‖B2 := ((u | u))1/2. En-
dowed with the norm ‖u‖B1 :=M{‖u‖}, B1(H) is a Banach space. The (classes of) functions
of B2(H) and B1(H) are Besicovitch almost periodic functions, [6], [17] p. 11-13. As a con-
sequence of the Cauchy-Schwarz-Buniakovski we have: B2(H) ⊂ B1(H) and ‖u‖B1 ≤ ‖u‖B2

for all u ∈ B2(H).

B1,2(H) is the space of the u ∈ B2(H) such that ∇u := limτ→0
1
τ (u(.+ τ)− u) exists in

B2(H). Endowed with the inner product (u | v)B1,2 := (u | v)B2 + (∇u | ∇v)B2 , B1,2(H) is an
Hilbert space, [7], [10]. This space was used to study the Besicovitch almost periodic
solutions of various classes of differential equations in [7], [8], [9], [10], [3], [4].

When E is a subset of H, B2(E) denotes the closure of AP0(E) into B2(H), and B1,2(E)
denotes the closure of AP1(E) into B1,2(H).

3 Existence theorem

In this section we state the main theorem of the paper. We also need to use the following
conditions.

There exists c > 0 s.t. ∀x,y ∈ H,∀t ∈ R, |V(x, t)−V(y, t)| ≤ c.‖x− y‖. (3.1)

There exists c1 > 0 s.t. ∀x,y ∈ H,∀t ∈ R,‖D1V(x, t)−D1V(y, t)‖ ≤ c1.‖x− y‖. (3.2)

V is bounded on S ×R. (3.3)

Theorem 3.1. Under (1.2-1.6) and (3.1-3.3), the equation (1.1) possesses a Besicovitch
almost periodic solution, i.e. there exists u∗ ∈ B1,2(S ) satisfying
∇2u∗(t)+D1V(u∗(t), t) = 0 (equality in B2(H)).

The dependence with respect to t in the function V is essential to avoid a trivial constant
solution of (1.1). Under (1.5-1.6) and (3.3), for all t ∈ R, since a concave C1 function is
weakly upper semi-continuous, we obtain the existence of an x∗(t) ∈ S such that V(x∗(t), t)≥
V(y, t) for all y ∈ B(0,R), and consequently we obtain D1V(x∗(t), t) = 0. But t 7→ x∗(t) is not
necessarily constant, and so we are not in the situation where there exists x ∈ S which is a
constant solution of (1.1).

In the paper [14] (Theorem 1.1) the author obtains the existence of a Bohr almost pe-
riodic solution of a second-order ordinary differential equation in a compact subset of a
finite-dimensional space, and this strong compactness is essential in his proof.

4 The proof of the theorem

In this section we assume the conditions (1.2-1.6) and (3.1-3.3) fulfilled.
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Lemma 4.1. The following assertions hold.

(i) J ∈C1(B1,2(H),R) and DJ(u).h= (∇u | ∇h)B2−(D1V(u(.), .) | h)B2 for all u,h ∈ B1,2(H).

(ii) B1,2(S ) is a convex set which is closed into B1,2(H), and J is convex on B1,2(S ).

(iii) J is weakly lower semi-continuous on B1,2(S ).

Proof. (i) Since V ∈ APU(H ×R,R) and D1V ∈ APUH ×R,H), we have t 7→ V(u(t), t) ∈
AP0(R) and t 7→ D1V(u(t), t) ∈ AP0(H) when u ∈ AP0(H), [11] (Lemma 3.4).

Let u ∈ B2(H). Then there exists a sequence (um)m in AP0(H) such that limm→∞ ‖u−
um‖B2 = 0. After (3.1), for all t ∈ R, we have

|V(u(t), t)−V(um(t), t)| ≤ c.‖u(t)−um(t)‖

that implies

limsup
T→∞

1
2T

∫ T

−T
|V(u(t), t)−V(um(t), t)|2dt ≤ c2.‖u−um‖

2
B2 .

Taking m→∞, we obtain limm→∞Mt{|V(u(t), t)−V(um(t), t)|2} = 0 that implies that t 7→
V(u(t), t) ∈ B2(R) since the functions t 7→ V(um(t), t) ∈ AP0(R). And so the Nemytski opera-
tor

NV : B2(H)→ B2(R), NV (u)(t) := V(u(t), t), (4.1)

is well defined and by using the previous calculations it satisfies the following inequality
for all u,v ∈ B2(h).

‖NV (u)−NV (v)‖B2 ≤ c.‖u− v‖B2 . (4.2)

Using a similar reasoning we obtain that the Nemytski operator

ND1V : B2(H)→ B2(H), ND1V (u)(t) := D1V(u(t), t), (4.3)

is well defined and satisfies the following inequality for all u,v ∈ B2(H).

‖ND1V (u)−ND1V (v)‖B2 ≤ c.‖u− v‖B2 . (4.4)

Now we can define the functional

Ψ : B2(H)→ R, Ψ(u) :=Mt{V(u(t), t)}. (4.5)

For all u,v ∈ B2(H), using (4.2) we have |Ψ(u)−Ψ(v)| ≤Mt{|V(u(t), t)−V(v(t), t)|} ≤ ‖NV (u)−
NV (v)‖B2 ≤ c.‖u− v‖B2 . And so Ψ is Lipschitzean and consequently, it is continuous.

When u,h ∈ B2(H), using the mean value inequality, [16] (Corollary 4.4, p. 342), and
(4.4) we obtain

|V(u(t)+h(t), t)−V(u(t), t)−D1V(u(t), t).h(t)|

≤ sup
z∈[u(t),u(t)+h(t)]

‖D1V(z, t)−D1V(u(t), t)‖.‖h(t)‖

≤ c1.( sup
z∈[u(t),u(t)+h(t)]

‖z−u(t)‖).‖h(t)‖ ≤ c1.‖h(t)‖2.
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Consequently we have
|Ψ(u+h)−Ψ(u)−ND1V (u).h|

≤Mt{|V(u(t)+h(t), t)−V(u(t), t)−D1V(u(t), t).h(t)|} ≤ c1.‖h‖B2 ,

that implies that ψ is Fréchet differentiable at u and

DΨ(u).h =Mt{D1V(u(t), t).h(t)}. (4.6)

Let u,v ∈ B2(H) and h ∈ B2(H) such that ‖h‖B2 ≤ 1. Using the Cauchy-Schwarz-Buniak-
ovski we have

|(DΨ(u)−DΨ(v)).h| ≤Mt{|(D1V(u(t), t)−D1V(v(t), t)).h(t)|}

≤Mt{‖(D1V(u(t), t)−D1V(v(t), t))‖.‖h(t)‖}

≤Mt{c1.‖u(t)− v(t)‖.‖h(t)‖} ≤ c1.‖u− v‖B2 .‖h‖B2

and so we have proven the following inequality for the norm of linear operators: ‖Dψ(u)−
DΨ(v)‖L ≤ c1.‖u− v‖B2 that implies that Ψ is of class C1.

Note that in : B1,2(H)→ B2(H), defined by in(u) := u, is linear continuous and so it is
of class C1. Since (. | .)B2 is bilinear continuous, it is of class C1. Since d : u 7→ (u,u), from
B2(H) into B2(H)×B2(H), is linear continuous, it is of class C1. Since ∇ : B1,2→ B2(H) is
linear continuous, it is of class C1. From the following formula

J =
1
2

(. | .)B2 ◦d ◦∇−Ψ◦ in (4.7)

we see that J is of classs C1 as a composition of C1-mappings. Using the chain rule, the
formulas of the differentials of the linear and bilinear mappings of the Fréchet differential
calculus in Banach spaces (cf. [16]) and (4.6), we obtain the following formula

DJ(u).h = (u | h)B2 −Mt{D1V(u(t), t).h(t)}. (4.8)

for all u,h ∈ B2(H).

(ii) Let u,v ∈ B1,2(S ) and λ ∈ (0,1). Then there exist two sequences (um)m and (vm)m in
AP1(S ) such that limm→∞ ‖u−um‖B1,2 = 0 and limm→∞ ‖v−vm‖B1,2 = 0. Since um(R) ⊂ S and
vm(R) ⊂ S , and since S is a convex set we have, for all t ∈ R, (1−λ)um(t)+λvm(t) ∈ S , and
consequently (1−λ)um +λvm ∈ AP1(S ) for all m ∈ N. Since limm→∞ ‖(1−λ)u+λv− ((1−
λ)um+λvm)‖B1,2 = 0 we obtain (1−λ)u+λv ∈ B1,2(S ). We have proven that

B1,2(S ) is convex. (4.9)

Let u,v ∈ B1,2(S ) and λ ∈ (0,1). Let two sequences (um)m and (vm)m in AP1(S ) such that
limm→∞ ‖u− um‖B1,2 = 0 and limm→∞ ‖v− vm‖B1,2 = 0. Consequently we have limm→∞ ‖u−
um‖B2 = 0 and limm→∞ ‖v− vm‖B2 = 0. Since V(., t) is concave on S we have, for all t ∈ R,

V((1−λ)um(t)+λvm(t)) ≥ (1−λ)V(um(t), t)+λV(vm(t), t)
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that implies
NV ((1−λ)um+λvm) ≥ (1−λ)NV (um)+λNV (vm).

Taking m→∞, since we have seen in the proof of (i) that NV ∈C0(B2(H),B2(R)), we obtain

NV ((1−λ)u+λv) ≥ (1−λ)NV (u)+λNV (v)

that implies Ψ((1−λ)u+λv) ≥ (1−λ)Ψ(u)+λΨ(v). And so Ψ is concave on B2(S ). Since
in is linear, −Ψ ◦ in is convex on B2(S ). Since 1

2‖.‖B2 is convex on B2(H), and since ∇ is
linear, J = 1

2‖.‖B2 ◦∇−Ψ◦ in is convex on B2(S ) as a sum of two convex functionals.

(iii) By using (i) and (ii), the characterization of the convexity by level sets, and the equality
of the strong and weak closures of the convex sets, we obtain (iii). �

Lemma 4.2. There exists u∗ ∈ B1,2(S ) such that J(u∗) = inf J(B1,2(S )).

Proof. Since V is bounded from above on S × R, γ := supV(S × R) < ∞. For all u ∈
AP1(S ) we have J(u) ≥ 1

2‖u
′‖2

B2 − γ ≥ −γ > −∞. And so J is bounded from below on
AP1(S ). Since J is continuous on B1,2(H), we obtain J(u) ≥ −γ for all u ∈ B1,2(S ), and
inf J(B1,2(S )) = inf J(AP1(S )). Let (uk)k be a minimizing sequence of J in AP1(S ) such that
J(uk) ≤ inf J(B1,2(S ))+ 1

k for all k ∈ N∗. Then we have

1
2
‖u′k‖

2
B2 ≤Mt{V(uk(t), t)}+ inf J(B1,2(S ))+1 ≤ γ+ inf J(B1,2(S ))+1

and so we obtain that (u′k)k is bounded in B2(H). Since uk(R)⊂ S ⊂ B(0,R) we have ‖uk(t)‖ ≤
R for all t ∈R and consequently ‖uk‖B2 ≤R for all k ∈N∗. And so (uk)k is bounded in B1,2(H).
Since B1,2(H) is a Hilbert space, there exists a subsequence (uqk )k of (uk)k and u∗ ∈ B1,2(H)
such that (uqk )k weakly converges to u∗ in B1,2(H). Since B1,2(S ) is closed convex we have
u∗ ∈ B1,2(S ). Since J is weakly lower semi-continuous and (uqk )k is a minimizing sequence,
we obtain that J(u∗) = inf J(B1,2(S )). �

Lemma 4.3. Let a,b ∈ AP0(R). We set µ(t) :=Ms{a(s)b(s+ t)} for all t ∈ R. Then the
following assertions hold.

(i) µ ∈ AP0(R),M{µ} =M{a}.M{b} and µ(t) =Ms{a(s− t)b(s)} for all t ∈ R.

(ii) Moreover we assume that a ∈ AP1(R). Then µ ∈ AP1(R) and µ′(t) =Ms{a′(s− t)b(s)}
for all t ∈ R.

(iii) Moreover we assume that a ∈ AP1(R) and that b is locally absolutely continuous on
R. Then we have µ′(t) = −Ms{a(s− t)b′(s)} for all t ∈ R.

Proof. First note that µ(t) is well defined since s 7→ a(s)b(s+ t) ∈ AP0(R) as a product of
two functions of AP0(R). Secondly note that a= 0 or b= 0 imply µ= 0 and all the assertions
become trivial. And so we assume a , 0 and b , 0 for the sequence of the proof.

(i) Since b ∈ AP0(R), b is uniformly continuous ([12] (Theorem II p. 35)), and so

∀ε > 0,∃δε > 0,∀r,r1 ∈ R, |r− r1| ≤ δε =⇒ |b(r)−b(r1)| ≤
ε

‖a‖∞
.
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When t, t1 ∈ R satisfy |t− t1| ≤ δε we have |(t+ s)− (t1+ s)| ≤ δε and then

|µ(t)−µ(t1)| ≤Ms{|a(s)|.|b(t+ s)−b(t1+ s)|} ≤
ε

‖a‖∞
Ms{|a(s)|} ≤ ε.

And so µ is continuous on R.

Since b ∈ AP0(R) we have

∀ε > 0,∃`ε > 0,∀α ∈ R,∃τ ∈ [α,α+ `ε],∀t ∈ R, |b(t+τ)−b(t)| ≤
ε

‖a‖∞

and then

|µ(t+τ)−µ(t)| ≤Ms{|a(s)|.|b(t+τ+ s)−b(t+ s)|} ≤Ms{|a(s)|}.
ε

‖a‖∞
≤ ε,

that proves the almost periodicity of µ.

For all S > 0, for all T > 0, and for all t ∈ R, we define

φS (t) :=
1

2S

∫ S

−S
a(s)b(s+ t)ds,dS ,T :=

1
2T

1
2S

∫ T

−T
(
∫ S

−S
a(s)b(s+ t)ds)dt. (4.10)

Note that dS ,T =
1

2T

∫ T
−T φS (t)dt. Using a result of [12] p. 43, we have

∀ε > 0,∃S 1
ε > 0,∀S ≥ S 1

ε ,∀t ∈ R, |φS (t)−µ(t)| ≤
ε

4
, (4.11)

that implies, for all T > 0,

|dS ,T −
1

2T

∫ T

−T
µ(t)dt| ≤ sup

t∈[−T,T ]
|φS (t)−µ(t)| ≤

ε

4
,

and by using the definition of the mean value we have

∀ε > 0,∃T 1
ε > 0,∀T ≥ T 1

ε , |
1

2T

∫ T

−T
µ(t)dt−M{µ}| ≤

ε

4
,

and so using the triangular inequality we obtain

∀ε > 0,∃S 1
ε > 0,∃T 1

ε > 0,∀S ≥ S 1
ε ,∀T ≥ T 1

ε , |dS ,T −M{µ}| ≤
ε

2
. (4.12)

By using a result of [12], p. 43, we have

∀ε > 0,∃T 2
ε > 0,∀T ≥ T 2

ε , |
1

2T

∫ T

−T
b(t+ s)dt−M{b}| ≤

ε

4‖a‖∞
(4.13)

that implies when T ≥ T 2
ε , for all S > 0,

|
1

2S

∫ S

−S
(

1
2T

∫ T

−T
a(s)b(t+ s)dt)ds−M{b}.

1
2S

∫ S

−S
a(s)ds| ≤

ε

4
,
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and by using the Fubini theorem we obtain |dS ,T −M{b}. 1
2S

∫ S
−S a(s)ds| ≤ ε

4 . By the definition
of the mean value we have

∀ε > 0,∃S 2
ε > 0,∀S ≥ S 2

ε , |
1

2S

∫ S

−S
a(s)ds−M{a}| ≤

ε

4.‖b‖∞
,

that implies | 1
2S

∫ S
−S a(s)ds.M{b} −M{a}.M{b}| ≤ ε

4 , and so using the triangular inequality
we obtain

∀ε > 0,∃S 2
ε > 0,∃T 2

ε > 0,∀S ≥ S 2
ε ,∀T ≥ T 2

ε , |dS ,T −M{a}.M{b}| ≤
ε

2
. (4.14)

Now, for all ε > 0, setting Tε := max{T 1
ε ,T

2
ε } > 0, S ε := max{S 1

ε ,S
2
ε } > 0, from (4.12) and

(4.14) we obtain

|M{µ}−M{a}.M{b}| ≤ |M{µ}−dS ε ,Tε |+ |dS ε ,Tε −M{a}.M{b}| ≤ ε,

that implies the equalityM{µ} =M{a}.M{b}. Since the mean value of an almost periodic
function is invariant under translations, we obtain µ(t) =Ms{a(s− t).b(s+ t− t)} =Ms{a(s−
t).b(s)}.

(ii) Since AP1(H) ⊂ B1,2(H) and f ′ = ∇ f when f ∈ AP1(H) Proposition 10 in [10]), setting
at(s) := a(s− t) we have at ∈ AP1(H), a′t(s) = a′(s− t) and then by using the definition of ∇,

0 = lim
δ→0
Ms{|

1
δ

(at(s+δ)−at(s))−a′t(s)|2}1/2

= lim
δ→0
Ms{|

1
δ

(a(s+δ− t)−a(s− t))−a′(s− t)|2}1/2.

We set µ1(t) :=Ms{a′(s− t).b(s)}, and by using the Cauchy-Schwarz-Buniakovski inequal-
ity we obtain

|
1
δ

(µ(t+δ)−µ(t))−µ1(t)| = |Ms{[
1
δ

(a(s+δ− t)−a(s− t))−a′(s− t)].b(s)}|

≤Ms{|
1
δ

(a(s+δ− t)−a(s− t))−a′(s− t)|2}1/2.‖b‖B2

which converges to zero when δ→ 0. And so we have proven that µ′(t) = µ1(t).

(iii) Using the formula of the integration by parts for the absolutely continuous functions,
[18] p. 54-55, for all S > 0, we have

1
2S

∫ S

−S
a′(s− t)b(s)ds =

1
2S

(a(S − t)b(S )−a(−S − t)b(−S ))−
1

2S

∫ S

−S
a(s− t)b(s′)ds.

Since a,b ∈ AP0(R) they are bounded on R that implies limS→∞
1

2S (a(S − t)b(S )− a(−S −
t)b(−S )) = 0, and sinceMs{a′(s− t)b(s)} exits in R, we obtain the existence ofMs{a(s−
t)b′(s)} and the equalityMs{a′(s− t)b(s)} = −Ms{a(s− t)b′(s)}. �

Lemma 4.4. The two following assertions hold.



130 J. Blot and D. Lassoued

(i) inf J(AP1(S )) = inf J(AP1(B(0,R))).

(ii) inf J(B1,2(S )) = inf J(B1,2(B(0,R))).

Proof. (i) AP1(S ) ⊂ B1,2(S ) implies inf J(AP1(S )) ≥ inf J(AP1(B(0,R)). Now we prove the
converse inequality. Let u ∈ AP1(B(0,R)). We consider the best approximation projector
on the closed convex set S , P : H → S . We set v(t) := P(u(t)) for all t ∈ R. Since P is
1-Lipschitzean ([2] (Proposition 1 p. 16)), P is continuous and we have v ∈ AP0(S ), [11]
(Lemma 3.2). Since u ∈ AP1(H), u′ is bounded on R and consequently u is Lipschitzean on
R. Therefore v is Lipschitzean on R as a composition of Lipschitzean mappings, and then v
is locally absolutely continuous on R, and consequently v is Lebesgue-almost everywhere
differentiable on R, [5] (Corollaire A.2 p.145).

Let t ∈ R be a point where v is differentiable. When δ ∈ R \ {0} we have

‖
1
δ

(v(t+δ)− v(t))‖ = ‖
1
δ

(P(u(t+δ))−P(u(t)))‖ =
1
|δ|
‖P(u(t+δ))−P(u(t))‖

≤
1
|δ|
‖u(t+δ)−u(t)‖ = ‖

1
δ

(u(t+δ)−u(t))‖

and doing δ→ 0 we obtain
‖v′(t)‖ ≤ ‖u′(t)‖ a.e. t ∈ R (4.15)

We consider the Bochner-Féjer functions Km(t) :=
∑m
ν=−m(1− |ν|m )e−iνt and ϕm(t) :=∏m

j=1 K(m!)2(β jt
m ) for all m ∈ N∗ and for all t ∈ R, where (β j) j is a Z-basis of the set of the

Fourier-Bohr exponents of v. We know that Km ≥ 0, M{Km} = 1, ϕm ≥ 0 andM{ϕm} = 1
forall m ∈ N∗, [12] p. 86-88 , [15] p. 115. We define, for all m ∈ N∗ and for all t ∈ R,

σm(t) :=Ms{ϕm(s).v(s+ t)}. (4.16)

Ever following [15] (p. 116) where we replace R by H, we obtain that σm ∈ AP1(H) and

lim
m→∞
‖σm− v‖B2 = 0. (4.17)

Since the functional Ψ defined in the proof of Lemma 4.1 is continuous on B2(H) we have
limm→∞Ψ(σm) = Ψ(v). Using the condition (1.6) we have V(v(t)) ≥ V(u(t)) for all t ∈ R,
that implies Ψ(v) ≥ Ψ(u) and consequently we have

∀ε > 0,∃mε ∈ N∗,∀m ≥ mε ,Ψ(σm) ≥ Ψ(u)− ε. (4.18)

Using a Mazur theorem, [16] p. 88, [1] (Corollary 5.62 p. 194) , we know that
co(v(R)) = ∩(p,α)∈Π[p ≥ α] where Π := {(p,α) ∈ H∗ ×R : ∀y ∈ v(R), 〈p,y〉 ≥ α} and [p ≥
α] := p−1([α,∞)). For all m ∈ N∗, for all t ∈ R and for all (p,α) ∈ Π, using ϕm ≥ 0, we have
〈p,σm(t)〉=Ms{〈p,ϕm(s).v(s+t)〉}=Ms{ϕm(s)〈p,v(s+t)〉} ≥Ms{ϕm(s).α}=Ms{ϕm(s)}.α=
α. Therefore we have σm(t) ∈ co(v(R)) ⊂ S , and consequently we have proven

σm ∈ AP1(S ) for all m ∈ N∗. (4.19)
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Using Lemma 4.3, iii, we have, for all m ∈ N∗ and for all t ∈ R,

‖σ′m(t)‖ = ‖Ms{ϕm(s).v′(t+ s)}‖ ≤Ms{ϕm(s).‖v′(t+ s)‖}

=Ms{
√
ϕm(s).

√
ϕm(s).‖v′(t+ s)‖}

and by using the Cauchy-Schwarz-Buniakovski inequality we obtain

≤Ms{ϕm(s)}1/2.Ms{ϕm(s).‖v′(t+ s)‖2}1/2 =Ms{ϕm(s).‖v′(t+ s)‖2}1/2,

and by using (4.15) we obtain ‖σ′m(t)‖2 ≤Ms{ϕm(s).‖u′(t+ s)‖2}. From this inequality we
obtainMt{‖σ

′
m(t)‖2} ≤ Mt{Ms{ϕm(s).‖u′(t+ s)‖2}}. Setting a = ϕm, b = ‖u′(.)‖2 and µ(t) =

Ms{ϕm(s).‖v′(t + s)‖2} and using Lemma 4.3, i, we obtain Mt{Ms{ϕm(s).‖u′(t + s)‖2}} =
M{ϕm}.M{‖u′‖2} =M{‖u′‖2}, and consequently we obtain, for all m ∈ N∗,

Mt{‖σ
′
m(t)‖2} ≤M{‖u′‖2}. (4.20)

We arbitrarily fix ε > 0 and we consider mε ∈N∗ provided by (4.18). Using (4.18) and (4.20)
we can write

J(σm) =
1
2
M{‖σ′m‖

2}−Ψ(σm) ≤
1
2
M{‖u′‖2}−Ψ(u)+ ε = J(u)+ ε,

that implies inf J(AP1(S )) ≤ J(u)+ ε. Doing ε→ 0, we obtain inf J(AP1(S )) ≤ J(u). And so
we have proven that inf J(AP1(S )) ≤ inf J(AP1(B(0,R))) and the proof of (i) is complete.

(ii) AP1(S ) ⊂ B1,2(S ) implies inf J(B1,2(S )) ≤ inf J(AP1(S )). Now we prove the converse
inequality. If u ∈ B1,2(S ) there exists a sequence (um)m in AP1(S ) such that limm→∞ ‖u−
um‖B1,2 = 0, and since J is continuous on B1,2(H) we obtain inf J(AP1(S ))≤ limm→∞ J(um)=
J(u). And so we obtain inf J(AP1(S ))≤ inf J(B1,2(S )) that implies inf J(AP1(S ))= inf J(B1,2(S )).
By doing a similar reasoning we obtain inf J(AP1(B(0,R))) = inf J(B1,2(B(0,R))). And then
(ii) becomes a consequence of (i). �

Let h ∈ AP1(H), h , 0. We set λ := R−R0
‖h|∞
∈ (0,∞) where R and R0 are defined in (1.6).

Since u∗, provided by Lemma 4.2, belongs to B1,2(S ), there exists a sequence (u j) j in
AP1(S ) such that lim j→∞ ‖u∗−u j‖B1,2 = 0. For all j ∈N, for all t ∈ R, and for all θ ∈ (−λ,λ),
wr have

‖u j(t)+ θh(t)| ≤ ‖u j(t)‖+ |θ|.‖h(t)‖ ≤ R0+λ.‖h|∞ ≤ R0+ (R−R0) = R,

and so u j + θ.h ∈ AP1(B(0,R)), and since lim j→∞(u j + θ.h) = u∗ + θ.h in B1,2(H), we have
u∗ + θ.h ∈ B1,2(B(0,R)) for all θ ∈ (−λ,λ). By using Lemma 4.2 and Lemma 4.4 we obtain
J(u∗) ≤ J(u∗ + θ.h) for all θ ∈ (−λ,λ). After Lemma 4.1, i, J is of class C1 therefore θ 7→
J(u∗ + θ.h) is differentiable and we obtain DJ(u∗).h = d

dθ |θ=0
J(u∗ + θ.h) = 0. Since D j(u∗)

is linear continuous and AP1(H) is dense into B1,2(H) we obtain that DJ(u∗).h = 0 for all
h ∈ B1,2(H). Now by using the formula in Lemma 4.1, i, we obtain, for all h ∈ B1,2(H),

0 = DJ(u∗).h = (∇u∗ | ∇h)B2 +Mt{D1V(u∗(t), t).h(t)}

that impliesMt〈∇u∗ | ∇h〉} = −Mt{〈D1V(u∗(t), t) | h(t)〉}, and then using Proposition 10 in
[10], we obtain that ∇2u∗ =∇(∇u∗) exists into B2(H) and ∇2u∗ = D1V(u∗(.), .), i.e. ∇2u∗(t)+
D1V(u∗(t), t) = 0 (equality in B2(H). And so the proof of the theorem 3.1 is complete.
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